============================================================ | | | Crystallography & NMR System (CNS) | | CNSsolve | | | ============================================================ Version: 1.1 Status: Developmental version ============================================================ Written by: A.T.Brunger, P.D.Adams, G.M.Clore, W.L.DeLano, P.Gros, R.W.Grosse-Kunstleve, J.-S.Jiang, J.Kuszewski, M.Nilges, N.S.Pannu, R.J.Read, L.M.Rice, T.Simonson, G.L.Warren. Copyright (c) 1997-1999 Yale University ============================================================ Running on machine: cesg-master.biochem.wisc.edu (Linux,32-bit) Program started by: volkman Program started at: 09:35:10 on 11-Sep-04 ============================================================ FFT3C: Using FFTPACK4.1 CNSsolve>define( DEFINE>{* selection of atoms other than hydrogens for which coordinates DEFINE> will be generated *} DEFINE>{* to generate coordinates for all unknown atoms use: (not(known)) *} DEFINE>{===>} atom_build=(not(known)); DEFINE>{============================= output files ================================} DEFINE> DEFINE>{* input coordinate file *} DEFINE>{===>} coordinate_infile="1xxx_8.pdb"; DEFINE> DEFINE>{* output coordinate file *} DEFINE>{===>} coordinate_outfile="1xxx_8_cns.pdb"; DEFINE>) CNSsolve> CNSsolve> checkversion 1.1 Program version= 1.1 File version= 1.1 CNSsolve> CNSsolve> evaluate ($log_level=verbose) Assuming literal string "VERBOSE" EVALUATE: symbol $LOG_LEVEL set to "VERBOSE" (string) CNSsolve> evaluate ($par_nonbonded="PROLSQ") EVALUATE: symbol $PAR_NONBONDED set to "PROLSQ" (string) CNSsolve> CNSsolve> !@generateProtonsJFD.inp CNSsolve> CNSsolve>{===========================================================================} CNSsolve>{ things below this line do not need to be changed } CNSsolve>{===========================================================================} CNSsolve> CNSsolve>remarks changed Tue Sep 2 09:48:07 CDT 2003 CNSsolve>remarks by jfd to include a fes residue CNSsolve> CNSsolve>!@generate_tmoc.inp CNSsolve> CNSsolve>topology reset end CNSsolve>structure reset end Status of internal molecular topology database: -> NATOM= 0(MAXA= 40000) NBOND= 0(MAXB= 40000) -> NTHETA= 0(MAXT= 80000) NGRP= 0(MAXGRP= 40000) -> NPHI= 0(MAXP= 80000) NIMPHI= 0(MAXIMP= 40000) -> NNB= 0(MAXNB= 40000) CNSsolve> CNSsolve>topology RTFRDR>{===>} @TOPPAR:topallhdg5.3.pro ASSFIL: file /u/volkman/waterrefine/toppar/topallhdg5.3.pro opened. RTFRDR>remark file topallhdg.pro version 5.3 date 23-Sept-02 RTFRDR>remark for file parallhdg.pro version 5.3 date 13-Feb-02 or later RTFRDR>remark Geometric energy function parameters for distance geometry and RTFRDR>remark simulated annealing. RTFRDR>remark Author: Michael Nilges, EMBL Heidelberg; Institut Pasteur, Paris RTFRDR>remark This file contains modifications from M. Williams, UCL London RTFRDR>remark Last modification 16-Sept-02 RTFRDR> RTFRDR>set echo off message off end RTFRDR>end CNSsolve> CNSsolve>! no chain id. CNSsolve>segment name=" " SEGMENT> chain CHAIN> @TOPPAR:topallhdg5.3.pep CHAIN>REMARKS TOPH19.pep -MACRO for protein sequence CHAIN>SET ECHO=FALSE END CHAIN> sequence SEQUENCE> @1xxx.seq SEQUENCE>MET SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =CYS SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =TRP SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =TRP SEQUence-element (terminate with END) =CYS SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =CYS SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =TRP SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) = end SEGMNT: 124 residues were inserted into segment " " CHAIN> end SEGMENT>end Status of internal molecular topology database: -> NATOM= 1962(MAXA= 40000) NBOND= 1986(MAXB= 40000) -> NTHETA= 3608(MAXT= 80000) NGRP= 126(MAXGRP= 40000) -> NPHI= 3136(MAXP= 80000) NIMPHI= 1032(MAXIMP= 40000) -> NNB= 738(MAXNB= 40000) CNSsolve> CNSsolve>! removes the hydrogen on the cys-en CNSsolve>! and changes the atom type from SH1E to S. CNSsolve>patch DISU reference=1=( resid 50 ) PATCH> reference=2=( resid 53 ) PATCH> end Status of internal molecular topology database: -> NATOM= 1960(MAXA= 40000) NBOND= 1985(MAXB= 40000) -> NTHETA= 3608(MAXT= 80000) NGRP= 128(MAXGRP= 40000) -> NPHI= 3142(MAXP= 80000) NIMPHI= 1032(MAXIMP= 40000) -> NNB= 738(MAXNB= 40000) CNSsolve> CNSsolve>! turn peptide from trans to cis CNSsolve>patch CISP reference=nil=( resid 92 ) end Status of internal molecular topology database: -> NATOM= 1960(MAXA= 40000) NBOND= 1985(MAXB= 40000) -> NTHETA= 3608(MAXT= 80000) NGRP= 128(MAXGRP= 40000) -> NPHI= 3142(MAXP= 80000) NIMPHI= 1032(MAXIMP= 40000) -> NNB= 738(MAXNB= 40000) CNSsolve> CNSsolve>coor @&coordinate_infile COOR>HEADER Structures from CYANA 09-09-2004 COOR>REMARK model 8 COOR>ATOM 1575 N MET A 1 1.325 0.000 0.000 1.00 0.00 %READC-ERR: atom 1 MET HN not found in molecular structure %READC-ERR: atom 1 MET 2HB not found in molecular structure %READC-ERR: atom 1 MET 3HB not found in molecular structure %READC-ERR: atom 1 MET QB not found in molecular structure %READC-ERR: atom 1 MET 2HG not found in molecular structure %READC-ERR: atom 1 MET 3HG not found in molecular structure %READC-ERR: atom 1 MET QG not found in molecular structure %READC-ERR: atom 1 MET QE not found in molecular structure %READC-ERR: atom 1 MET 1HE not found in molecular structure %READC-ERR: atom 1 MET 2HE not found in molecular structure %READC-ERR: atom 1 MET 3HE not found in molecular structure %READC-ERR: atom 2 GLY 1HA not found in molecular structure %READC-ERR: atom 2 GLY 2HA not found in molecular structure %READC-ERR: atom 2 GLY QA not found in molecular structure %READC-ERR: atom 3 HIS 2HB not found in molecular structure %READC-ERR: atom 3 HIS 3HB not found in molecular structure %READC-ERR: atom 3 HIS QB not found in molecular structure %READC-ERR: atom 4 HIS 2HB not found in molecular structure %READC-ERR: atom 4 HIS 3HB not found in molecular structure %READC-ERR: atom 4 HIS QB not found in molecular structure %READC-ERR: atom 5 HIS 2HB not found in molecular structure %READC-ERR: atom 5 HIS 3HB not found in molecular structure %READC-ERR: atom 5 HIS QB not found in molecular structure %READC-ERR: atom 6 HIS 2HB not found in molecular structure %READC-ERR: atom 6 HIS 3HB not found in molecular structure %READC-ERR: atom 6 HIS QB not found in molecular structure %READC-ERR: atom 7 HIS 2HB not found in molecular structure %READC-ERR: atom 7 HIS 3HB not found in molecular structure %READC-ERR: atom 7 HIS QB not found in molecular structure %READC-ERR: atom 8 HIS 2HB not found in molecular structure %READC-ERR: atom 8 HIS 3HB not found in molecular structure %READC-ERR: atom 8 HIS QB not found in molecular structure %READC-ERR: atom 9 LEU 2HB not found in molecular structure %READC-ERR: atom 9 LEU 3HB not found in molecular structure %READC-ERR: atom 9 LEU QB not found in molecular structure %READC-ERR: atom 9 LEU QD1 not found in molecular structure %READC-ERR: atom 9 LEU QD2 not found in molecular structure %READC-ERR: atom 9 LEU 1HD1 not found in molecular structure %READC-ERR: atom 9 LEU 2HD1 not found in molecular structure %READC-ERR: atom 9 LEU 3HD1 not found in molecular structure %READC-ERR: atom 9 LEU 1HD2 not found in molecular structure %READC-ERR: atom 9 LEU 2HD2 not found in molecular structure %READC-ERR: atom 9 LEU 3HD2 not found in molecular structure %READC-ERR: atom 9 LEU QQD not found in molecular structure %READC-ERR: atom 10 GLU 2HB not found in molecular structure %READC-ERR: atom 10 GLU 3HB not found in molecular structure %READC-ERR: atom 10 GLU QB not found in molecular structure %READC-ERR: atom 10 GLU 2HG not found in molecular structure %READC-ERR: atom 10 GLU 3HG not found in molecular structure %READC-ERR: atom 10 GLU QG not found in molecular structure %READC-ERR: atom 11 MET 2HB not found in molecular structure %READC-ERR: atom 11 MET 3HB not found in molecular structure %READC-ERR: atom 11 MET QB not found in molecular structure %READC-ERR: atom 11 MET 2HG not found in molecular structure %READC-ERR: atom 11 MET 3HG not found in molecular structure %READC-ERR: atom 11 MET QG not found in molecular structure %READC-ERR: atom 11 MET QE not found in molecular structure %READC-ERR: atom 11 MET 1HE not found in molecular structure %READC-ERR: atom 11 MET 2HE not found in molecular structure %READC-ERR: atom 11 MET 3HE not found in molecular structure %READC-ERR: atom 12 ALA QB not found in molecular structure %READC-ERR: atom 12 ALA 1HB not found in molecular structure %READC-ERR: atom 12 ALA 2HB not found in molecular structure %READC-ERR: atom 12 ALA 3HB not found in molecular structure %READC-ERR: atom 13 SER 2HB not found in molecular structure %READC-ERR: atom 13 SER 3HB not found in molecular structure %READC-ERR: atom 13 SER QB not found in molecular structure %READC-ERR: atom 14 GLU 2HB not found in molecular structure %READC-ERR: atom 14 GLU 3HB not found in molecular structure %READC-ERR: atom 14 GLU QB not found in molecular structure %READC-ERR: atom 14 GLU 2HG not found in molecular structure %READC-ERR: atom 14 GLU 3HG not found in molecular structure %READC-ERR: atom 14 GLU QG not found in molecular structure %READC-ERR: atom 15 GLU 2HB not found in molecular structure %READC-ERR: atom 15 GLU 3HB not found in molecular structure %READC-ERR: atom 15 GLU QB not found in molecular structure %READC-ERR: atom 15 GLU 2HG not found in molecular structure %READC-ERR: atom 15 GLU 3HG not found in molecular structure %READC-ERR: atom 15 GLU QG not found in molecular structure %READC-ERR: atom 16 GLY 1HA not found in molecular structure %READC-ERR: atom 16 GLY 2HA not found in molecular structure %READC-ERR: atom 16 GLY QA not found in molecular structure %READC-ERR: atom 17 GLN 2HB not found in molecular structure %READC-ERR: atom 17 GLN 3HB not found in molecular structure %READC-ERR: atom 17 GLN QB not found in molecular structure %READC-ERR: atom 17 GLN 2HG not found in molecular structure %READC-ERR: atom 17 GLN 3HG not found in molecular structure %READC-ERR: atom 17 GLN QG not found in molecular structure %READC-ERR: atom 17 GLN 1HE2 not found in molecular structure %READC-ERR: atom 17 GLN 2HE2 not found in molecular structure %READC-ERR: atom 17 GLN QE2 not found in molecular structure %READC-ERR: atom 18 VAL QG1 not found in molecular structure %READC-ERR: atom 18 VAL QG2 not found in molecular structure %READC-ERR: atom 18 VAL 1HG1 not found in molecular structure %READC-ERR: atom 18 VAL 2HG1 not found in molecular structure %READC-ERR: atom 18 VAL 3HG1 not found in molecular structure %READC-ERR: atom 18 VAL 1HG2 not found in molecular structure %READC-ERR: atom 18 VAL 2HG2 not found in molecular structure %READC-ERR: atom 18 VAL 3HG2 not found in molecular structure %READC-ERR: atom 18 VAL QQG not found in molecular structure %READC-ERR: atom 19 ILE QG2 not found in molecular structure %READC-ERR: atom 19 ILE 1HG2 not found in molecular structure %READC-ERR: atom 19 ILE 2HG2 not found in molecular structure %READC-ERR: atom 19 ILE 3HG2 not found in molecular structure %READC-ERR: atom 19 ILE 2HG1 not found in molecular structure %READC-ERR: atom 19 ILE 3HG1 not found in molecular structure %READC-ERR: atom 19 ILE QG1 not found in molecular structure %READC-ERR: atom 19 ILE QD1 not found in molecular structure %READC-ERR: atom 19 ILE 1HD1 not found in molecular structure %READC-ERR: atom 19 ILE 2HD1 not found in molecular structure %READC-ERR: atom 19 ILE 3HD1 not found in molecular structure %READC-ERR: atom 20 ALA QB not found in molecular structure %READC-ERR: atom 20 ALA 1HB not found in molecular structure %READC-ERR: atom 20 ALA 2HB not found in molecular structure %READC-ERR: atom 20 ALA 3HB not found in molecular structure %READC-ERR: atom 21 CYS 2HB not found in molecular structure %READC-ERR: atom 21 CYS 3HB not found in molecular structure %READC-ERR: atom 21 CYS QB not found in molecular structure %READC-ERR: atom 22 HIS 2HB not found in molecular structure %READC-ERR: atom 22 HIS 3HB not found in molecular structure %READC-ERR: atom 22 HIS QB not found in molecular structure %READC-ERR: atom 23 THR QG2 not found in molecular structure %READC-ERR: atom 23 THR 1HG2 not found in molecular structure %READC-ERR: atom 23 THR 2HG2 not found in molecular structure %READC-ERR: atom 23 THR 3HG2 not found in molecular structure %READC-ERR: atom 24 VAL QG1 not found in molecular structure %READC-ERR: atom 24 VAL QG2 not found in molecular structure %READC-ERR: atom 24 VAL 1HG1 not found in molecular structure %READC-ERR: atom 24 VAL 2HG1 not found in molecular structure %READC-ERR: atom 24 VAL 3HG1 not found in molecular structure %READC-ERR: atom 24 VAL 1HG2 not found in molecular structure %READC-ERR: atom 24 VAL 2HG2 not found in molecular structure %READC-ERR: atom 24 VAL 3HG2 not found in molecular structure %READC-ERR: atom 24 VAL QQG not found in molecular structure %READC-ERR: atom 25 GLU 2HB not found in molecular structure %READC-ERR: atom 25 GLU 3HB not found in molecular structure %READC-ERR: atom 25 GLU QB not found in molecular structure %READC-ERR: atom 25 GLU 2HG not found in molecular structure %READC-ERR: atom 25 GLU 3HG not found in molecular structure %READC-ERR: atom 25 GLU QG not found in molecular structure %READC-ERR: atom 26 THR QG2 not found in molecular structure %READC-ERR: atom 26 THR 1HG2 not found in molecular structure %READC-ERR: atom 26 THR 2HG2 not found in molecular structure %READC-ERR: atom 26 THR 3HG2 not found in molecular structure %READC-ERR: atom 27 TRP 2HB not found in molecular structure %READC-ERR: atom 27 TRP 3HB not found in molecular structure %READC-ERR: atom 27 TRP QB not found in molecular structure %READC-ERR: atom 28 ASN 2HB not found in molecular structure %READC-ERR: atom 28 ASN 3HB not found in molecular structure %READC-ERR: atom 28 ASN QB not found in molecular structure %READC-ERR: atom 28 ASN 1HD2 not found in molecular structure %READC-ERR: atom 28 ASN 2HD2 not found in molecular structure %READC-ERR: atom 28 ASN QD2 not found in molecular structure %READC-ERR: atom 29 GLU 2HB not found in molecular structure %READC-ERR: atom 29 GLU 3HB not found in molecular structure %READC-ERR: atom 29 GLU QB not found in molecular structure %READC-ERR: atom 29 GLU 2HG not found in molecular structure %READC-ERR: atom 29 GLU 3HG not found in molecular structure %READC-ERR: atom 29 GLU QG not found in molecular structure %READC-ERR: atom 30 GLN 2HB not found in molecular structure %READC-ERR: atom 30 GLN 3HB not found in molecular structure %READC-ERR: atom 30 GLN QB not found in molecular structure %READC-ERR: atom 30 GLN 2HG not found in molecular structure %READC-ERR: atom 30 GLN 3HG not found in molecular structure %READC-ERR: atom 30 GLN QG not found in molecular structure %READC-ERR: atom 30 GLN 1HE2 not found in molecular structure %READC-ERR: atom 30 GLN 2HE2 not found in molecular structure %READC-ERR: atom 30 GLN QE2 not found in molecular structure %READC-ERR: atom 31 LEU 2HB not found in molecular structure %READC-ERR: atom 31 LEU 3HB not found in molecular structure %READC-ERR: atom 31 LEU QB not found in molecular structure %READC-ERR: atom 31 LEU QD1 not found in molecular structure %READC-ERR: atom 31 LEU QD2 not found in molecular structure %READC-ERR: atom 31 LEU 1HD1 not found in molecular structure %READC-ERR: atom 31 LEU 2HD1 not found in molecular structure %READC-ERR: atom 31 LEU 3HD1 not found in molecular structure %READC-ERR: atom 31 LEU 1HD2 not found in molecular structure %READC-ERR: atom 31 LEU 2HD2 not found in molecular structure %READC-ERR: atom 31 LEU 3HD2 not found in molecular structure %READC-ERR: atom 31 LEU QQD not found in molecular structure %READC-ERR: atom 32 GLN 2HB not found in molecular structure %READC-ERR: atom 32 GLN 3HB not found in molecular structure %READC-ERR: atom 32 GLN QB not found in molecular structure %READC-ERR: atom 32 GLN 2HG not found in molecular structure %READC-ERR: atom 32 GLN 3HG not found in molecular structure %READC-ERR: atom 32 GLN QG not found in molecular structure %READC-ERR: atom 32 GLN 1HE2 not found in molecular structure %READC-ERR: atom 32 GLN 2HE2 not found in molecular structure %READC-ERR: atom 32 GLN QE2 not found in molecular structure %READC-ERR: atom 33 LYS 2HB not found in molecular structure %READC-ERR: atom 33 LYS 3HB not found in molecular structure %READC-ERR: atom 33 LYS QB not found in molecular structure %READC-ERR: atom 33 LYS 2HG not found in molecular structure %READC-ERR: atom 33 LYS 3HG not found in molecular structure %READC-ERR: atom 33 LYS QG not found in molecular structure %READC-ERR: atom 33 LYS 2HD not found in molecular structure %READC-ERR: atom 33 LYS 3HD not found in molecular structure %READC-ERR: atom 33 LYS QD not found in molecular structure %READC-ERR: atom 33 LYS 2HE not found in molecular structure %READC-ERR: atom 33 LYS 3HE not found in molecular structure %READC-ERR: atom 33 LYS QE not found in molecular structure %READC-ERR: atom 33 LYS 1HZ not found in molecular structure %READC-ERR: atom 33 LYS 2HZ not found in molecular structure %READC-ERR: atom 33 LYS 3HZ not found in molecular structure %READC-ERR: atom 33 LYS QZ not found in molecular structure %READC-ERR: atom 34 ALA QB not found in molecular structure %READC-ERR: atom 34 ALA 1HB not found in molecular structure %READC-ERR: atom 34 ALA 2HB not found in molecular structure %READC-ERR: atom 34 ALA 3HB not found in molecular structure %READC-ERR: atom 35 ASN 2HB not found in molecular structure %READC-ERR: atom 35 ASN 3HB not found in molecular structure %READC-ERR: atom 35 ASN QB not found in molecular structure %READC-ERR: atom 35 ASN 1HD2 not found in molecular structure %READC-ERR: atom 35 ASN 2HD2 not found in molecular structure %READC-ERR: atom 35 ASN QD2 not found in molecular structure %READC-ERR: atom 36 GLU 2HB not found in molecular structure %READC-ERR: atom 36 GLU 3HB not found in molecular structure %READC-ERR: atom 36 GLU QB not found in molecular structure %READC-ERR: atom 36 GLU 2HG not found in molecular structure %READC-ERR: atom 36 GLU 3HG not found in molecular structure %READC-ERR: atom 36 GLU QG not found in molecular structure %READC-ERR: atom 37 SER 2HB not found in molecular structure %READC-ERR: atom 37 SER 3HB not found in molecular structure %READC-ERR: atom 37 SER QB not found in molecular structure %READC-ERR: atom 38 LYS 2HB not found in molecular structure %READC-ERR: atom 38 LYS 3HB not found in molecular structure %READC-ERR: atom 38 LYS QB not found in molecular structure %READC-ERR: atom 38 LYS 2HG not found in molecular structure %READC-ERR: atom 38 LYS 3HG not found in molecular structure %READC-ERR: atom 38 LYS QG not found in molecular structure %READC-ERR: atom 38 LYS 2HD not found in molecular structure %READC-ERR: atom 38 LYS 3HD not found in molecular structure %READC-ERR: atom 38 LYS QD not found in molecular structure %READC-ERR: atom 38 LYS 2HE not found in molecular structure %READC-ERR: atom 38 LYS 3HE not found in molecular structure %READC-ERR: atom 38 LYS QE not found in molecular structure %READC-ERR: atom 38 LYS 1HZ not found in molecular structure %READC-ERR: atom 38 LYS 2HZ not found in molecular structure %READC-ERR: atom 38 LYS 3HZ not found in molecular structure %READC-ERR: atom 38 LYS QZ not found in molecular structure %READC-ERR: atom 39 THR QG2 not found in molecular structure %READC-ERR: atom 39 THR 1HG2 not found in molecular structure %READC-ERR: atom 39 THR 2HG2 not found in molecular structure %READC-ERR: atom 39 THR 3HG2 not found in molecular structure %READC-ERR: atom 40 LEU 2HB not found in molecular structure %READC-ERR: atom 40 LEU 3HB not found in molecular structure %READC-ERR: atom 40 LEU QB not found in molecular structure %READC-ERR: atom 40 LEU QD1 not found in molecular structure %READC-ERR: atom 40 LEU QD2 not found in molecular structure %READC-ERR: atom 40 LEU 1HD1 not found in molecular structure %READC-ERR: atom 40 LEU 2HD1 not found in molecular structure %READC-ERR: atom 40 LEU 3HD1 not found in molecular structure %READC-ERR: atom 40 LEU 1HD2 not found in molecular structure %READC-ERR: atom 40 LEU 2HD2 not found in molecular structure %READC-ERR: atom 40 LEU 3HD2 not found in molecular structure %READC-ERR: atom 40 LEU QQD not found in molecular structure %READC-ERR: atom 41 VAL QG1 not found in molecular structure %READC-ERR: atom 41 VAL QG2 not found in molecular structure %READC-ERR: atom 41 VAL 1HG1 not found in molecular structure %READC-ERR: atom 41 VAL 2HG1 not found in molecular structure %READC-ERR: atom 41 VAL 3HG1 not found in molecular structure %READC-ERR: atom 41 VAL 1HG2 not found in molecular structure %READC-ERR: atom 41 VAL 2HG2 not found in molecular structure %READC-ERR: atom 41 VAL 3HG2 not found in molecular structure %READC-ERR: atom 41 VAL QQG not found in molecular structure %READC-ERR: atom 42 VAL QG1 not found in molecular structure %READC-ERR: atom 42 VAL QG2 not found in molecular structure %READC-ERR: atom 42 VAL 1HG1 not found in molecular structure %READC-ERR: atom 42 VAL 2HG1 not found in molecular structure %READC-ERR: atom 42 VAL 3HG1 not found in molecular structure %READC-ERR: atom 42 VAL 1HG2 not found in molecular structure %READC-ERR: atom 42 VAL 2HG2 not found in molecular structure %READC-ERR: atom 42 VAL 3HG2 not found in molecular structure %READC-ERR: atom 42 VAL QQG not found in molecular structure %READC-ERR: atom 43 VAL QG1 not found in molecular structure %READC-ERR: atom 43 VAL QG2 not found in molecular structure %READC-ERR: atom 43 VAL 1HG1 not found in molecular structure %READC-ERR: atom 43 VAL 2HG1 not found in molecular structure %READC-ERR: atom 43 VAL 3HG1 not found in molecular structure %READC-ERR: atom 43 VAL 1HG2 not found in molecular structure %READC-ERR: atom 43 VAL 2HG2 not found in molecular structure %READC-ERR: atom 43 VAL 3HG2 not found in molecular structure %READC-ERR: atom 43 VAL QQG not found in molecular structure %READC-ERR: atom 44 ASP 2HB not found in molecular structure %READC-ERR: atom 44 ASP 3HB not found in molecular structure %READC-ERR: atom 44 ASP QB not found in molecular structure %READC-ERR: atom 45 PHE 2HB not found in molecular structure %READC-ERR: atom 45 PHE 3HB not found in molecular structure %READC-ERR: atom 45 PHE QB not found in molecular structure %READC-ERR: atom 45 PHE QD not found in molecular structure %READC-ERR: atom 45 PHE QE not found in molecular structure %READC-ERR: atom 45 PHE QR not found in molecular structure %READC-ERR: atom 46 THR QG2 not found in molecular structure %READC-ERR: atom 46 THR 1HG2 not found in molecular structure %READC-ERR: atom 46 THR 2HG2 not found in molecular structure %READC-ERR: atom 46 THR 3HG2 not found in molecular structure %READC-ERR: atom 47 ALA QB not found in molecular structure %READC-ERR: atom 47 ALA 1HB not found in molecular structure %READC-ERR: atom 47 ALA 2HB not found in molecular structure %READC-ERR: atom 47 ALA 3HB not found in molecular structure %READC-ERR: atom 48 SER 2HB not found in molecular structure %READC-ERR: atom 48 SER 3HB not found in molecular structure %READC-ERR: atom 48 SER QB not found in molecular structure %READC-ERR: atom 49 TRP 2HB not found in molecular structure %READC-ERR: atom 49 TRP 3HB not found in molecular structure %READC-ERR: atom 49 TRP QB not found in molecular structure %READC-ERR: atom 50 CYS 2HB not found in molecular structure %READC-ERR: atom 50 CYS 3HB not found in molecular structure %READC-ERR: atom 50 CYS QB not found in molecular structure %READC-ERR: atom 51 GLY 1HA not found in molecular structure %READC-ERR: atom 51 GLY 2HA not found in molecular structure %READC-ERR: atom 51 GLY QA not found in molecular structure %READC-ERR: atom 52 PRO 2HB not found in molecular structure %READC-ERR: atom 52 PRO 3HB not found in molecular structure %READC-ERR: atom 52 PRO QB not found in molecular structure %READC-ERR: atom 52 PRO 2HG not found in molecular structure %READC-ERR: atom 52 PRO 3HG not found in molecular structure %READC-ERR: atom 52 PRO QG not found in molecular structure %READC-ERR: atom 52 PRO 2HD not found in molecular structure %READC-ERR: atom 52 PRO 3HD not found in molecular structure %READC-ERR: atom 52 PRO QD not found in molecular structure %READC-ERR: atom 53 CYS 2HB not found in molecular structure %READC-ERR: atom 53 CYS 3HB not found in molecular structure %READC-ERR: atom 53 CYS QB not found in molecular structure %READC-ERR: atom 54 ARG 2HB not found in molecular structure %READC-ERR: atom 54 ARG 3HB not found in molecular structure %READC-ERR: atom 54 ARG QB not found in molecular structure %READC-ERR: atom 54 ARG 2HG not found in molecular structure %READC-ERR: atom 54 ARG 3HG not found in molecular structure %READC-ERR: atom 54 ARG QG not found in molecular structure %READC-ERR: atom 54 ARG 2HD not found in molecular structure %READC-ERR: atom 54 ARG 3HD not found in molecular structure %READC-ERR: atom 54 ARG QD not found in molecular structure %READC-ERR: atom 54 ARG 1HH1 not found in molecular structure %READC-ERR: atom 54 ARG 2HH1 not found in molecular structure %READC-ERR: atom 54 ARG QH1 not found in molecular structure %READC-ERR: atom 54 ARG 1HH2 not found in molecular structure %READC-ERR: atom 54 ARG 2HH2 not found in molecular structure %READC-ERR: atom 54 ARG QH2 not found in molecular structure %READC-ERR: atom 55 PHE 2HB not found in molecular structure %READC-ERR: atom 55 PHE 3HB not found in molecular structure %READC-ERR: atom 55 PHE QB not found in molecular structure %READC-ERR: atom 55 PHE QD not found in molecular structure %READC-ERR: atom 55 PHE QE not found in molecular structure %READC-ERR: atom 55 PHE QR not found in molecular structure %READC-ERR: atom 56 ILE QG2 not found in molecular structure %READC-ERR: atom 56 ILE 1HG2 not found in molecular structure %READC-ERR: atom 56 ILE 2HG2 not found in molecular structure %READC-ERR: atom 56 ILE 3HG2 not found in molecular structure %READC-ERR: atom 56 ILE 2HG1 not found in molecular structure %READC-ERR: atom 56 ILE 3HG1 not found in molecular structure %READC-ERR: atom 56 ILE QG1 not found in molecular structure %READC-ERR: atom 56 ILE QD1 not found in molecular structure %READC-ERR: atom 56 ILE 1HD1 not found in molecular structure %READC-ERR: atom 56 ILE 2HD1 not found in molecular structure %READC-ERR: atom 56 ILE 3HD1 not found in molecular structure %READC-ERR: atom 57 ALA QB not found in molecular structure %READC-ERR: atom 57 ALA 1HB not found in molecular structure %READC-ERR: atom 57 ALA 2HB not found in molecular structure %READC-ERR: atom 57 ALA 3HB not found in molecular structure %READC-ERR: atom 58 PRO 2HB not found in molecular structure %READC-ERR: atom 58 PRO 3HB not found in molecular structure %READC-ERR: atom 58 PRO QB not found in molecular structure %READC-ERR: atom 58 PRO 2HG not found in molecular structure %READC-ERR: atom 58 PRO 3HG not found in molecular structure %READC-ERR: atom 58 PRO QG not found in molecular structure %READC-ERR: atom 58 PRO 2HD not found in molecular structure %READC-ERR: atom 58 PRO 3HD not found in molecular structure %READC-ERR: atom 58 PRO QD not found in molecular structure %READC-ERR: atom 59 PHE 2HB not found in molecular structure %READC-ERR: atom 59 PHE 3HB not found in molecular structure %READC-ERR: atom 59 PHE QB not found in molecular structure %READC-ERR: atom 59 PHE QD not found in molecular structure %READC-ERR: atom 59 PHE QE not found in molecular structure %READC-ERR: atom 59 PHE QR not found in molecular structure %READC-ERR: atom 60 PHE 2HB not found in molecular structure %READC-ERR: atom 60 PHE 3HB not found in molecular structure %READC-ERR: atom 60 PHE QB not found in molecular structure %READC-ERR: atom 60 PHE QD not found in molecular structure %READC-ERR: atom 60 PHE QE not found in molecular structure %READC-ERR: atom 60 PHE QR not found in molecular structure %READC-ERR: atom 61 ALA QB not found in molecular structure %READC-ERR: atom 61 ALA 1HB not found in molecular structure %READC-ERR: atom 61 ALA 2HB not found in molecular structure %READC-ERR: atom 61 ALA 3HB not found in molecular structure %READC-ERR: atom 62 ASP 2HB not found in molecular structure %READC-ERR: atom 62 ASP 3HB not found in molecular structure %READC-ERR: atom 62 ASP QB not found in molecular structure %READC-ERR: atom 63 LEU 2HB not found in molecular structure %READC-ERR: atom 63 LEU 3HB not found in molecular structure %READC-ERR: atom 63 LEU QB not found in molecular structure %READC-ERR: atom 63 LEU QD1 not found in molecular structure %READC-ERR: atom 63 LEU QD2 not found in molecular structure %READC-ERR: atom 63 LEU 1HD1 not found in molecular structure %READC-ERR: atom 63 LEU 2HD1 not found in molecular structure %READC-ERR: atom 63 LEU 3HD1 not found in molecular structure %READC-ERR: atom 63 LEU 1HD2 not found in molecular structure %READC-ERR: atom 63 LEU 2HD2 not found in molecular structure %READC-ERR: atom 63 LEU 3HD2 not found in molecular structure %READC-ERR: atom 63 LEU QQD not found in molecular structure %READC-ERR: atom 64 ALA QB not found in molecular structure %READC-ERR: atom 64 ALA 1HB not found in molecular structure %READC-ERR: atom 64 ALA 2HB not found in molecular structure %READC-ERR: atom 64 ALA 3HB not found in molecular structure %READC-ERR: atom 65 LYS 2HB not found in molecular structure %READC-ERR: atom 65 LYS 3HB not found in molecular structure %READC-ERR: atom 65 LYS QB not found in molecular structure %READC-ERR: atom 65 LYS 2HG not found in molecular structure %READC-ERR: atom 65 LYS 3HG not found in molecular structure %READC-ERR: atom 65 LYS QG not found in molecular structure %READC-ERR: atom 65 LYS 2HD not found in molecular structure %READC-ERR: atom 65 LYS 3HD not found in molecular structure %READC-ERR: atom 65 LYS QD not found in molecular structure %READC-ERR: atom 65 LYS 2HE not found in molecular structure %READC-ERR: atom 65 LYS 3HE not found in molecular structure %READC-ERR: atom 65 LYS QE not found in molecular structure %READC-ERR: atom 65 LYS 1HZ not found in molecular structure %READC-ERR: atom 65 LYS 2HZ not found in molecular structure %READC-ERR: atom 65 LYS 3HZ not found in molecular structure %READC-ERR: atom 65 LYS QZ not found in molecular structure %READC-ERR: atom 66 LYS 2HB not found in molecular structure %READC-ERR: atom 66 LYS 3HB not found in molecular structure %READC-ERR: atom 66 LYS QB not found in molecular structure %READC-ERR: atom 66 LYS 2HG not found in molecular structure %READC-ERR: atom 66 LYS 3HG not found in molecular structure %READC-ERR: atom 66 LYS QG not found in molecular structure %READC-ERR: atom 66 LYS 2HD not found in molecular structure %READC-ERR: atom 66 LYS 3HD not found in molecular structure %READC-ERR: atom 66 LYS QD not found in molecular structure %READC-ERR: atom 66 LYS 2HE not found in molecular structure %READC-ERR: atom 66 LYS 3HE not found in molecular structure %READC-ERR: atom 66 LYS QE not found in molecular structure %READC-ERR: atom 66 LYS 1HZ not found in molecular structure %READC-ERR: atom 66 LYS 2HZ not found in molecular structure %READC-ERR: atom 66 LYS 3HZ not found in molecular structure %READC-ERR: atom 66 LYS QZ not found in molecular structure %READC-ERR: atom 67 LEU 2HB not found in molecular structure %READC-ERR: atom 67 LEU 3HB not found in molecular structure %READC-ERR: atom 67 LEU QB not found in molecular structure %READC-ERR: atom 67 LEU QD1 not found in molecular structure %READC-ERR: atom 67 LEU QD2 not found in molecular structure %READC-ERR: atom 67 LEU 1HD1 not found in molecular structure %READC-ERR: atom 67 LEU 2HD1 not found in molecular structure %READC-ERR: atom 67 LEU 3HD1 not found in molecular structure %READC-ERR: atom 67 LEU 1HD2 not found in molecular structure %READC-ERR: atom 67 LEU 2HD2 not found in molecular structure %READC-ERR: atom 67 LEU 3HD2 not found in molecular structure %READC-ERR: atom 67 LEU QQD not found in molecular structure %READC-ERR: atom 68 PRO 2HB not found in molecular structure %READC-ERR: atom 68 PRO 3HB not found in molecular structure %READC-ERR: atom 68 PRO QB not found in molecular structure %READC-ERR: atom 68 PRO 2HG not found in molecular structure %READC-ERR: atom 68 PRO 3HG not found in molecular structure %READC-ERR: atom 68 PRO QG not found in molecular structure %READC-ERR: atom 68 PRO 2HD not found in molecular structure %READC-ERR: atom 68 PRO 3HD not found in molecular structure %READC-ERR: atom 68 PRO QD not found in molecular structure %READC-ERR: atom 69 ASN 2HB not found in molecular structure %READC-ERR: atom 69 ASN 3HB not found in molecular structure %READC-ERR: atom 69 ASN QB not found in molecular structure %READC-ERR: atom 69 ASN 1HD2 not found in molecular structure %READC-ERR: atom 69 ASN 2HD2 not found in molecular structure %READC-ERR: atom 69 ASN QD2 not found in molecular structure %READC-ERR: atom 70 VAL QG1 not found in molecular structure %READC-ERR: atom 70 VAL QG2 not found in molecular structure %READC-ERR: atom 70 VAL 1HG1 not found in molecular structure %READC-ERR: atom 70 VAL 2HG1 not found in molecular structure %READC-ERR: atom 70 VAL 3HG1 not found in molecular structure %READC-ERR: atom 70 VAL 1HG2 not found in molecular structure %READC-ERR: atom 70 VAL 2HG2 not found in molecular structure %READC-ERR: atom 70 VAL 3HG2 not found in molecular structure %READC-ERR: atom 70 VAL QQG not found in molecular structure %READC-ERR: atom 71 LEU 2HB not found in molecular structure %READC-ERR: atom 71 LEU 3HB not found in molecular structure %READC-ERR: atom 71 LEU QB not found in molecular structure %READC-ERR: atom 71 LEU QD1 not found in molecular structure %READC-ERR: atom 71 LEU QD2 not found in molecular structure %READC-ERR: atom 71 LEU 1HD1 not found in molecular structure %READC-ERR: atom 71 LEU 2HD1 not found in molecular structure %READC-ERR: atom 71 LEU 3HD1 not found in molecular structure %READC-ERR: atom 71 LEU 1HD2 not found in molecular structure %READC-ERR: atom 71 LEU 2HD2 not found in molecular structure %READC-ERR: atom 71 LEU 3HD2 not found in molecular structure %READC-ERR: atom 71 LEU QQD not found in molecular structure %READC-ERR: atom 72 PHE 2HB not found in molecular structure %READC-ERR: atom 72 PHE 3HB not found in molecular structure %READC-ERR: atom 72 PHE QB not found in molecular structure %READC-ERR: atom 72 PHE QD not found in molecular structure %READC-ERR: atom 72 PHE QE not found in molecular structure %READC-ERR: atom 72 PHE QR not found in molecular structure %READC-ERR: atom 73 LEU 2HB not found in molecular structure %READC-ERR: atom 73 LEU 3HB not found in molecular structure %READC-ERR: atom 73 LEU QB not found in molecular structure %READC-ERR: atom 73 LEU QD1 not found in molecular structure %READC-ERR: atom 73 LEU QD2 not found in molecular structure %READC-ERR: atom 73 LEU 1HD1 not found in molecular structure %READC-ERR: atom 73 LEU 2HD1 not found in molecular structure %READC-ERR: atom 73 LEU 3HD1 not found in molecular structure %READC-ERR: atom 73 LEU 1HD2 not found in molecular structure %READC-ERR: atom 73 LEU 2HD2 not found in molecular structure %READC-ERR: atom 73 LEU 3HD2 not found in molecular structure %READC-ERR: atom 73 LEU QQD not found in molecular structure %READC-ERR: atom 74 LYS 2HB not found in molecular structure %READC-ERR: atom 74 LYS 3HB not found in molecular structure %READC-ERR: atom 74 LYS QB not found in molecular structure %READC-ERR: atom 74 LYS 2HG not found in molecular structure %READC-ERR: atom 74 LYS 3HG not found in molecular structure %READC-ERR: atom 74 LYS QG not found in molecular structure %READC-ERR: atom 74 LYS 2HD not found in molecular structure %READC-ERR: atom 74 LYS 3HD not found in molecular structure %READC-ERR: atom 74 LYS QD not found in molecular structure %READC-ERR: atom 74 LYS 2HE not found in molecular structure %READC-ERR: atom 74 LYS 3HE not found in molecular structure %READC-ERR: atom 74 LYS QE not found in molecular structure %READC-ERR: atom 74 LYS 1HZ not found in molecular structure %READC-ERR: atom 74 LYS 2HZ not found in molecular structure %READC-ERR: atom 74 LYS 3HZ not found in molecular structure %READC-ERR: atom 74 LYS QZ not found in molecular structure %READC-ERR: atom 75 VAL QG1 not found in molecular structure %READC-ERR: atom 75 VAL QG2 not found in molecular structure %READC-ERR: atom 75 VAL 1HG1 not found in molecular structure %READC-ERR: atom 75 VAL 2HG1 not found in molecular structure %READC-ERR: atom 75 VAL 3HG1 not found in molecular structure %READC-ERR: atom 75 VAL 1HG2 not found in molecular structure %READC-ERR: atom 75 VAL 2HG2 not found in molecular structure %READC-ERR: atom 75 VAL 3HG2 not found in molecular structure %READC-ERR: atom 75 VAL QQG not found in molecular structure %READC-ERR: atom 76 ASP 2HB not found in molecular structure %READC-ERR: atom 76 ASP 3HB not found in molecular structure %READC-ERR: atom 76 ASP QB not found in molecular structure %READC-ERR: atom 77 THR QG2 not found in molecular structure %READC-ERR: atom 77 THR 1HG2 not found in molecular structure %READC-ERR: atom 77 THR 2HG2 not found in molecular structure %READC-ERR: atom 77 THR 3HG2 not found in molecular structure %READC-ERR: atom 78 ASP 2HB not found in molecular structure %READC-ERR: atom 78 ASP 3HB not found in molecular structure %READC-ERR: atom 78 ASP QB not found in molecular structure %READC-ERR: atom 79 GLU 2HB not found in molecular structure %READC-ERR: atom 79 GLU 3HB not found in molecular structure %READC-ERR: atom 79 GLU QB not found in molecular structure %READC-ERR: atom 79 GLU 2HG not found in molecular structure %READC-ERR: atom 79 GLU 3HG not found in molecular structure %READC-ERR: atom 79 GLU QG not found in molecular structure %READC-ERR: atom 80 LEU 2HB not found in molecular structure %READC-ERR: atom 80 LEU 3HB not found in molecular structure %READC-ERR: atom 80 LEU QB not found in molecular structure %READC-ERR: atom 80 LEU QD1 not found in molecular structure %READC-ERR: atom 80 LEU QD2 not found in molecular structure %READC-ERR: atom 80 LEU 1HD1 not found in molecular structure %READC-ERR: atom 80 LEU 2HD1 not found in molecular structure %READC-ERR: atom 80 LEU 3HD1 not found in molecular structure %READC-ERR: atom 80 LEU 1HD2 not found in molecular structure %READC-ERR: atom 80 LEU 2HD2 not found in molecular structure %READC-ERR: atom 80 LEU 3HD2 not found in molecular structure %READC-ERR: atom 80 LEU QQD not found in molecular structure %READC-ERR: atom 81 LYS 2HB not found in molecular structure %READC-ERR: atom 81 LYS 3HB not found in molecular structure %READC-ERR: atom 81 LYS QB not found in molecular structure %READC-ERR: atom 81 LYS 2HG not found in molecular structure %READC-ERR: atom 81 LYS 3HG not found in molecular structure %READC-ERR: atom 81 LYS QG not found in molecular structure %READC-ERR: atom 81 LYS 2HD not found in molecular structure %READC-ERR: atom 81 LYS 3HD not found in molecular structure %READC-ERR: atom 81 LYS QD not found in molecular structure %READC-ERR: atom 81 LYS 2HE not found in molecular structure %READC-ERR: atom 81 LYS 3HE not found in molecular structure %READC-ERR: atom 81 LYS QE not found in molecular structure %READC-ERR: atom 81 LYS 1HZ not found in molecular structure %READC-ERR: atom 81 LYS 2HZ not found in molecular structure %READC-ERR: atom 81 LYS 3HZ not found in molecular structure %READC-ERR: atom 81 LYS QZ not found in molecular structure %READC-ERR: atom 82 SER 2HB not found in molecular structure %READC-ERR: atom 82 SER 3HB not found in molecular structure %READC-ERR: atom 82 SER QB not found in molecular structure %READC-ERR: atom 83 VAL QG1 not found in molecular structure %READC-ERR: atom 83 VAL QG2 not found in molecular structure %READC-ERR: atom 83 VAL 1HG1 not found in molecular structure %READC-ERR: atom 83 VAL 2HG1 not found in molecular structure %READC-ERR: atom 83 VAL 3HG1 not found in molecular structure %READC-ERR: atom 83 VAL 1HG2 not found in molecular structure %READC-ERR: atom 83 VAL 2HG2 not found in molecular structure %READC-ERR: atom 83 VAL 3HG2 not found in molecular structure %READC-ERR: atom 83 VAL QQG not found in molecular structure %READC-ERR: atom 84 ALA QB not found in molecular structure %READC-ERR: atom 84 ALA 1HB not found in molecular structure %READC-ERR: atom 84 ALA 2HB not found in molecular structure %READC-ERR: atom 84 ALA 3HB not found in molecular structure %READC-ERR: atom 85 SER 2HB not found in molecular structure %READC-ERR: atom 85 SER 3HB not found in molecular structure %READC-ERR: atom 85 SER QB not found in molecular structure %READC-ERR: atom 86 ASP 2HB not found in molecular structure %READC-ERR: atom 86 ASP 3HB not found in molecular structure %READC-ERR: atom 86 ASP QB not found in molecular structure %READC-ERR: atom 87 TRP 2HB not found in molecular structure %READC-ERR: atom 87 TRP 3HB not found in molecular structure %READC-ERR: atom 87 TRP QB not found in molecular structure %READC-ERR: atom 88 ALA QB not found in molecular structure %READC-ERR: atom 88 ALA 1HB not found in molecular structure %READC-ERR: atom 88 ALA 2HB not found in molecular structure %READC-ERR: atom 88 ALA 3HB not found in molecular structure %READC-ERR: atom 89 ILE QG2 not found in molecular structure %READC-ERR: atom 89 ILE 1HG2 not found in molecular structure %READC-ERR: atom 89 ILE 2HG2 not found in molecular structure %READC-ERR: atom 89 ILE 3HG2 not found in molecular structure %READC-ERR: atom 89 ILE 2HG1 not found in molecular structure %READC-ERR: atom 89 ILE 3HG1 not found in molecular structure %READC-ERR: atom 89 ILE QG1 not found in molecular structure %READC-ERR: atom 89 ILE QD1 not found in molecular structure %READC-ERR: atom 89 ILE 1HD1 not found in molecular structure %READC-ERR: atom 89 ILE 2HD1 not found in molecular structure %READC-ERR: atom 89 ILE 3HD1 not found in molecular structure %READC-ERR: atom 90 GLN 2HB not found in molecular structure %READC-ERR: atom 90 GLN 3HB not found in molecular structure %READC-ERR: atom 90 GLN QB not found in molecular structure %READC-ERR: atom 90 GLN 2HG not found in molecular structure %READC-ERR: atom 90 GLN 3HG not found in molecular structure %READC-ERR: atom 90 GLN QG not found in molecular structure %READC-ERR: atom 90 GLN 1HE2 not found in molecular structure %READC-ERR: atom 90 GLN 2HE2 not found in molecular structure %READC-ERR: atom 90 GLN QE2 not found in molecular structure %READC-ERR: atom 91 ALA QB not found in molecular structure %READC-ERR: atom 91 ALA 1HB not found in molecular structure %READC-ERR: atom 91 ALA 2HB not found in molecular structure %READC-ERR: atom 91 ALA 3HB not found in molecular structure %READC-ERR: atom 92 MET 2HB not found in molecular structure %READC-ERR: atom 92 MET 3HB not found in molecular structure %READC-ERR: atom 92 MET QB not found in molecular structure %READC-ERR: atom 92 MET 2HG not found in molecular structure %READC-ERR: atom 92 MET 3HG not found in molecular structure %READC-ERR: atom 92 MET QG not found in molecular structure %READC-ERR: atom 92 MET QE not found in molecular structure %READC-ERR: atom 92 MET 1HE not found in molecular structure %READC-ERR: atom 92 MET 2HE not found in molecular structure %READC-ERR: atom 92 MET 3HE not found in molecular structure %READC-ERR: atom 93 PRO 2HB not found in molecular structure %READC-ERR: atom 93 PRO 3HB not found in molecular structure %READC-ERR: atom 93 PRO QB not found in molecular structure %READC-ERR: atom 93 PRO 2HG not found in molecular structure %READC-ERR: atom 93 PRO 3HG not found in molecular structure %READC-ERR: atom 93 PRO QG not found in molecular structure %READC-ERR: atom 93 PRO 2HD not found in molecular structure %READC-ERR: atom 93 PRO 3HD not found in molecular structure %READC-ERR: atom 93 PRO QD not found in molecular structure %READC-ERR: atom 94 THR QG2 not found in molecular structure %READC-ERR: atom 94 THR 1HG2 not found in molecular structure %READC-ERR: atom 94 THR 2HG2 not found in molecular structure %READC-ERR: atom 94 THR 3HG2 not found in molecular structure %READC-ERR: atom 95 PHE 2HB not found in molecular structure %READC-ERR: atom 95 PHE 3HB not found in molecular structure %READC-ERR: atom 95 PHE QB not found in molecular structure %READC-ERR: atom 95 PHE QD not found in molecular structure %READC-ERR: atom 95 PHE QE not found in molecular structure %READC-ERR: atom 95 PHE QR not found in molecular structure %READC-ERR: atom 96 MET 2HB not found in molecular structure %READC-ERR: atom 96 MET 3HB not found in molecular structure %READC-ERR: atom 96 MET QB not found in molecular structure %READC-ERR: atom 96 MET 2HG not found in molecular structure %READC-ERR: atom 96 MET 3HG not found in molecular structure %READC-ERR: atom 96 MET QG not found in molecular structure %READC-ERR: atom 96 MET QE not found in molecular structure %READC-ERR: atom 96 MET 1HE not found in molecular structure %READC-ERR: atom 96 MET 2HE not found in molecular structure %READC-ERR: atom 96 MET 3HE not found in molecular structure %READC-ERR: atom 97 PHE 2HB not found in molecular structure %READC-ERR: atom 97 PHE 3HB not found in molecular structure %READC-ERR: atom 97 PHE QB not found in molecular structure %READC-ERR: atom 97 PHE QD not found in molecular structure %READC-ERR: atom 97 PHE QE not found in molecular structure %READC-ERR: atom 97 PHE QR not found in molecular structure %READC-ERR: atom 98 LEU 2HB not found in molecular structure %READC-ERR: atom 98 LEU 3HB not found in molecular structure %READC-ERR: atom 98 LEU QB not found in molecular structure %READC-ERR: atom 98 LEU QD1 not found in molecular structure %READC-ERR: atom 98 LEU QD2 not found in molecular structure %READC-ERR: atom 98 LEU 1HD1 not found in molecular structure %READC-ERR: atom 98 LEU 2HD1 not found in molecular structure %READC-ERR: atom 98 LEU 3HD1 not found in molecular structure %READC-ERR: atom 98 LEU 1HD2 not found in molecular structure %READC-ERR: atom 98 LEU 2HD2 not found in molecular structure %READC-ERR: atom 98 LEU 3HD2 not found in molecular structure %READC-ERR: atom 98 LEU QQD not found in molecular structure %READC-ERR: atom 99 LYS 2HB not found in molecular structure %READC-ERR: atom 99 LYS 3HB not found in molecular structure %READC-ERR: atom 99 LYS QB not found in molecular structure %READC-ERR: atom 99 LYS 2HG not found in molecular structure %READC-ERR: atom 99 LYS 3HG not found in molecular structure %READC-ERR: atom 99 LYS QG not found in molecular structure %READC-ERR: atom 99 LYS 2HD not found in molecular structure %READC-ERR: atom 99 LYS 3HD not found in molecular structure %READC-ERR: atom 99 LYS QD not found in molecular structure %READC-ERR: atom 99 LYS 2HE not found in molecular structure %READC-ERR: atom 99 LYS 3HE not found in molecular structure %READC-ERR: atom 99 LYS QE not found in molecular structure %READC-ERR: atom 99 LYS 1HZ not found in molecular structure %READC-ERR: atom 99 LYS 2HZ not found in molecular structure %READC-ERR: atom 99 LYS 3HZ not found in molecular structure %READC-ERR: atom 99 LYS QZ not found in molecular structure %READC-ERR: atom 100 GLU 2HB not found in molecular structure %READC-ERR: atom 100 GLU 3HB not found in molecular structure %READC-ERR: atom 100 GLU QB not found in molecular structure %READC-ERR: atom 100 GLU 2HG not found in molecular structure %READC-ERR: atom 100 GLU 3HG not found in molecular structure %READC-ERR: atom 100 GLU QG not found in molecular structure %READC-ERR: atom 101 GLY 1HA not found in molecular structure %READC-ERR: atom 101 GLY 2HA not found in molecular structure %READC-ERR: atom 101 GLY QA not found in molecular structure %READC-ERR: atom 102 LYS 2HB not found in molecular structure %READC-ERR: atom 102 LYS 3HB not found in molecular structure %READC-ERR: atom 102 LYS QB not found in molecular structure %READC-ERR: atom 102 LYS 2HG not found in molecular structure %READC-ERR: atom 102 LYS 3HG not found in molecular structure %READC-ERR: atom 102 LYS QG not found in molecular structure %READC-ERR: atom 102 LYS 2HD not found in molecular structure %READC-ERR: atom 102 LYS 3HD not found in molecular structure %READC-ERR: atom 102 LYS QD not found in molecular structure %READC-ERR: atom 102 LYS 2HE not found in molecular structure %READC-ERR: atom 102 LYS 3HE not found in molecular structure %READC-ERR: atom 102 LYS QE not found in molecular structure %READC-ERR: atom 102 LYS 1HZ not found in molecular structure %READC-ERR: atom 102 LYS 2HZ not found in molecular structure %READC-ERR: atom 102 LYS 3HZ not found in molecular structure %READC-ERR: atom 102 LYS QZ not found in molecular structure %READC-ERR: atom 103 ILE QG2 not found in molecular structure %READC-ERR: atom 103 ILE 1HG2 not found in molecular structure %READC-ERR: atom 103 ILE 2HG2 not found in molecular structure %READC-ERR: atom 103 ILE 3HG2 not found in molecular structure %READC-ERR: atom 103 ILE 2HG1 not found in molecular structure %READC-ERR: atom 103 ILE 3HG1 not found in molecular structure %READC-ERR: atom 103 ILE QG1 not found in molecular structure %READC-ERR: atom 103 ILE QD1 not found in molecular structure %READC-ERR: atom 103 ILE 1HD1 not found in molecular structure %READC-ERR: atom 103 ILE 2HD1 not found in molecular structure %READC-ERR: atom 103 ILE 3HD1 not found in molecular structure %READC-ERR: atom 104 LEU 2HB not found in molecular structure %READC-ERR: atom 104 LEU 3HB not found in molecular structure %READC-ERR: atom 104 LEU QB not found in molecular structure %READC-ERR: atom 104 LEU QD1 not found in molecular structure %READC-ERR: atom 104 LEU QD2 not found in molecular structure %READC-ERR: atom 104 LEU 1HD1 not found in molecular structure %READC-ERR: atom 104 LEU 2HD1 not found in molecular structure %READC-ERR: atom 104 LEU 3HD1 not found in molecular structure %READC-ERR: atom 104 LEU 1HD2 not found in molecular structure %READC-ERR: atom 104 LEU 2HD2 not found in molecular structure %READC-ERR: atom 104 LEU 3HD2 not found in molecular structure %READC-ERR: atom 104 LEU QQD not found in molecular structure %READC-ERR: atom 105 ASP 2HB not found in molecular structure %READC-ERR: atom 105 ASP 3HB not found in molecular structure %READC-ERR: atom 105 ASP QB not found in molecular structure %READC-ERR: atom 106 LYS 2HB not found in molecular structure %READC-ERR: atom 106 LYS 3HB not found in molecular structure %READC-ERR: atom 106 LYS QB not found in molecular structure %READC-ERR: atom 106 LYS 2HG not found in molecular structure %READC-ERR: atom 106 LYS 3HG not found in molecular structure %READC-ERR: atom 106 LYS QG not found in molecular structure %READC-ERR: atom 106 LYS 2HD not found in molecular structure %READC-ERR: atom 106 LYS 3HD not found in molecular structure %READC-ERR: atom 106 LYS QD not found in molecular structure %READC-ERR: atom 106 LYS 2HE not found in molecular structure %READC-ERR: atom 106 LYS 3HE not found in molecular structure %READC-ERR: atom 106 LYS QE not found in molecular structure %READC-ERR: atom 106 LYS 1HZ not found in molecular structure %READC-ERR: atom 106 LYS 2HZ not found in molecular structure %READC-ERR: atom 106 LYS 3HZ not found in molecular structure %READC-ERR: atom 106 LYS QZ not found in molecular structure %READC-ERR: atom 107 VAL QG1 not found in molecular structure %READC-ERR: atom 107 VAL QG2 not found in molecular structure %READC-ERR: atom 107 VAL 1HG1 not found in molecular structure %READC-ERR: atom 107 VAL 2HG1 not found in molecular structure %READC-ERR: atom 107 VAL 3HG1 not found in molecular structure %READC-ERR: atom 107 VAL 1HG2 not found in molecular structure %READC-ERR: atom 107 VAL 2HG2 not found in molecular structure %READC-ERR: atom 107 VAL 3HG2 not found in molecular structure %READC-ERR: atom 107 VAL QQG not found in molecular structure %READC-ERR: atom 108 VAL QG1 not found in molecular structure %READC-ERR: atom 108 VAL QG2 not found in molecular structure %READC-ERR: atom 108 VAL 1HG1 not found in molecular structure %READC-ERR: atom 108 VAL 2HG1 not found in molecular structure %READC-ERR: atom 108 VAL 3HG1 not found in molecular structure %READC-ERR: atom 108 VAL 1HG2 not found in molecular structure %READC-ERR: atom 108 VAL 2HG2 not found in molecular structure %READC-ERR: atom 108 VAL 3HG2 not found in molecular structure %READC-ERR: atom 108 VAL QQG not found in molecular structure %READC-ERR: atom 109 GLY 1HA not found in molecular structure %READC-ERR: atom 109 GLY 2HA not found in molecular structure %READC-ERR: atom 109 GLY QA not found in molecular structure %READC-ERR: atom 110 ALA QB not found in molecular structure %READC-ERR: atom 110 ALA 1HB not found in molecular structure %READC-ERR: atom 110 ALA 2HB not found in molecular structure %READC-ERR: atom 110 ALA 3HB not found in molecular structure %READC-ERR: atom 111 LYS 2HB not found in molecular structure %READC-ERR: atom 111 LYS 3HB not found in molecular structure %READC-ERR: atom 111 LYS QB not found in molecular structure %READC-ERR: atom 111 LYS 2HG not found in molecular structure %READC-ERR: atom 111 LYS 3HG not found in molecular structure %READC-ERR: atom 111 LYS QG not found in molecular structure %READC-ERR: atom 111 LYS 2HD not found in molecular structure %READC-ERR: atom 111 LYS 3HD not found in molecular structure %READC-ERR: atom 111 LYS QD not found in molecular structure %READC-ERR: atom 111 LYS 2HE not found in molecular structure %READC-ERR: atom 111 LYS 3HE not found in molecular structure %READC-ERR: atom 111 LYS QE not found in molecular structure %READC-ERR: atom 111 LYS 1HZ not found in molecular structure %READC-ERR: atom 111 LYS 2HZ not found in molecular structure %READC-ERR: atom 111 LYS 3HZ not found in molecular structure %READC-ERR: atom 111 LYS QZ not found in molecular structure %READC-ERR: atom 112 LYS 2HB not found in molecular structure %READC-ERR: atom 112 LYS 3HB not found in molecular structure %READC-ERR: atom 112 LYS QB not found in molecular structure %READC-ERR: atom 112 LYS 2HG not found in molecular structure %READC-ERR: atom 112 LYS 3HG not found in molecular structure %READC-ERR: atom 112 LYS QG not found in molecular structure %READC-ERR: atom 112 LYS 2HD not found in molecular structure %READC-ERR: atom 112 LYS 3HD not found in molecular structure %READC-ERR: atom 112 LYS QD not found in molecular structure %READC-ERR: atom 112 LYS 2HE not found in molecular structure %READC-ERR: atom 112 LYS 3HE not found in molecular structure %READC-ERR: atom 112 LYS QE not found in molecular structure %READC-ERR: atom 112 LYS 1HZ not found in molecular structure %READC-ERR: atom 112 LYS 2HZ not found in molecular structure %READC-ERR: atom 112 LYS 3HZ not found in molecular structure %READC-ERR: atom 112 LYS QZ not found in molecular structure %READC-ERR: atom 113 ASP 2HB not found in molecular structure %READC-ERR: atom 113 ASP 3HB not found in molecular structure %READC-ERR: atom 113 ASP QB not found in molecular structure %READC-ERR: atom 114 GLU 2HB not found in molecular structure %READC-ERR: atom 114 GLU 3HB not found in molecular structure %READC-ERR: atom 114 GLU QB not found in molecular structure %READC-ERR: atom 114 GLU 2HG not found in molecular structure %READC-ERR: atom 114 GLU 3HG not found in molecular structure %READC-ERR: atom 114 GLU QG not found in molecular structure %READC-ERR: atom 115 LEU 2HB not found in molecular structure %READC-ERR: atom 115 LEU 3HB not found in molecular structure %READC-ERR: atom 115 LEU QB not found in molecular structure %READC-ERR: atom 115 LEU QD1 not found in molecular structure %READC-ERR: atom 115 LEU QD2 not found in molecular structure %READC-ERR: atom 115 LEU 1HD1 not found in molecular structure %READC-ERR: atom 115 LEU 2HD1 not found in molecular structure %READC-ERR: atom 115 LEU 3HD1 not found in molecular structure %READC-ERR: atom 115 LEU 1HD2 not found in molecular structure %READC-ERR: atom 115 LEU 2HD2 not found in molecular structure %READC-ERR: atom 115 LEU 3HD2 not found in molecular structure %READC-ERR: atom 115 LEU QQD not found in molecular structure %READC-ERR: atom 116 GLN 2HB not found in molecular structure %READC-ERR: atom 116 GLN 3HB not found in molecular structure %READC-ERR: atom 116 GLN QB not found in molecular structure %READC-ERR: atom 116 GLN 2HG not found in molecular structure %READC-ERR: atom 116 GLN 3HG not found in molecular structure %READC-ERR: atom 116 GLN QG not found in molecular structure %READC-ERR: atom 116 GLN 1HE2 not found in molecular structure %READC-ERR: atom 116 GLN 2HE2 not found in molecular structure %READC-ERR: atom 116 GLN QE2 not found in molecular structure %READC-ERR: atom 117 SER 2HB not found in molecular structure %READC-ERR: atom 117 SER 3HB not found in molecular structure %READC-ERR: atom 117 SER QB not found in molecular structure %READC-ERR: atom 118 THR QG2 not found in molecular structure %READC-ERR: atom 118 THR 1HG2 not found in molecular structure %READC-ERR: atom 118 THR 2HG2 not found in molecular structure %READC-ERR: atom 118 THR 3HG2 not found in molecular structure %READC-ERR: atom 119 ILE QG2 not found in molecular structure %READC-ERR: atom 119 ILE 1HG2 not found in molecular structure %READC-ERR: atom 119 ILE 2HG2 not found in molecular structure %READC-ERR: atom 119 ILE 3HG2 not found in molecular structure %READC-ERR: atom 119 ILE 2HG1 not found in molecular structure %READC-ERR: atom 119 ILE 3HG1 not found in molecular structure %READC-ERR: atom 119 ILE QG1 not found in molecular structure %READC-ERR: atom 119 ILE QD1 not found in molecular structure %READC-ERR: atom 119 ILE 1HD1 not found in molecular structure %READC-ERR: atom 119 ILE 2HD1 not found in molecular structure %READC-ERR: atom 119 ILE 3HD1 not found in molecular structure %READC-ERR: atom 120 ALA QB not found in molecular structure %READC-ERR: atom 120 ALA 1HB not found in molecular structure %READC-ERR: atom 120 ALA 2HB not found in molecular structure %READC-ERR: atom 120 ALA 3HB not found in molecular structure %READC-ERR: atom 121 LYS 2HB not found in molecular structure %READC-ERR: atom 121 LYS 3HB not found in molecular structure %READC-ERR: atom 121 LYS QB not found in molecular structure %READC-ERR: atom 121 LYS 2HG not found in molecular structure %READC-ERR: atom 121 LYS 3HG not found in molecular structure %READC-ERR: atom 121 LYS QG not found in molecular structure %READC-ERR: atom 121 LYS 2HD not found in molecular structure %READC-ERR: atom 121 LYS 3HD not found in molecular structure %READC-ERR: atom 121 LYS QD not found in molecular structure %READC-ERR: atom 121 LYS 2HE not found in molecular structure %READC-ERR: atom 121 LYS 3HE not found in molecular structure %READC-ERR: atom 121 LYS QE not found in molecular structure %READC-ERR: atom 121 LYS 1HZ not found in molecular structure %READC-ERR: atom 121 LYS 2HZ not found in molecular structure %READC-ERR: atom 121 LYS 3HZ not found in molecular structure %READC-ERR: atom 121 LYS QZ not found in molecular structure %READC-ERR: atom 122 HIS 2HB not found in molecular structure %READC-ERR: atom 122 HIS 3HB not found in molecular structure %READC-ERR: atom 122 HIS QB not found in molecular structure %READC-ERR: atom 123 LEU 2HB not found in molecular structure %READC-ERR: atom 123 LEU 3HB not found in molecular structure %READC-ERR: atom 123 LEU QB not found in molecular structure %READC-ERR: atom 123 LEU QD1 not found in molecular structure %READC-ERR: atom 123 LEU QD2 not found in molecular structure %READC-ERR: atom 123 LEU 1HD1 not found in molecular structure %READC-ERR: atom 123 LEU 2HD1 not found in molecular structure %READC-ERR: atom 123 LEU 3HD1 not found in molecular structure %READC-ERR: atom 123 LEU 1HD2 not found in molecular structure %READC-ERR: atom 123 LEU 2HD2 not found in molecular structure %READC-ERR: atom 123 LEU 3HD2 not found in molecular structure %READC-ERR: atom 123 LEU QQD not found in molecular structure %READC-ERR: atom 124 ALA QB not found in molecular structure %READC-ERR: atom 124 ALA 1HB not found in molecular structure %READC-ERR: atom 124 ALA 2HB not found in molecular structure %READC-ERR: atom 124 ALA 3HB not found in molecular structure %READC-ERR: atom 124 ALA O not found in molecular structure COOR>END CNSsolve>parameter @TOPPAR:parallhdg5.3.pro end PARRDR>! JFD adds FES complex parameters from Milo Westler's calculations PARRDR>! and standard topology. PARRDR> PARRDR>remark file protein-allhdg-ucl.param version UCL date 07-JUL-01 PARRDR>remark for file protein-allhdg-ucl.top version UCL date 14-MAR-00 PARRDR>remark for file protein-allhdg-dih-ucl.top version UCL date 07-JUL-01 PARRDR>remark Geometric energy function parameters for distance geometry and PARRDR>remark simulated annealing. PARRDR>remark Original author: Michael Nilges, EMBL Heidelberg PARRDR>remark Modifications: Mark A. Williams, UCL London PARRDR> PARRDR>set echo off message off end SHOW: sum over selected elements = 2.000000 CNSsolve> CNSsolve> if ( $log_level = verbose ) then CNSsolve> set message=normal echo=on end CNSsolve> else CNSsolve> set message=off echo=off end CNSsolve> end if CNSsolve> CNSsolve> CNSsolve> identity (store1) (none) SELRPN: 0 atoms have been selected out of 1960 CNSsolve> CNSsolve> identity (store1) (&atom_build) SELRPN: 619 atoms have been selected out of 1960 CNSsolve> identity (store1) (store1 or hydrogen) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> CNSsolve> show sum(1) (store1) SELRPN: 983 atoms have been selected out of 1960 SHOW: sum over selected elements = 983.000000 CNSsolve> evaluate ($tobuild=$result) EVALUATE: symbol $TOBUILD set to 983.000 (real) CNSsolve> CNSsolve> !evaluate ($tobuild=0) CNSsolve> CNSsolve> if ( $tobuild > 0 ) then NEXTCD: condition evaluated as true CNSsolve> CNSsolve> fix selection=(not(store1)) end SELRPN: 977 atoms have been selected out of 1960 CNSsolve> CNSsolve> show sum(1) (store1) SELRPN: 983 atoms have been selected out of 1960 SHOW: sum over selected elements = 983.000000 CNSsolve> evaluate ($moving=$result) EVALUATE: symbol $MOVING set to 983.000 (real) CNSsolve> CNSsolve> if ( $moving > 0 ) then NEXTCD: condition evaluated as true CNSsolve> for $id in id (tag and byres(store1)) loop avco SELRPN: 124 atoms have been selected out of 1960 FOR ID LOOP: symbol ID set to 1.00000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 1.552333 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 1.55233 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 0.924889 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.924889 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = -1.725333 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -1.72533 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 20.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = 4.858600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 4.85860 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = -2.034200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.03420 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = -0.815000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.815000 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 27.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 5.669867 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 5.66987 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = -4.901133 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.90113 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 0.053667 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 0.536667E-01 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 45.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 12.094267 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 12.0943 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = -4.253600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.25360 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 0.122867 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 0.122867 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 63.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 11.546667 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 11.5467 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = -6.423800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -6.42380 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 5.494867 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 5.49487 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 81.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 15.437667 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 15.4377 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = -10.160267 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.1603 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 3.253067 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 3.25307 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 99.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 13.550533 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 13.5505 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = -11.629000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -11.6290 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 8.221533 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 8.22153 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 117.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 17.599733 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 17.5997 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = -14.917867 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.9179 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 5.020000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 5.02000 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 135.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 18.849364 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 18.8494 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -16.667727 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -16.6677 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 9.697909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 9.69791 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 154.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 19.111727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 19.1117 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -21.468909 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -21.4689 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 9.722727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 9.72273 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 169.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 21.157700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 21.1577 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = -20.692100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -20.6921 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 14.194600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 14.1946 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 186.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 22.205429 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 22.2054 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = -24.372000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -24.3720 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 15.212000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 15.2120 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 196.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 22.633333 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 22.6333 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = -26.647333 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -26.6473 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 12.143889 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 12.1439 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 207.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 21.981909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 21.9819 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -31.274000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -31.2740 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 11.999182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 11.9992 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 222.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 26.194273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 26.1943 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -30.573182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -30.5732 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 13.078636 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 13.0786 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 237.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = 27.838000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 27.8380 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = -34.211400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -34.2114 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = 14.024200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 14.0242 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 244.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 25.012000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 25.0120 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -35.438909 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -35.4389 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 14.477545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 14.4775 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 261.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 25.286900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 25.2869 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = -40.226800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -40.2268 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 12.856200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 12.8562 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 277.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 21.607273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 21.6073 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -39.784636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -39.7846 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 10.388818 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 10.3888 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 296.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 20.251143 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 20.2511 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = -43.550714 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -43.5507 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 11.831429 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 11.8314 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 306.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 17.955778 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 17.9558 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = -45.452667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -45.4527 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 9.447778 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 9.44778 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 317.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 15.553667 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 15.5537 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = -47.423800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -47.4238 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 12.690333 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 12.6903 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 335.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 13.870636 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 13.8706 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -48.677545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -48.6775 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 7.526273 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 7.52627 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 349.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 15.701900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 15.7019 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = -51.146900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -51.1469 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 4.235000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 4.23500 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 365.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 12.362909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 12.3629 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -49.316545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -49.3165 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 1.835091 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.83509 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 380.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 13.975091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 13.9751 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -45.444364 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -45.4444 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 4.505182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 4.50518 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 394.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1960 SHOW: average of selected elements = 20.662364 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 20.6624 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1960 SHOW: average of selected elements = -46.972591 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -46.9726 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1960 SHOW: average of selected elements = 3.604455 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 3.60445 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 418.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 17.687400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 17.6874 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = -47.038800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -47.0388 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = -0.592300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.592300 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 432.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 14.243364 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 14.2434 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -43.525273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -43.5253 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -0.167182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.167182 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 447.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 18.188182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 18.1882 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -40.928545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -40.9285 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 2.540545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 2.54055 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 464.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 21.132273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 21.1323 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -43.694818 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -43.6948 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -0.405909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.405909 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 483.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 17.841818 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 17.8418 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -42.276182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -42.2762 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -4.525727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -4.52573 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 500.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 18.009091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 18.0091 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -37.522455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -37.5225 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -1.166455 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -1.16645 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 522.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 22.201714 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 22.2017 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = -38.614000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -38.6140 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = -1.558286 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -1.55829 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 532.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 23.052300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 23.0523 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = -40.498100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -40.4981 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = -5.199800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -5.19980 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 546.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 19.510727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 19.5107 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -37.439000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -37.4390 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -7.177364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.17736 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 561.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 22.112444 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 22.1124 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = -34.710889 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -34.7109 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = -4.378889 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -4.37889 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 572.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 26.115273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 26.1153 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -36.014182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -36.0142 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -6.843545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.84355 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 594.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 25.731091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 25.7311 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -36.224364 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -36.2244 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -1.536455 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -1.53645 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 608.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 29.750273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 29.7503 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -38.192455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -38.1925 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 0.806545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 0.806545 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 627.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 27.549600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 27.5496 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = -41.263500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -41.2635 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 2.335700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 2.33570 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 643.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 29.710400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 29.7104 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = -42.214200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -42.2142 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 5.883200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 5.88320 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 659.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 28.520600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 28.5206 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = -46.442500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -46.4425 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 6.054000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 6.05400 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 675.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 29.785800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 29.7858 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = -46.994800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -46.9948 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 10.719500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 10.7195 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 687.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 27.714722 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 27.7147 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = -51.138611 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -51.1386 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 9.152000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 9.15200 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 707.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 28.888636 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 28.8886 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -50.457091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -50.4571 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 15.350000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 15.3500 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 721.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 27.948429 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 27.9484 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = -52.543857 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -52.5439 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 18.099143 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 18.0991 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 731.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 26.467111 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 26.4671 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = -51.534333 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -51.5343 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 21.996111 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 21.9961 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 742.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1960 SHOW: average of selected elements = 27.386182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 27.3862 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1960 SHOW: average of selected elements = -56.332727 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -56.3327 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1960 SHOW: average of selected elements = 19.866227 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 19.8662 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 766.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 31.154625 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 31.1546 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = -54.089875 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -54.0899 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 21.005875 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 21.0059 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 776.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = 34.300000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 34.3000 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = -53.144000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -53.1440 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = 22.287800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 22.2878 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 783.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 36.686500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 36.6865 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = -51.976375 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -51.9764 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 20.503000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 20.5030 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 797.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 34.042125 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 34.0421 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = -50.940125 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -50.9401 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 18.334375 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 18.3344 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 807.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1960 SHOW: average of selected elements = 31.517357 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 31.5174 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1960 SHOW: average of selected elements = -49.287929 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -49.2879 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1960 SHOW: average of selected elements = 22.812357 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 22.8124 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 831.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 38.038000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 38.0380 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = -46.489611 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -46.4896 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 22.286111 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 22.2861 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 851.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 35.841455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 35.8415 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -46.184273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -46.1843 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 17.137636 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 17.1376 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 870.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 32.188857 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 32.1889 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = -44.562571 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -44.5626 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 18.428714 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 18.4287 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 880.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 33.366875 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 33.3669 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = -41.517750 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -41.5178 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 19.718125 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 19.7181 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 894.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 38.287944 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 38.2879 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = -41.184056 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -41.1841 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 16.519000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 16.5190 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 914.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 31.827444 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 31.8274 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = -42.386389 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -42.3864 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 12.951722 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 12.9517 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 934.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 31.374714 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 31.3747 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = -39.192571 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -39.1926 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 15.628429 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 15.6284 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 944.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 34.197900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 34.1979 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = -36.220200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -36.2202 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 16.824400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 16.8244 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 956.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 35.829636 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 35.8296 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -37.345364 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -37.3454 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 12.543818 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 12.5438 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 975.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 31.705000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 31.7050 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = -35.919714 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -35.9197 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 11.933000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 11.9330 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 985.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 31.586273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 31.5863 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -31.938273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -31.9383 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 14.990909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 14.9909 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1007.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 35.705000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 35.7050 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -31.783636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -31.7836 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 12.529000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 12.5290 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1029.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 34.211909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 34.2119 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -33.320273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -33.3203 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 8.215636 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 8.21564 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1048.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 30.182250 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 30.1823 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = -31.200250 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -31.2003 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 8.137625 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 8.13763 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1062.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 30.302800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 30.3028 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = -30.870900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -30.8709 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 4.033100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 4.03310 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1076.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 30.722100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 30.7221 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = -35.271100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -35.2711 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 5.273100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 5.27310 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1092.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 26.364727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 26.3647 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -36.785455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -36.7855 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 5.329364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 5.32936 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1111.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 29.038833 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 29.0388 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = -38.452111 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -38.4521 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 8.485333 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 8.48533 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1131.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 24.223909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 24.2239 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -42.623182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -42.6232 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 8.052909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 8.05291 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1150.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 24.403273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 24.4033 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -45.675000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -45.6750 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 12.599545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 12.5995 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1172.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 23.694800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 23.6948 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = -49.053800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -49.0538 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 10.448700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 10.4487 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1188.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 22.481800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 22.4818 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = -51.175200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -51.1752 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 14.320000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 14.3200 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1200.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 24.202636 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 24.2026 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -55.153909 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -55.1539 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 13.064818 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 13.0648 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1214.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 21.168700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 21.1687 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = -55.857900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -55.8579 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 16.300400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 16.3004 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1226.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 17.518636 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 17.5186 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -54.281545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -54.2815 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 13.119273 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 13.1193 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1241.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 19.866091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 19.8661 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -53.608727 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -53.6087 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 9.197727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 9.19773 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1260.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 20.717909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 20.7179 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -58.975273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -58.9753 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 9.711455 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 9.71145 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1282.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 20.165444 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 20.1654 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = -58.820556 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -58.8206 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 6.216556 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 6.21656 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1293.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 21.567700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 21.5677 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = -54.870900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -54.8709 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 5.223500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 5.22350 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1309.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 24.947429 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 24.9474 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = -55.886000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -55.8860 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 6.681571 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 6.68157 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1319.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 24.990556 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 24.9906 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = -59.562778 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -59.5628 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 5.528667 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 5.52867 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1330.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 23.870400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 23.8704 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = -57.519300 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -57.5193 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 1.300800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.30080 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1342.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1960 SHOW: average of selected elements = 27.088091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 27.0881 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1960 SHOW: average of selected elements = -52.915636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -52.9156 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1960 SHOW: average of selected elements = 1.208091 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.20809 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1366.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 29.176429 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 29.1764 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = -58.669000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -58.6690 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 3.202429 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 3.20243 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1376.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 29.580091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 29.5801 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -56.752818 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -56.7528 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 6.494818 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 6.49482 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1395.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 31.036455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 31.0365 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -61.317455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -61.3175 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 8.479545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 8.47955 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1412.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 33.905286 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 33.9053 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = -58.140857 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -58.1409 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 9.939143 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 9.93914 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1422.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 32.609500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 32.6095 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = -55.623600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -55.6236 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 12.629300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 12.6293 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1439.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 34.337000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 34.3370 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = -52.489375 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -52.4894 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 13.093125 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 13.0931 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1453.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 32.999182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 32.9992 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -52.350182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -52.3502 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 8.791636 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 8.79164 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1467.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 34.591667 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 34.5917 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = -47.826333 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -47.8263 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 9.911000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 9.91100 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1487.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 32.431900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 32.4319 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = -47.753300 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -47.7533 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 3.497000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 3.49700 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1504.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 35.109722 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 35.1097 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = -43.061611 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -43.0616 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 3.866778 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 3.86678 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1524.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 31.183909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 31.1839 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -43.406727 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -43.4067 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -0.755727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.755727 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1543.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 32.656909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 32.6569 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -39.731727 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -39.7317 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -3.617000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.61700 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1565.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 29.072636 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 29.0726 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -38.782455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -38.7825 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -5.136545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -5.13655 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1580.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = 28.006600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 28.0066 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = -43.268200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -43.2682 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = -4.312800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -4.31280 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1587.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 31.008727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 31.0087 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -43.905364 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -43.9054 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -6.886091 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.88609 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1609.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 33.045636 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 33.0456 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -47.321091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -47.3211 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -4.466727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -4.46673 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1628.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 36.040364 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 36.0404 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -43.972727 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -43.9727 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -2.975000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.97500 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1647.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 37.615100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 37.6151 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = -45.905100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -45.9051 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 0.317800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 0.317800 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1659.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 36.638273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 36.6383 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -50.726545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -50.7265 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 1.599818 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.59982 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1681.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 38.163800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 38.1638 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = -50.495000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -50.4950 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 5.999300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 5.99930 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1697.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 37.784300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 37.7843 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = -54.425900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -54.4259 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 7.502700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 7.50270 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1713.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = 37.485000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 37.4850 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = -53.368400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -53.3684 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = 10.979800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 10.9798 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1720.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 39.236571 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 39.2366 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = -51.814286 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -51.8143 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 13.974000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 13.9740 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1730.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 43.179091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 43.1791 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -50.742636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -50.7426 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 12.591091 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 12.5911 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1752.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 43.746000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 43.7460 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -46.108818 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -46.1088 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 15.892545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 15.8925 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1774.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 47.285700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 47.2857 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = -47.164300 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -47.1643 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 12.108400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 12.1084 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1786.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 44.460909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 44.4609 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -48.557091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -48.5571 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 8.720182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 8.72018 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1801.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 41.596545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 41.5965 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -44.620909 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -44.6209 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 11.024273 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 11.0243 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1820.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 45.521636 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 45.5216 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -41.521091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -41.5211 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 10.341182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 10.3412 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1837.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 45.422111 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 45.4221 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = -44.220111 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -44.2201 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 6.196889 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 6.19689 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1848.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 41.124455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 41.1245 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -43.856364 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -43.8564 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 6.046545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 6.04655 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1862.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 41.960545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 41.9605 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -39.719545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -39.7195 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 7.590545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 7.59055 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1881.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 44.872000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 44.8720 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = -39.422429 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -39.4224 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 4.699429 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 4.69943 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1891.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 43.410091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 43.4101 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -42.303364 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -42.3034 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 1.654909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.65491 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1913.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 39.180000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 39.1800 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = -38.961800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -38.9618 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 1.798467 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.79847 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1931.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 43.840182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 43.8402 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -35.374364 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -35.3744 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 3.704364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 3.70436 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1950.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 1960 SHOW: average of selected elements = 44.261500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 44.2615 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 1960 SHOW: average of selected elements = -33.880500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -33.8805 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 1960 SHOW: average of selected elements = 0.024667 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 0.246667E-01 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) CNSsolve> evaluate ($ave_x=$result) CNSsolve> show ave(y) (byres(id $id) and known) CNSsolve> evaluate ($ave_y=$result) CNSsolve> show ave(z) (byres(id $id) and known) CNSsolve> evaluate ($ave_z=$result) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) CNSsolve> do (y=$ave_y) (byres(id $id) and store1) CNSsolve> do (z=$ave_z) (byres(id $id) and store1) CNSsolve> CNSsolve> end loop avco CNSsolve> CNSsolve> do (x=x+random(2.0)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> do (y=y+random(2.0)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> do (z=z+random(2.0)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> CNSsolve> {- start parameter for the side chain building -} CNSsolve> parameter PARRDR> nbonds NBDSET> rcon=20. nbxmod=-2 repel=0.9 wmin=0.1 tolerance=1. NBDSET> rexp=2 irexp=2 inhibit=0.25 NBDSET> end PARRDR> end CNSsolve> CNSsolve> {- Friction coefficient, in 1/ps. -} CNSsolve> do (fbeta=100) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> CNSsolve> evaluate ($bath=300.0) EVALUATE: symbol $BATH set to 300.000 (real) CNSsolve> evaluate ($nstep=500) EVALUATE: symbol $NSTEP set to 500.000 (real) CNSsolve> evaluate ($timestep=0.0005) EVALUATE: symbol $TIMESTEP set to 0.500000E-03 (real) CNSsolve> CNSsolve> do (refy=mass) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> CNSsolve> do (mass=20) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> CNSsolve> igroup interaction SELRPN> (store1) (store1 or known) SELRPN: 983 atoms have been selected out of 1960 SELRPN: 1960 atoms have been selected out of 1960 IGROup> end CNSsolve> CNSsolve> {- turn on initial energy terms -} CNSsolve> flags exclude * include bond angle vdw end CNSsolve> CNSsolve> minimize powell nstep=50 nprint=10 end POWELL: number of degrees of freedom= 2949 NBONDS: generating intra-molecular exclusion list with mode=-2 MAKINB: mode -2 found 983 exclusions and 0 interactions(1-4) %atoms " -1 -MET -HE3 " and " -1 -MET -HT3 " only 0.09 A apart %atoms " -7 -HIS -HB1 " and " -7 -HIS -HE1 " only 0.08 A apart %atoms " -21 -CYS -HN " and " -21 -CYS -HB1 " only 0.07 A apart %atoms " -24 -VAL -HG22" and " -24 -VAL -HG23" only 0.08 A apart %atoms " -27 -TRP -HE1 " and " -27 -TRP -HZ2 " only 0.10 A apart %atoms " -31 -LEU -HB2 " and " -31 -LEU -HD23" only 0.06 A apart %atoms " -32 -GLN -CA " and " -32 -GLN -HE21" only 0.06 A apart %atoms " -33 -LYS -HB2 " and " -33 -LYS -HZ1 " only 0.10 A apart %atoms " -42 -VAL -HN " and " -42 -VAL -HB " only 0.06 A apart %atoms " -52 -PRO -HB1 " and " -52 -PRO -HG2 " only 0.10 A apart %atoms " -53 -CYS -HA " and " -53 -CYS -HB1 " only 0.08 A apart %atoms " -54 -ARG -HD2 " and " -54 -ARG -HH22" only 0.10 A apart %atoms " -60 -PHE -HN " and " -60 -PHE -HB1 " only 0.09 A apart %atoms " -66 -LYS -HG2 " and " -66 -LYS -HD1 " only 0.10 A apart %atoms " -71 -LEU -HG " and " -71 -LEU -HD13" only 0.06 A apart %atoms " -75 -VAL -HA " and " -75 -VAL -HG22" only 0.08 A apart %atoms " -79 -GLU -HA " and " -79 -GLU -CB " only 0.09 A apart %atoms " -80 -LEU -HA " and " -80 -LEU -HB1 " only 0.07 A apart %atoms " -99 -LYS -HD1 " and " -99 -LYS -HZ3 " only 0.09 A apart %atoms " -121 -LYS -HG1 " and " -121 -LYS -HG2 " only 0.09 A apart NBONDS: found 118540 intra-atom interactions NBONDS: found 20 nonbonded violations %atoms " -117 -SER -HB1 " and " -117 -SER -HG " only 0.08 A apart %atoms " -121 -LYS -HD1 " and " -121 -LYS -HE2 " only 0.06 A apart NBONDS: found 117369 intra-atom interactions NBONDS: found 2 nonbonded violations NBONDS: found 110349 intra-atom interactions NBONDS: found 106202 intra-atom interactions NBONDS: found 108137 intra-atom interactions NBONDS: found 108764 intra-atom interactions --------------- cycle= 10 ------ stepsize= 0.0001 ----------------------- | Etotal =517078.760 grad(E)=580.558 E(BOND)=66736.574 E(ANGL)=246980.456 | | E(VDW )=203361.730 | ------------------------------------------------------------------------------- NBONDS: found 109462 intra-atom interactions NBONDS: found 109318 intra-atom interactions NBONDS: found 109042 intra-atom interactions NBONDS: found 109288 intra-atom interactions --------------- cycle= 20 ------ stepsize= 0.0000 ----------------------- | Etotal =192013.796 grad(E)=336.628 E(BOND)=26598.626 E(ANGL)=67495.499 | | E(VDW )=97919.671 | ------------------------------------------------------------------------------- NBONDS: found 109148 intra-atom interactions NBONDS: found 109206 intra-atom interactions --------------- cycle= 30 ------ stepsize= 0.0000 ----------------------- | Etotal =165200.347 grad(E)=318.621 E(BOND)=24902.504 E(ANGL)=52680.947 | | E(VDW )=87616.896 | ------------------------------------------------------------------------------- NBONDS: found 109154 intra-atom interactions --------------- cycle= 40 ------ stepsize= -0.0002 ----------------------- | Etotal =163548.631 grad(E)=316.927 E(BOND)=24792.589 E(ANGL)=52067.901 | | E(VDW )=86688.141 | ------------------------------------------------------------------------------- --------------- cycle= 50 ------ stepsize= -0.0001 ----------------------- | Etotal =163285.648 grad(E)=316.717 E(BOND)=24799.423 E(ANGL)=52034.941 | | E(VDW )=86451.285 | ------------------------------------------------------------------------------- POWELL: STEP number limit. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> CNSsolve> flags exclude vdw include impr end CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=50 Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=605582.039 E(kin)=907.693 temperature=309.781 | | Etotal =604674.346 grad(E)=585.901 E(BOND)=24799.423 E(ANGL)=52034.941 | | E(IMPR)=527839.982 | ------------------------------------------------------------------------------- -------------------- final step= 50 at 0.02500 ps --------------------- | E(kin)+E(total)=394425.005 E(kin)=62189.304 temperature=21224.199 | | Etotal =332235.701 grad(E)=380.125 E(BOND)=50244.318 E(ANGL)=115589.098 | | E(IMPR)=166402.285 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 28.34761 -41.63186 7.40988 velocity [A/ps] : 1.21664 0.09538 -0.46413 ang. mom. [amu A/ps] :-150405.17143 52431.33226 217667.85744 kin. ener. [Kcal/mol] : 40.05137 CNSsolve> CNSsolve> flags include vdw end CNSsolve> CNSsolve> minimize powell nstep=50 nprint=10 end POWELL: number of degrees of freedom= 2949 NBONDS: found 108467 intra-atom interactions NBONDS: found 108335 intra-atom interactions NBONDS: found 108461 intra-atom interactions NBONDS: found 108565 intra-atom interactions NBONDS: found 108783 intra-atom interactions NBONDS: found 108651 intra-atom interactions --------------- cycle= 10 ------ stepsize= 0.0002 ----------------------- | Etotal =299922.252 grad(E)=357.993 E(BOND)=39617.441 E(ANGL)=76135.854 | | E(IMPR)=134139.429 E(VDW )=50029.528 | ------------------------------------------------------------------------------- NBONDS: found 108893 intra-atom interactions NBONDS: found 108946 intra-atom interactions NBONDS: found 108942 intra-atom interactions NBONDS: found 108876 intra-atom interactions --------------- cycle= 20 ------ stepsize= -0.0001 ----------------------- | Etotal =209750.951 grad(E)=257.972 E(BOND)=23603.131 E(ANGL)=35980.578 | | E(IMPR)=100473.204 E(VDW )=49694.038 | ------------------------------------------------------------------------------- NBONDS: found 108962 intra-atom interactions NBONDS: found 108988 intra-atom interactions NBONDS: found 109060 intra-atom interactions --------------- cycle= 30 ------ stepsize= 0.0001 ----------------------- | Etotal =187577.086 grad(E)=275.236 E(BOND)=26430.509 E(ANGL)=35932.632 | | E(IMPR)=75654.326 E(VDW )=49559.620 | ------------------------------------------------------------------------------- NBONDS: found 109109 intra-atom interactions NBONDS: found 109054 intra-atom interactions NBONDS: found 108974 intra-atom interactions --------------- cycle= 40 ------ stepsize= 0.0001 ----------------------- | Etotal =153948.942 grad(E)=259.073 E(BOND)=22170.536 E(ANGL)=25122.530 | | E(IMPR)=58783.426 E(VDW )=47872.449 | ------------------------------------------------------------------------------- NBONDS: found 108926 intra-atom interactions NBONDS: found 108995 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0000 ----------------------- | Etotal =139156.112 grad(E)=253.338 E(BOND)=21414.124 E(ANGL)=20391.281 | | E(IMPR)=50192.681 E(VDW )=47158.026 | ------------------------------------------------------------------------------- POWELL: STEP number limit. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=50 Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=140017.240 E(kin)=861.129 temperature=293.889 | | Etotal =139156.112 grad(E)=253.338 E(BOND)=21414.124 E(ANGL)=20391.281 | | E(IMPR)=50192.681 E(VDW )=47158.026 | ------------------------------------------------------------------------------- NBONDS: found 108981 intra-atom interactions NBONDS: found 108951 intra-atom interactions NBONDS: found 108953 intra-atom interactions -------------------- final step= 50 at 0.02500 ps --------------------- | E(kin)+E(total)=135526.412 E(kin)=2399.816 temperature=819.018 | | Etotal =133126.596 grad(E)=254.379 E(BOND)=21627.109 E(ANGL)=17325.604 | | E(IMPR)=47629.806 E(VDW )=46544.076 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 28.36035 -41.62149 7.42798 velocity [A/ps] : 0.06683 0.16288 0.07807 ang. mom. [amu A/ps] : -374.71632 -51923.04764 96441.35023 kin. ener. [Kcal/mol] : 0.87141 CNSsolve> CNSsolve> parameter PARRDR> nbonds NBDSET> rcon=2. nbxmod=-3 repel=0.75 NBDSET> end PARRDR> end CNSsolve> CNSsolve> minimize powell nstep=100 nprint=25 end POWELL: number of degrees of freedom= 2949 NBONDS: generating intra-molecular exclusion list with mode=-3 MAKINB: mode -3 found 3235 exclusions and 0 interactions(1-4) NBONDS: found 106693 intra-atom interactions NBONDS: found 107260 intra-atom interactions NBONDS: found 107253 intra-atom interactions NBONDS: found 107233 intra-atom interactions NBONDS: found 107270 intra-atom interactions --------------- cycle= 25 ------ stepsize= 0.0003 ----------------------- | Etotal =50518.842 grad(E)=43.133 E(BOND)=1908.444 E(ANGL)=12390.519 | | E(IMPR)=36218.239 E(VDW )=1.640 | ------------------------------------------------------------------------------- NBONDS: found 107233 intra-atom interactions NBONDS: found 107279 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0000 ----------------------- | Etotal =46986.889 grad(E)=291.328 E(BOND)=1597.722 E(ANGL)=11694.289 | | E(IMPR)=33690.988 E(VDW )=3.889 | ------------------------------------------------------------------------------- --------------- cycle= 75 ------ stepsize= 0.0000 ----------------------- | Etotal =46986.935 grad(E)=292.071 E(BOND)=1597.567 E(ANGL)=11694.633 | | E(IMPR)=33690.840 E(VDW )=3.895 | ------------------------------------------------------------------------------- POWELL: Line search terminated POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=$nstep Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=44293.693 E(kin)=866.676 temperature=295.783 | | Etotal =43427.017 grad(E)=43.363 E(BOND)=1597.567 E(ANGL)=11694.633 | | E(IMPR)=30130.921 E(VDW )=3.895 | ------------------------------------------------------------------------------- NBONDS: found 107220 intra-atom interactions NBONDS: found 107192 intra-atom interactions NBONDS: found 107227 intra-atom interactions NBONDS: found 107236 intra-atom interactions NBONDS: found 107247 intra-atom interactions NBONDS: found 107273 intra-atom interactions NBONDS: found 107323 intra-atom interactions NBONDS: found 107327 intra-atom interactions NBONDS: found 107308 intra-atom interactions NBONDS: found 107291 intra-atom interactions NBONDS: found 107313 intra-atom interactions NBONDS: found 107264 intra-atom interactions NBONDS: found 107242 intra-atom interactions NBONDS: found 107230 intra-atom interactions NBONDS: found 107238 intra-atom interactions NBONDS: found 107282 intra-atom interactions NBONDS: found 107276 intra-atom interactions NBONDS: found 107266 intra-atom interactions NBONDS: found 107254 intra-atom interactions NBONDS: found 107244 intra-atom interactions NBONDS: found 107281 intra-atom interactions NBONDS: found 107292 intra-atom interactions -------------------- final step= 500 at 0.25000 ps --------------------- | E(kin)+E(total)=2837.916 E(kin)=654.135 temperature=223.246 | | Etotal =2183.782 grad(E)=53.644 E(BOND)=192.747 E(ANGL)=1259.442 | | E(IMPR)=725.686 E(VDW )=5.907 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 28.36028 -41.62030 7.42309 velocity [A/ps] : -0.02813 0.09076 0.01444 ang. mom. [amu A/ps] : 3019.53495 -8054.51842 -6828.16355 kin. ener. [Kcal/mol] : 0.21701 CNSsolve> CNSsolve> {- turn on all energy terms -} CNSsolve> flags include dihe ? end EFLAGS: the following energy flags are set EFLAGS: BOND ANGL DIHE IMPR VDW CNSsolve> CNSsolve> {- set repel to ~vdw radii -} CNSsolve> parameter PARRDR> nbonds NBDSET> repel=0.89 NBDSET> end PARRDR> end CNSsolve> CNSsolve> minimize powell nstep=500 nprint=50 end POWELL: number of degrees of freedom= 2949 NBONDS: generating intra-molecular exclusion list with mode=-3 MAKINB: mode -3 found 3235 exclusions and 0 interactions(1-4) NBONDS: found 107288 intra-atom interactions NBONDS: found 107273 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0000 ----------------------- | Etotal =2410.298 grad(E)=175.625 E(BOND)=68.599 E(ANGL)=389.406 | | E(DIHE)=84.089 E(IMPR)=1790.890 E(VDW )=77.315 | ------------------------------------------------------------------------------- POWELL: Line search terminated POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> flags exclude * include bond angl impr dihe vdw end CNSsolve> CNSsolve> {- return masses to something sensible -} CNSsolve> do (mass=refy) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=$nstep Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=1527.410 E(kin)=884.125 temperature=301.737 | | Etotal =643.286 grad(E)=23.525 E(BOND)=68.599 E(ANGL)=389.406 | | E(DIHE)=84.089 E(IMPR)=23.877 E(VDW )=77.315 | ------------------------------------------------------------------------------- NBONDS: found 107248 intra-atom interactions NBONDS: found 107296 intra-atom interactions NBONDS: found 107271 intra-atom interactions NBONDS: found 107235 intra-atom interactions NBONDS: found 107228 intra-atom interactions NBONDS: found 107255 intra-atom interactions NBONDS: found 107257 intra-atom interactions NBONDS: found 107254 intra-atom interactions NBONDS: found 107276 intra-atom interactions NBONDS: found 107297 intra-atom interactions NBONDS: found 107291 intra-atom interactions NBONDS: found 107312 intra-atom interactions NBONDS: found 107307 intra-atom interactions NBONDS: found 107332 intra-atom interactions NBONDS: found 107340 intra-atom interactions NBONDS: found 107284 intra-atom interactions NBONDS: found 107255 intra-atom interactions NBONDS: found 107219 intra-atom interactions NBONDS: found 107228 intra-atom interactions NBONDS: found 107254 intra-atom interactions NBONDS: found 107267 intra-atom interactions NBONDS: found 107270 intra-atom interactions NBONDS: found 107276 intra-atom interactions NBONDS: found 107268 intra-atom interactions NBONDS: found 107279 intra-atom interactions NBONDS: found 107293 intra-atom interactions NBONDS: found 107289 intra-atom interactions NBONDS: found 107238 intra-atom interactions NBONDS: found 107241 intra-atom interactions NBONDS: found 107232 intra-atom interactions NBONDS: found 107245 intra-atom interactions NBONDS: found 107250 intra-atom interactions NBONDS: found 107263 intra-atom interactions NBONDS: found 107295 intra-atom interactions NBONDS: found 107295 intra-atom interactions NBONDS: found 107304 intra-atom interactions NBONDS: found 107322 intra-atom interactions NBONDS: found 107312 intra-atom interactions NBONDS: found 107309 intra-atom interactions NBONDS: found 107292 intra-atom interactions NBONDS: found 107323 intra-atom interactions NBONDS: found 107284 intra-atom interactions NBONDS: found 107292 intra-atom interactions NBONDS: found 107324 intra-atom interactions NBONDS: found 107371 intra-atom interactions NBONDS: found 107310 intra-atom interactions NBONDS: found 107272 intra-atom interactions NBONDS: found 107261 intra-atom interactions NBONDS: found 107287 intra-atom interactions NBONDS: found 107311 intra-atom interactions NBONDS: found 107317 intra-atom interactions NBONDS: found 107296 intra-atom interactions NBONDS: found 107308 intra-atom interactions NBONDS: found 107352 intra-atom interactions NBONDS: found 107368 intra-atom interactions NBONDS: found 107355 intra-atom interactions NBONDS: found 107333 intra-atom interactions NBONDS: found 107351 intra-atom interactions NBONDS: found 107342 intra-atom interactions NBONDS: found 107317 intra-atom interactions NBONDS: found 107334 intra-atom interactions NBONDS: found 107362 intra-atom interactions NBONDS: found 107356 intra-atom interactions NBONDS: found 107300 intra-atom interactions NBONDS: found 107296 intra-atom interactions NBONDS: found 107293 intra-atom interactions NBONDS: found 107294 intra-atom interactions NBONDS: found 107312 intra-atom interactions NBONDS: found 107320 intra-atom interactions NBONDS: found 107317 intra-atom interactions NBONDS: found 107321 intra-atom interactions NBONDS: found 107332 intra-atom interactions NBONDS: found 107365 intra-atom interactions NBONDS: found 107376 intra-atom interactions NBONDS: found 107362 intra-atom interactions NBONDS: found 107338 intra-atom interactions NBONDS: found 107293 intra-atom interactions NBONDS: found 107281 intra-atom interactions NBONDS: found 107275 intra-atom interactions NBONDS: found 107284 intra-atom interactions NBONDS: found 107322 intra-atom interactions NBONDS: found 107339 intra-atom interactions NBONDS: found 107358 intra-atom interactions NBONDS: found 107354 intra-atom interactions NBONDS: found 107317 intra-atom interactions NBONDS: found 107338 intra-atom interactions NBONDS: found 107337 intra-atom interactions NBONDS: found 107294 intra-atom interactions NBONDS: found 107283 intra-atom interactions NBONDS: found 107267 intra-atom interactions NBONDS: found 107290 intra-atom interactions NBONDS: found 107339 intra-atom interactions NBONDS: found 107323 intra-atom interactions NBONDS: found 107296 intra-atom interactions NBONDS: found 107305 intra-atom interactions NBONDS: found 107320 intra-atom interactions NBONDS: found 107363 intra-atom interactions NBONDS: found 107407 intra-atom interactions NBONDS: found 107375 intra-atom interactions NBONDS: found 107350 intra-atom interactions NBONDS: found 107336 intra-atom interactions NBONDS: found 107351 intra-atom interactions NBONDS: found 107362 intra-atom interactions NBONDS: found 107342 intra-atom interactions NBONDS: found 107319 intra-atom interactions NBONDS: found 107298 intra-atom interactions NBONDS: found 107308 intra-atom interactions NBONDS: found 107311 intra-atom interactions NBONDS: found 107339 intra-atom interactions NBONDS: found 107359 intra-atom interactions NBONDS: found 107382 intra-atom interactions NBONDS: found 107354 intra-atom interactions NBONDS: found 107335 intra-atom interactions NBONDS: found 107305 intra-atom interactions NBONDS: found 107279 intra-atom interactions NBONDS: found 107320 intra-atom interactions NBONDS: found 107334 intra-atom interactions NBONDS: found 107324 intra-atom interactions NBONDS: found 107329 intra-atom interactions NBONDS: found 107321 intra-atom interactions NBONDS: found 107290 intra-atom interactions NBONDS: found 107287 intra-atom interactions NBONDS: found 107307 intra-atom interactions NBONDS: found 107360 intra-atom interactions NBONDS: found 107377 intra-atom interactions NBONDS: found 107385 intra-atom interactions NBONDS: found 107332 intra-atom interactions NBONDS: found 107318 intra-atom interactions NBONDS: found 107311 intra-atom interactions NBONDS: found 107314 intra-atom interactions NBONDS: found 107310 intra-atom interactions NBONDS: found 107324 intra-atom interactions NBONDS: found 107311 intra-atom interactions NBONDS: found 107333 intra-atom interactions NBONDS: found 107349 intra-atom interactions NBONDS: found 107360 intra-atom interactions NBONDS: found 107354 intra-atom interactions NBONDS: found 107334 intra-atom interactions NBONDS: found 107315 intra-atom interactions NBONDS: found 107292 intra-atom interactions NBONDS: found 107282 intra-atom interactions NBONDS: found 107303 intra-atom interactions NBONDS: found 107329 intra-atom interactions NBONDS: found 107355 intra-atom interactions NBONDS: found 107338 intra-atom interactions NBONDS: found 107323 intra-atom interactions NBONDS: found 107308 intra-atom interactions NBONDS: found 107278 intra-atom interactions NBONDS: found 107283 intra-atom interactions NBONDS: found 107298 intra-atom interactions NBONDS: found 107311 intra-atom interactions NBONDS: found 107331 intra-atom interactions NBONDS: found 107353 intra-atom interactions NBONDS: found 107365 intra-atom interactions NBONDS: found 107366 intra-atom interactions NBONDS: found 107358 intra-atom interactions NBONDS: found 107343 intra-atom interactions NBONDS: found 107317 intra-atom interactions NBONDS: found 107299 intra-atom interactions NBONDS: found 107282 intra-atom interactions NBONDS: found 107271 intra-atom interactions NBONDS: found 107273 intra-atom interactions NBONDS: found 107270 intra-atom interactions NBONDS: found 107283 intra-atom interactions NBONDS: found 107305 intra-atom interactions NBONDS: found 107313 intra-atom interactions NBONDS: found 107318 intra-atom interactions NBONDS: found 107304 intra-atom interactions NBONDS: found 107281 intra-atom interactions NBONDS: found 107271 intra-atom interactions NBONDS: found 107268 intra-atom interactions NBONDS: found 107263 intra-atom interactions NBONDS: found 107271 intra-atom interactions NBONDS: found 107293 intra-atom interactions NBONDS: found 107323 intra-atom interactions NBONDS: found 107330 intra-atom interactions NBONDS: found 107345 intra-atom interactions NBONDS: found 107347 intra-atom interactions NBONDS: found 107357 intra-atom interactions NBONDS: found 107332 intra-atom interactions NBONDS: found 107314 intra-atom interactions NBONDS: found 107287 intra-atom interactions NBONDS: found 107269 intra-atom interactions NBONDS: found 107268 intra-atom interactions NBONDS: found 107267 intra-atom interactions NBONDS: found 107272 intra-atom interactions NBONDS: found 107271 intra-atom interactions NBONDS: found 107299 intra-atom interactions NBONDS: found 107307 intra-atom interactions NBONDS: found 107327 intra-atom interactions NBONDS: found 107350 intra-atom interactions NBONDS: found 107367 intra-atom interactions NBONDS: found 107361 intra-atom interactions NBONDS: found 107344 intra-atom interactions NBONDS: found 107338 intra-atom interactions NBONDS: found 107311 intra-atom interactions NBONDS: found 107296 intra-atom interactions NBONDS: found 107299 intra-atom interactions NBONDS: found 107317 intra-atom interactions NBONDS: found 107333 intra-atom interactions NBONDS: found 107337 intra-atom interactions NBONDS: found 107317 intra-atom interactions NBONDS: found 107296 intra-atom interactions NBONDS: found 107310 intra-atom interactions NBONDS: found 107341 intra-atom interactions NBONDS: found 107357 intra-atom interactions NBONDS: found 107360 intra-atom interactions NBONDS: found 107356 intra-atom interactions NBONDS: found 107362 intra-atom interactions NBONDS: found 107360 intra-atom interactions NBONDS: found 107335 intra-atom interactions NBONDS: found 107321 intra-atom interactions NBONDS: found 107358 intra-atom interactions NBONDS: found 107376 intra-atom interactions NBONDS: found 107398 intra-atom interactions NBONDS: found 107394 intra-atom interactions NBONDS: found 107381 intra-atom interactions -------------------- final step= 500 at 0.25000 ps --------------------- | E(kin)+E(total)=6747.924 E(kin)=5567.032 temperature=1899.938 | | Etotal =1180.892 grad(E)=28.559 E(BOND)=26.361 E(ANGL)=500.369 | | E(DIHE)=11.328 E(IMPR)=579.749 E(VDW )=63.085 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 28.83739 -41.44796 7.16048 velocity [A/ps] : -1.02559 1.63048 0.99069 ang. mom. [amu A/ps] : -34745.41560 -17414.58386 -6986.50077 kin. ener. [Kcal/mol] : 5.72366 CNSsolve> CNSsolve> {- some final minimisation -} CNSsolve> minimize powell POWELL> nstep=500 POWELL> drop=40.0 POWELL> nprint=50 POWELL> end POWELL: number of degrees of freedom= 2949 NBONDS: found 107290 intra-atom interactions NBONDS: found 107373 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0000 ----------------------- | Etotal =2688.274 grad(E)=232.372 E(BOND)=12.011 E(ANGL)=295.300 | | E(DIHE)=11.210 E(IMPR)=2312.121 E(VDW )=57.632 | ------------------------------------------------------------------------------- POWELL: Line search terminated POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> print thres=0.02 bonds (atom-i |atom-j ) dist. equil. delta energy const. ( 54 NE | 54 HE ) 1.084 0.980 0.104 10.720 1000.000 Number of violations greater 0.020: 1 RMS deviation= 0.003 CNSsolve> print thres=5. angles (atom-i |atom-j |atom-k ) angle equil. delta energy const. ( 54 CD | 54 NE | 54 HE ) 93.264 118.099 -24.834 93.937 500.000 ( 54 HE | 54 NE | 54 CZ ) 141.624 119.249 22.375 76.254 500.000 Number of violations greater 5.000: 2 RMS deviation= 0.928 CNSsolve> CNSsolve> end if CNSsolve> CNSsolve> fix selection=( none ) end SELRPN: 0 atoms have been selected out of 1960 CNSsolve> CNSsolve> end if CNSsolve> CNSsolve> set echo=false end SELRPN: 0 atoms have been selected out of 1960 SHOW: zero atoms selected NEXTCD: condition evaluated as true SELRPN: 0 atoms have been selected out of 1960 CNSsolve> CNSsolve> if (&set_bfactor=true) then NEXTCD: condition evaluated as false CNSsolve> do (b=&bfactor) ( all ) CNSsolve> else CNSsolve> show ave(b) (known and not(store1)) SELRPN: 977 atoms have been selected out of 1960 SHOW: average of selected elements = 0.000000 CNSsolve> do (b=$result) (store1 and (attr b < 0.01)) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> end if CNSsolve> CNSsolve> if (&set_occupancy=true) then NEXTCD: condition evaluated as false CNSsolve> do (q=&occupancy) ( all ) CNSsolve> end if CNSsolve> CNSsolve> set echo=false end SELRPN: 983 atoms have been selected out of 1960 SHOW: sum over selected elements = 983.000000 NEXTCD: condition evaluated as false CNSsolve> CNSsolve> set remarks=reset end CNSsolve> CNSsolve> buffer message BUFFER> to=remarks BUFFER> dump BUFFER> end CNSsolve> CNSsolve> write coordinates output=&coordinate_outfile end ASSFIL: file 1xxx_8_cns.pdb opened. CNSsolve> CNSsolve>stop HEAP: maximum use = 1238676 current use = 0 bytes HEAP: maximum overhead = 928 current overhead = 64 bytes ============================================================ Maximum dynamic memory allocation: 1238676 bytes Maximum dynamic memory overhead: 928 bytes Program started at: 09:35:10 on 11-Sep-04 Program stopped at: 09:35:35 on 11-Sep-04 CPU time used: 24.9800 seconds ============================================================