============================================================ | | | Crystallography & NMR System (CNS) | | CNSsolve | | | ============================================================ Version: 1.1 Status: Developmental version ============================================================ Written by: A.T.Brunger, P.D.Adams, G.M.Clore, W.L.DeLano, P.Gros, R.W.Grosse-Kunstleve, J.-S.Jiang, J.Kuszewski, M.Nilges, N.S.Pannu, R.J.Read, L.M.Rice, T.Simonson, G.L.Warren. Copyright (c) 1997-1999 Yale University ============================================================ Running on machine: cesg-master.biochem.wisc.edu (Linux,32-bit) Program started by: volkman Program started at: 09:32:36 on 11-Sep-04 ============================================================ FFT3C: Using FFTPACK4.1 CNSsolve>define( DEFINE>{* selection of atoms other than hydrogens for which coordinates DEFINE> will be generated *} DEFINE>{* to generate coordinates for all unknown atoms use: (not(known)) *} DEFINE>{===>} atom_build=(not(known)); DEFINE>{============================= output files ================================} DEFINE> DEFINE>{* input coordinate file *} DEFINE>{===>} coordinate_infile="1xxx_2.pdb"; DEFINE> DEFINE>{* output coordinate file *} DEFINE>{===>} coordinate_outfile="1xxx_2_cns.pdb"; DEFINE>) CNSsolve> CNSsolve> checkversion 1.1 Program version= 1.1 File version= 1.1 CNSsolve> CNSsolve> evaluate ($log_level=verbose) Assuming literal string "VERBOSE" EVALUATE: symbol $LOG_LEVEL set to "VERBOSE" (string) CNSsolve> evaluate ($par_nonbonded="PROLSQ") EVALUATE: symbol $PAR_NONBONDED set to "PROLSQ" (string) CNSsolve> CNSsolve> !@generateProtonsJFD.inp CNSsolve> CNSsolve>{===========================================================================} CNSsolve>{ things below this line do not need to be changed } CNSsolve>{===========================================================================} CNSsolve> CNSsolve>remarks changed Tue Sep 2 09:48:07 CDT 2003 CNSsolve>remarks by jfd to include a fes residue CNSsolve> CNSsolve>!@generate_tmoc.inp CNSsolve> CNSsolve>topology reset end CNSsolve>structure reset end Status of internal molecular topology database: -> NATOM= 0(MAXA= 40000) NBOND= 0(MAXB= 40000) -> NTHETA= 0(MAXT= 80000) NGRP= 0(MAXGRP= 40000) -> NPHI= 0(MAXP= 80000) NIMPHI= 0(MAXIMP= 40000) -> NNB= 0(MAXNB= 40000) CNSsolve> CNSsolve>topology RTFRDR>{===>} @TOPPAR:topallhdg5.3.pro ASSFIL: file /u/volkman/waterrefine/toppar/topallhdg5.3.pro opened. RTFRDR>remark file topallhdg.pro version 5.3 date 23-Sept-02 RTFRDR>remark for file parallhdg.pro version 5.3 date 13-Feb-02 or later RTFRDR>remark Geometric energy function parameters for distance geometry and RTFRDR>remark simulated annealing. RTFRDR>remark Author: Michael Nilges, EMBL Heidelberg; Institut Pasteur, Paris RTFRDR>remark This file contains modifications from M. Williams, UCL London RTFRDR>remark Last modification 16-Sept-02 RTFRDR> RTFRDR>set echo off message off end RTFRDR>end CNSsolve> CNSsolve>! no chain id. CNSsolve>segment name=" " SEGMENT> chain CHAIN> @TOPPAR:topallhdg5.3.pep CHAIN>REMARKS TOPH19.pep -MACRO for protein sequence CHAIN>SET ECHO=FALSE END CHAIN> sequence SEQUENCE> @1xxx.seq SEQUENCE>MET SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =CYS SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =TRP SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =TRP SEQUence-element (terminate with END) =CYS SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =CYS SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =TRP SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) = end SEGMNT: 124 residues were inserted into segment " " CHAIN> end SEGMENT>end Status of internal molecular topology database: -> NATOM= 1962(MAXA= 40000) NBOND= 1986(MAXB= 40000) -> NTHETA= 3608(MAXT= 80000) NGRP= 126(MAXGRP= 40000) -> NPHI= 3136(MAXP= 80000) NIMPHI= 1032(MAXIMP= 40000) -> NNB= 738(MAXNB= 40000) CNSsolve> CNSsolve>! removes the hydrogen on the cys-en CNSsolve>! and changes the atom type from SH1E to S. CNSsolve>patch DISU reference=1=( resid 50 ) PATCH> reference=2=( resid 53 ) PATCH> end Status of internal molecular topology database: -> NATOM= 1960(MAXA= 40000) NBOND= 1985(MAXB= 40000) -> NTHETA= 3608(MAXT= 80000) NGRP= 128(MAXGRP= 40000) -> NPHI= 3142(MAXP= 80000) NIMPHI= 1032(MAXIMP= 40000) -> NNB= 738(MAXNB= 40000) CNSsolve> CNSsolve>! turn peptide from trans to cis CNSsolve>patch CISP reference=nil=( resid 92 ) end Status of internal molecular topology database: -> NATOM= 1960(MAXA= 40000) NBOND= 1985(MAXB= 40000) -> NTHETA= 3608(MAXT= 80000) NGRP= 128(MAXGRP= 40000) -> NPHI= 3142(MAXP= 80000) NIMPHI= 1032(MAXIMP= 40000) -> NNB= 738(MAXNB= 40000) CNSsolve> CNSsolve>coor @&coordinate_infile COOR>HEADER Structures from CYANA 09-09-2004 COOR>REMARK model 2 COOR>ATOM 2252 N MET A 1 1.325 0.000 0.000 1.00 0.00 %READC-ERR: atom 1 MET HN not found in molecular structure %READC-ERR: atom 1 MET 2HB not found in molecular structure %READC-ERR: atom 1 MET 3HB not found in molecular structure %READC-ERR: atom 1 MET QB not found in molecular structure %READC-ERR: atom 1 MET 2HG not found in molecular structure %READC-ERR: atom 1 MET 3HG not found in molecular structure %READC-ERR: atom 1 MET QG not found in molecular structure %READC-ERR: atom 1 MET QE not found in molecular structure %READC-ERR: atom 1 MET 1HE not found in molecular structure %READC-ERR: atom 1 MET 2HE not found in molecular structure %READC-ERR: atom 1 MET 3HE not found in molecular structure %READC-ERR: atom 2 GLY 1HA not found in molecular structure %READC-ERR: atom 2 GLY 2HA not found in molecular structure %READC-ERR: atom 2 GLY QA not found in molecular structure %READC-ERR: atom 3 HIS 2HB not found in molecular structure %READC-ERR: atom 3 HIS 3HB not found in molecular structure %READC-ERR: atom 3 HIS QB not found in molecular structure %READC-ERR: atom 4 HIS 2HB not found in molecular structure %READC-ERR: atom 4 HIS 3HB not found in molecular structure %READC-ERR: atom 4 HIS QB not found in molecular structure %READC-ERR: atom 5 HIS 2HB not found in molecular structure %READC-ERR: atom 5 HIS 3HB not found in molecular structure %READC-ERR: atom 5 HIS QB not found in molecular structure %READC-ERR: atom 6 HIS 2HB not found in molecular structure %READC-ERR: atom 6 HIS 3HB not found in molecular structure %READC-ERR: atom 6 HIS QB not found in molecular structure %READC-ERR: atom 7 HIS 2HB not found in molecular structure %READC-ERR: atom 7 HIS 3HB not found in molecular structure %READC-ERR: atom 7 HIS QB not found in molecular structure %READC-ERR: atom 8 HIS 2HB not found in molecular structure %READC-ERR: atom 8 HIS 3HB not found in molecular structure %READC-ERR: atom 8 HIS QB not found in molecular structure %READC-ERR: atom 9 LEU 2HB not found in molecular structure %READC-ERR: atom 9 LEU 3HB not found in molecular structure %READC-ERR: atom 9 LEU QB not found in molecular structure %READC-ERR: atom 9 LEU QD1 not found in molecular structure %READC-ERR: atom 9 LEU QD2 not found in molecular structure %READC-ERR: atom 9 LEU 1HD1 not found in molecular structure %READC-ERR: atom 9 LEU 2HD1 not found in molecular structure %READC-ERR: atom 9 LEU 3HD1 not found in molecular structure %READC-ERR: atom 9 LEU 1HD2 not found in molecular structure %READC-ERR: atom 9 LEU 2HD2 not found in molecular structure %READC-ERR: atom 9 LEU 3HD2 not found in molecular structure %READC-ERR: atom 9 LEU QQD not found in molecular structure %READC-ERR: atom 10 GLU 2HB not found in molecular structure %READC-ERR: atom 10 GLU 3HB not found in molecular structure %READC-ERR: atom 10 GLU QB not found in molecular structure %READC-ERR: atom 10 GLU 2HG not found in molecular structure %READC-ERR: atom 10 GLU 3HG not found in molecular structure %READC-ERR: atom 10 GLU QG not found in molecular structure %READC-ERR: atom 11 MET 2HB not found in molecular structure %READC-ERR: atom 11 MET 3HB not found in molecular structure %READC-ERR: atom 11 MET QB not found in molecular structure %READC-ERR: atom 11 MET 2HG not found in molecular structure %READC-ERR: atom 11 MET 3HG not found in molecular structure %READC-ERR: atom 11 MET QG not found in molecular structure %READC-ERR: atom 11 MET QE not found in molecular structure %READC-ERR: atom 11 MET 1HE not found in molecular structure %READC-ERR: atom 11 MET 2HE not found in molecular structure %READC-ERR: atom 11 MET 3HE not found in molecular structure %READC-ERR: atom 12 ALA QB not found in molecular structure %READC-ERR: atom 12 ALA 1HB not found in molecular structure %READC-ERR: atom 12 ALA 2HB not found in molecular structure %READC-ERR: atom 12 ALA 3HB not found in molecular structure %READC-ERR: atom 13 SER 2HB not found in molecular structure %READC-ERR: atom 13 SER 3HB not found in molecular structure %READC-ERR: atom 13 SER QB not found in molecular structure %READC-ERR: atom 14 GLU 2HB not found in molecular structure %READC-ERR: atom 14 GLU 3HB not found in molecular structure %READC-ERR: atom 14 GLU QB not found in molecular structure %READC-ERR: atom 14 GLU 2HG not found in molecular structure %READC-ERR: atom 14 GLU 3HG not found in molecular structure %READC-ERR: atom 14 GLU QG not found in molecular structure %READC-ERR: atom 15 GLU 2HB not found in molecular structure %READC-ERR: atom 15 GLU 3HB not found in molecular structure %READC-ERR: atom 15 GLU QB not found in molecular structure %READC-ERR: atom 15 GLU 2HG not found in molecular structure %READC-ERR: atom 15 GLU 3HG not found in molecular structure %READC-ERR: atom 15 GLU QG not found in molecular structure %READC-ERR: atom 16 GLY 1HA not found in molecular structure %READC-ERR: atom 16 GLY 2HA not found in molecular structure %READC-ERR: atom 16 GLY QA not found in molecular structure %READC-ERR: atom 17 GLN 2HB not found in molecular structure %READC-ERR: atom 17 GLN 3HB not found in molecular structure %READC-ERR: atom 17 GLN QB not found in molecular structure %READC-ERR: atom 17 GLN 2HG not found in molecular structure %READC-ERR: atom 17 GLN 3HG not found in molecular structure %READC-ERR: atom 17 GLN QG not found in molecular structure %READC-ERR: atom 17 GLN 1HE2 not found in molecular structure %READC-ERR: atom 17 GLN 2HE2 not found in molecular structure %READC-ERR: atom 17 GLN QE2 not found in molecular structure %READC-ERR: atom 18 VAL QG1 not found in molecular structure %READC-ERR: atom 18 VAL QG2 not found in molecular structure %READC-ERR: atom 18 VAL 1HG1 not found in molecular structure %READC-ERR: atom 18 VAL 2HG1 not found in molecular structure %READC-ERR: atom 18 VAL 3HG1 not found in molecular structure %READC-ERR: atom 18 VAL 1HG2 not found in molecular structure %READC-ERR: atom 18 VAL 2HG2 not found in molecular structure %READC-ERR: atom 18 VAL 3HG2 not found in molecular structure %READC-ERR: atom 18 VAL QQG not found in molecular structure %READC-ERR: atom 19 ILE QG2 not found in molecular structure %READC-ERR: atom 19 ILE 1HG2 not found in molecular structure %READC-ERR: atom 19 ILE 2HG2 not found in molecular structure %READC-ERR: atom 19 ILE 3HG2 not found in molecular structure %READC-ERR: atom 19 ILE 2HG1 not found in molecular structure %READC-ERR: atom 19 ILE 3HG1 not found in molecular structure %READC-ERR: atom 19 ILE QG1 not found in molecular structure %READC-ERR: atom 19 ILE QD1 not found in molecular structure %READC-ERR: atom 19 ILE 1HD1 not found in molecular structure %READC-ERR: atom 19 ILE 2HD1 not found in molecular structure %READC-ERR: atom 19 ILE 3HD1 not found in molecular structure %READC-ERR: atom 20 ALA QB not found in molecular structure %READC-ERR: atom 20 ALA 1HB not found in molecular structure %READC-ERR: atom 20 ALA 2HB not found in molecular structure %READC-ERR: atom 20 ALA 3HB not found in molecular structure %READC-ERR: atom 21 CYS 2HB not found in molecular structure %READC-ERR: atom 21 CYS 3HB not found in molecular structure %READC-ERR: atom 21 CYS QB not found in molecular structure %READC-ERR: atom 22 HIS 2HB not found in molecular structure %READC-ERR: atom 22 HIS 3HB not found in molecular structure %READC-ERR: atom 22 HIS QB not found in molecular structure %READC-ERR: atom 23 THR QG2 not found in molecular structure %READC-ERR: atom 23 THR 1HG2 not found in molecular structure %READC-ERR: atom 23 THR 2HG2 not found in molecular structure %READC-ERR: atom 23 THR 3HG2 not found in molecular structure %READC-ERR: atom 24 VAL QG1 not found in molecular structure %READC-ERR: atom 24 VAL QG2 not found in molecular structure %READC-ERR: atom 24 VAL 1HG1 not found in molecular structure %READC-ERR: atom 24 VAL 2HG1 not found in molecular structure %READC-ERR: atom 24 VAL 3HG1 not found in molecular structure %READC-ERR: atom 24 VAL 1HG2 not found in molecular structure %READC-ERR: atom 24 VAL 2HG2 not found in molecular structure %READC-ERR: atom 24 VAL 3HG2 not found in molecular structure %READC-ERR: atom 24 VAL QQG not found in molecular structure %READC-ERR: atom 25 GLU 2HB not found in molecular structure %READC-ERR: atom 25 GLU 3HB not found in molecular structure %READC-ERR: atom 25 GLU QB not found in molecular structure %READC-ERR: atom 25 GLU 2HG not found in molecular structure %READC-ERR: atom 25 GLU 3HG not found in molecular structure %READC-ERR: atom 25 GLU QG not found in molecular structure %READC-ERR: atom 26 THR QG2 not found in molecular structure %READC-ERR: atom 26 THR 1HG2 not found in molecular structure %READC-ERR: atom 26 THR 2HG2 not found in molecular structure %READC-ERR: atom 26 THR 3HG2 not found in molecular structure %READC-ERR: atom 27 TRP 2HB not found in molecular structure %READC-ERR: atom 27 TRP 3HB not found in molecular structure %READC-ERR: atom 27 TRP QB not found in molecular structure %READC-ERR: atom 28 ASN 2HB not found in molecular structure %READC-ERR: atom 28 ASN 3HB not found in molecular structure %READC-ERR: atom 28 ASN QB not found in molecular structure %READC-ERR: atom 28 ASN 1HD2 not found in molecular structure %READC-ERR: atom 28 ASN 2HD2 not found in molecular structure %READC-ERR: atom 28 ASN QD2 not found in molecular structure %READC-ERR: atom 29 GLU 2HB not found in molecular structure %READC-ERR: atom 29 GLU 3HB not found in molecular structure %READC-ERR: atom 29 GLU QB not found in molecular structure %READC-ERR: atom 29 GLU 2HG not found in molecular structure %READC-ERR: atom 29 GLU 3HG not found in molecular structure %READC-ERR: atom 29 GLU QG not found in molecular structure %READC-ERR: atom 30 GLN 2HB not found in molecular structure %READC-ERR: atom 30 GLN 3HB not found in molecular structure %READC-ERR: atom 30 GLN QB not found in molecular structure %READC-ERR: atom 30 GLN 2HG not found in molecular structure %READC-ERR: atom 30 GLN 3HG not found in molecular structure %READC-ERR: atom 30 GLN QG not found in molecular structure %READC-ERR: atom 30 GLN 1HE2 not found in molecular structure %READC-ERR: atom 30 GLN 2HE2 not found in molecular structure %READC-ERR: atom 30 GLN QE2 not found in molecular structure %READC-ERR: atom 31 LEU 2HB not found in molecular structure %READC-ERR: atom 31 LEU 3HB not found in molecular structure %READC-ERR: atom 31 LEU QB not found in molecular structure %READC-ERR: atom 31 LEU QD1 not found in molecular structure %READC-ERR: atom 31 LEU QD2 not found in molecular structure %READC-ERR: atom 31 LEU 1HD1 not found in molecular structure %READC-ERR: atom 31 LEU 2HD1 not found in molecular structure %READC-ERR: atom 31 LEU 3HD1 not found in molecular structure %READC-ERR: atom 31 LEU 1HD2 not found in molecular structure %READC-ERR: atom 31 LEU 2HD2 not found in molecular structure %READC-ERR: atom 31 LEU 3HD2 not found in molecular structure %READC-ERR: atom 31 LEU QQD not found in molecular structure %READC-ERR: atom 32 GLN 2HB not found in molecular structure %READC-ERR: atom 32 GLN 3HB not found in molecular structure %READC-ERR: atom 32 GLN QB not found in molecular structure %READC-ERR: atom 32 GLN 2HG not found in molecular structure %READC-ERR: atom 32 GLN 3HG not found in molecular structure %READC-ERR: atom 32 GLN QG not found in molecular structure %READC-ERR: atom 32 GLN 1HE2 not found in molecular structure %READC-ERR: atom 32 GLN 2HE2 not found in molecular structure %READC-ERR: atom 32 GLN QE2 not found in molecular structure %READC-ERR: atom 33 LYS 2HB not found in molecular structure %READC-ERR: atom 33 LYS 3HB not found in molecular structure %READC-ERR: atom 33 LYS QB not found in molecular structure %READC-ERR: atom 33 LYS 2HG not found in molecular structure %READC-ERR: atom 33 LYS 3HG not found in molecular structure %READC-ERR: atom 33 LYS QG not found in molecular structure %READC-ERR: atom 33 LYS 2HD not found in molecular structure %READC-ERR: atom 33 LYS 3HD not found in molecular structure %READC-ERR: atom 33 LYS QD not found in molecular structure %READC-ERR: atom 33 LYS 2HE not found in molecular structure %READC-ERR: atom 33 LYS 3HE not found in molecular structure %READC-ERR: atom 33 LYS QE not found in molecular structure %READC-ERR: atom 33 LYS 1HZ not found in molecular structure %READC-ERR: atom 33 LYS 2HZ not found in molecular structure %READC-ERR: atom 33 LYS 3HZ not found in molecular structure %READC-ERR: atom 33 LYS QZ not found in molecular structure %READC-ERR: atom 34 ALA QB not found in molecular structure %READC-ERR: atom 34 ALA 1HB not found in molecular structure %READC-ERR: atom 34 ALA 2HB not found in molecular structure %READC-ERR: atom 34 ALA 3HB not found in molecular structure %READC-ERR: atom 35 ASN 2HB not found in molecular structure %READC-ERR: atom 35 ASN 3HB not found in molecular structure %READC-ERR: atom 35 ASN QB not found in molecular structure %READC-ERR: atom 35 ASN 1HD2 not found in molecular structure %READC-ERR: atom 35 ASN 2HD2 not found in molecular structure %READC-ERR: atom 35 ASN QD2 not found in molecular structure %READC-ERR: atom 36 GLU 2HB not found in molecular structure %READC-ERR: atom 36 GLU 3HB not found in molecular structure %READC-ERR: atom 36 GLU QB not found in molecular structure %READC-ERR: atom 36 GLU 2HG not found in molecular structure %READC-ERR: atom 36 GLU 3HG not found in molecular structure %READC-ERR: atom 36 GLU QG not found in molecular structure %READC-ERR: atom 37 SER 2HB not found in molecular structure %READC-ERR: atom 37 SER 3HB not found in molecular structure %READC-ERR: atom 37 SER QB not found in molecular structure %READC-ERR: atom 38 LYS 2HB not found in molecular structure %READC-ERR: atom 38 LYS 3HB not found in molecular structure %READC-ERR: atom 38 LYS QB not found in molecular structure %READC-ERR: atom 38 LYS 2HG not found in molecular structure %READC-ERR: atom 38 LYS 3HG not found in molecular structure %READC-ERR: atom 38 LYS QG not found in molecular structure %READC-ERR: atom 38 LYS 2HD not found in molecular structure %READC-ERR: atom 38 LYS 3HD not found in molecular structure %READC-ERR: atom 38 LYS QD not found in molecular structure %READC-ERR: atom 38 LYS 2HE not found in molecular structure %READC-ERR: atom 38 LYS 3HE not found in molecular structure %READC-ERR: atom 38 LYS QE not found in molecular structure %READC-ERR: atom 38 LYS 1HZ not found in molecular structure %READC-ERR: atom 38 LYS 2HZ not found in molecular structure %READC-ERR: atom 38 LYS 3HZ not found in molecular structure %READC-ERR: atom 38 LYS QZ not found in molecular structure %READC-ERR: atom 39 THR QG2 not found in molecular structure %READC-ERR: atom 39 THR 1HG2 not found in molecular structure %READC-ERR: atom 39 THR 2HG2 not found in molecular structure %READC-ERR: atom 39 THR 3HG2 not found in molecular structure %READC-ERR: atom 40 LEU 2HB not found in molecular structure %READC-ERR: atom 40 LEU 3HB not found in molecular structure %READC-ERR: atom 40 LEU QB not found in molecular structure %READC-ERR: atom 40 LEU QD1 not found in molecular structure %READC-ERR: atom 40 LEU QD2 not found in molecular structure %READC-ERR: atom 40 LEU 1HD1 not found in molecular structure %READC-ERR: atom 40 LEU 2HD1 not found in molecular structure %READC-ERR: atom 40 LEU 3HD1 not found in molecular structure %READC-ERR: atom 40 LEU 1HD2 not found in molecular structure %READC-ERR: atom 40 LEU 2HD2 not found in molecular structure %READC-ERR: atom 40 LEU 3HD2 not found in molecular structure %READC-ERR: atom 40 LEU QQD not found in molecular structure %READC-ERR: atom 41 VAL QG1 not found in molecular structure %READC-ERR: atom 41 VAL QG2 not found in molecular structure %READC-ERR: atom 41 VAL 1HG1 not found in molecular structure %READC-ERR: atom 41 VAL 2HG1 not found in molecular structure %READC-ERR: atom 41 VAL 3HG1 not found in molecular structure %READC-ERR: atom 41 VAL 1HG2 not found in molecular structure %READC-ERR: atom 41 VAL 2HG2 not found in molecular structure %READC-ERR: atom 41 VAL 3HG2 not found in molecular structure %READC-ERR: atom 41 VAL QQG not found in molecular structure %READC-ERR: atom 42 VAL QG1 not found in molecular structure %READC-ERR: atom 42 VAL QG2 not found in molecular structure %READC-ERR: atom 42 VAL 1HG1 not found in molecular structure %READC-ERR: atom 42 VAL 2HG1 not found in molecular structure %READC-ERR: atom 42 VAL 3HG1 not found in molecular structure %READC-ERR: atom 42 VAL 1HG2 not found in molecular structure %READC-ERR: atom 42 VAL 2HG2 not found in molecular structure %READC-ERR: atom 42 VAL 3HG2 not found in molecular structure %READC-ERR: atom 42 VAL QQG not found in molecular structure %READC-ERR: atom 43 VAL QG1 not found in molecular structure %READC-ERR: atom 43 VAL QG2 not found in molecular structure %READC-ERR: atom 43 VAL 1HG1 not found in molecular structure %READC-ERR: atom 43 VAL 2HG1 not found in molecular structure %READC-ERR: atom 43 VAL 3HG1 not found in molecular structure %READC-ERR: atom 43 VAL 1HG2 not found in molecular structure %READC-ERR: atom 43 VAL 2HG2 not found in molecular structure %READC-ERR: atom 43 VAL 3HG2 not found in molecular structure %READC-ERR: atom 43 VAL QQG not found in molecular structure %READC-ERR: atom 44 ASP 2HB not found in molecular structure %READC-ERR: atom 44 ASP 3HB not found in molecular structure %READC-ERR: atom 44 ASP QB not found in molecular structure %READC-ERR: atom 45 PHE 2HB not found in molecular structure %READC-ERR: atom 45 PHE 3HB not found in molecular structure %READC-ERR: atom 45 PHE QB not found in molecular structure %READC-ERR: atom 45 PHE QD not found in molecular structure %READC-ERR: atom 45 PHE QE not found in molecular structure %READC-ERR: atom 45 PHE QR not found in molecular structure %READC-ERR: atom 46 THR QG2 not found in molecular structure %READC-ERR: atom 46 THR 1HG2 not found in molecular structure %READC-ERR: atom 46 THR 2HG2 not found in molecular structure %READC-ERR: atom 46 THR 3HG2 not found in molecular structure %READC-ERR: atom 47 ALA QB not found in molecular structure %READC-ERR: atom 47 ALA 1HB not found in molecular structure %READC-ERR: atom 47 ALA 2HB not found in molecular structure %READC-ERR: atom 47 ALA 3HB not found in molecular structure %READC-ERR: atom 48 SER 2HB not found in molecular structure %READC-ERR: atom 48 SER 3HB not found in molecular structure %READC-ERR: atom 48 SER QB not found in molecular structure %READC-ERR: atom 49 TRP 2HB not found in molecular structure %READC-ERR: atom 49 TRP 3HB not found in molecular structure %READC-ERR: atom 49 TRP QB not found in molecular structure %READC-ERR: atom 50 CYS 2HB not found in molecular structure %READC-ERR: atom 50 CYS 3HB not found in molecular structure %READC-ERR: atom 50 CYS QB not found in molecular structure %READC-ERR: atom 51 GLY 1HA not found in molecular structure %READC-ERR: atom 51 GLY 2HA not found in molecular structure %READC-ERR: atom 51 GLY QA not found in molecular structure %READC-ERR: atom 52 PRO 2HB not found in molecular structure %READC-ERR: atom 52 PRO 3HB not found in molecular structure %READC-ERR: atom 52 PRO QB not found in molecular structure %READC-ERR: atom 52 PRO 2HG not found in molecular structure %READC-ERR: atom 52 PRO 3HG not found in molecular structure %READC-ERR: atom 52 PRO QG not found in molecular structure %READC-ERR: atom 52 PRO 2HD not found in molecular structure %READC-ERR: atom 52 PRO 3HD not found in molecular structure %READC-ERR: atom 52 PRO QD not found in molecular structure %READC-ERR: atom 53 CYS 2HB not found in molecular structure %READC-ERR: atom 53 CYS 3HB not found in molecular structure %READC-ERR: atom 53 CYS QB not found in molecular structure %READC-ERR: atom 54 ARG 2HB not found in molecular structure %READC-ERR: atom 54 ARG 3HB not found in molecular structure %READC-ERR: atom 54 ARG QB not found in molecular structure %READC-ERR: atom 54 ARG 2HG not found in molecular structure %READC-ERR: atom 54 ARG 3HG not found in molecular structure %READC-ERR: atom 54 ARG QG not found in molecular structure %READC-ERR: atom 54 ARG 2HD not found in molecular structure %READC-ERR: atom 54 ARG 3HD not found in molecular structure %READC-ERR: atom 54 ARG QD not found in molecular structure %READC-ERR: atom 54 ARG 1HH1 not found in molecular structure %READC-ERR: atom 54 ARG 2HH1 not found in molecular structure %READC-ERR: atom 54 ARG QH1 not found in molecular structure %READC-ERR: atom 54 ARG 1HH2 not found in molecular structure %READC-ERR: atom 54 ARG 2HH2 not found in molecular structure %READC-ERR: atom 54 ARG QH2 not found in molecular structure %READC-ERR: atom 55 PHE 2HB not found in molecular structure %READC-ERR: atom 55 PHE 3HB not found in molecular structure %READC-ERR: atom 55 PHE QB not found in molecular structure %READC-ERR: atom 55 PHE QD not found in molecular structure %READC-ERR: atom 55 PHE QE not found in molecular structure %READC-ERR: atom 55 PHE QR not found in molecular structure %READC-ERR: atom 56 ILE QG2 not found in molecular structure %READC-ERR: atom 56 ILE 1HG2 not found in molecular structure %READC-ERR: atom 56 ILE 2HG2 not found in molecular structure %READC-ERR: atom 56 ILE 3HG2 not found in molecular structure %READC-ERR: atom 56 ILE 2HG1 not found in molecular structure %READC-ERR: atom 56 ILE 3HG1 not found in molecular structure %READC-ERR: atom 56 ILE QG1 not found in molecular structure %READC-ERR: atom 56 ILE QD1 not found in molecular structure %READC-ERR: atom 56 ILE 1HD1 not found in molecular structure %READC-ERR: atom 56 ILE 2HD1 not found in molecular structure %READC-ERR: atom 56 ILE 3HD1 not found in molecular structure %READC-ERR: atom 57 ALA QB not found in molecular structure %READC-ERR: atom 57 ALA 1HB not found in molecular structure %READC-ERR: atom 57 ALA 2HB not found in molecular structure %READC-ERR: atom 57 ALA 3HB not found in molecular structure %READC-ERR: atom 58 PRO 2HB not found in molecular structure %READC-ERR: atom 58 PRO 3HB not found in molecular structure %READC-ERR: atom 58 PRO QB not found in molecular structure %READC-ERR: atom 58 PRO 2HG not found in molecular structure %READC-ERR: atom 58 PRO 3HG not found in molecular structure %READC-ERR: atom 58 PRO QG not found in molecular structure %READC-ERR: atom 58 PRO 2HD not found in molecular structure %READC-ERR: atom 58 PRO 3HD not found in molecular structure %READC-ERR: atom 58 PRO QD not found in molecular structure %READC-ERR: atom 59 PHE 2HB not found in molecular structure %READC-ERR: atom 59 PHE 3HB not found in molecular structure %READC-ERR: atom 59 PHE QB not found in molecular structure %READC-ERR: atom 59 PHE QD not found in molecular structure %READC-ERR: atom 59 PHE QE not found in molecular structure %READC-ERR: atom 59 PHE QR not found in molecular structure %READC-ERR: atom 60 PHE 2HB not found in molecular structure %READC-ERR: atom 60 PHE 3HB not found in molecular structure %READC-ERR: atom 60 PHE QB not found in molecular structure %READC-ERR: atom 60 PHE QD not found in molecular structure %READC-ERR: atom 60 PHE QE not found in molecular structure %READC-ERR: atom 60 PHE QR not found in molecular structure %READC-ERR: atom 61 ALA QB not found in molecular structure %READC-ERR: atom 61 ALA 1HB not found in molecular structure %READC-ERR: atom 61 ALA 2HB not found in molecular structure %READC-ERR: atom 61 ALA 3HB not found in molecular structure %READC-ERR: atom 62 ASP 2HB not found in molecular structure %READC-ERR: atom 62 ASP 3HB not found in molecular structure %READC-ERR: atom 62 ASP QB not found in molecular structure %READC-ERR: atom 63 LEU 2HB not found in molecular structure %READC-ERR: atom 63 LEU 3HB not found in molecular structure %READC-ERR: atom 63 LEU QB not found in molecular structure %READC-ERR: atom 63 LEU QD1 not found in molecular structure %READC-ERR: atom 63 LEU QD2 not found in molecular structure %READC-ERR: atom 63 LEU 1HD1 not found in molecular structure %READC-ERR: atom 63 LEU 2HD1 not found in molecular structure %READC-ERR: atom 63 LEU 3HD1 not found in molecular structure %READC-ERR: atom 63 LEU 1HD2 not found in molecular structure %READC-ERR: atom 63 LEU 2HD2 not found in molecular structure %READC-ERR: atom 63 LEU 3HD2 not found in molecular structure %READC-ERR: atom 63 LEU QQD not found in molecular structure %READC-ERR: atom 64 ALA QB not found in molecular structure %READC-ERR: atom 64 ALA 1HB not found in molecular structure %READC-ERR: atom 64 ALA 2HB not found in molecular structure %READC-ERR: atom 64 ALA 3HB not found in molecular structure %READC-ERR: atom 65 LYS 2HB not found in molecular structure %READC-ERR: atom 65 LYS 3HB not found in molecular structure %READC-ERR: atom 65 LYS QB not found in molecular structure %READC-ERR: atom 65 LYS 2HG not found in molecular structure %READC-ERR: atom 65 LYS 3HG not found in molecular structure %READC-ERR: atom 65 LYS QG not found in molecular structure %READC-ERR: atom 65 LYS 2HD not found in molecular structure %READC-ERR: atom 65 LYS 3HD not found in molecular structure %READC-ERR: atom 65 LYS QD not found in molecular structure %READC-ERR: atom 65 LYS 2HE not found in molecular structure %READC-ERR: atom 65 LYS 3HE not found in molecular structure %READC-ERR: atom 65 LYS QE not found in molecular structure %READC-ERR: atom 65 LYS 1HZ not found in molecular structure %READC-ERR: atom 65 LYS 2HZ not found in molecular structure %READC-ERR: atom 65 LYS 3HZ not found in molecular structure %READC-ERR: atom 65 LYS QZ not found in molecular structure %READC-ERR: atom 66 LYS 2HB not found in molecular structure %READC-ERR: atom 66 LYS 3HB not found in molecular structure %READC-ERR: atom 66 LYS QB not found in molecular structure %READC-ERR: atom 66 LYS 2HG not found in molecular structure %READC-ERR: atom 66 LYS 3HG not found in molecular structure %READC-ERR: atom 66 LYS QG not found in molecular structure %READC-ERR: atom 66 LYS 2HD not found in molecular structure %READC-ERR: atom 66 LYS 3HD not found in molecular structure %READC-ERR: atom 66 LYS QD not found in molecular structure %READC-ERR: atom 66 LYS 2HE not found in molecular structure %READC-ERR: atom 66 LYS 3HE not found in molecular structure %READC-ERR: atom 66 LYS QE not found in molecular structure %READC-ERR: atom 66 LYS 1HZ not found in molecular structure %READC-ERR: atom 66 LYS 2HZ not found in molecular structure %READC-ERR: atom 66 LYS 3HZ not found in molecular structure %READC-ERR: atom 66 LYS QZ not found in molecular structure %READC-ERR: atom 67 LEU 2HB not found in molecular structure %READC-ERR: atom 67 LEU 3HB not found in molecular structure %READC-ERR: atom 67 LEU QB not found in molecular structure %READC-ERR: atom 67 LEU QD1 not found in molecular structure %READC-ERR: atom 67 LEU QD2 not found in molecular structure %READC-ERR: atom 67 LEU 1HD1 not found in molecular structure %READC-ERR: atom 67 LEU 2HD1 not found in molecular structure %READC-ERR: atom 67 LEU 3HD1 not found in molecular structure %READC-ERR: atom 67 LEU 1HD2 not found in molecular structure %READC-ERR: atom 67 LEU 2HD2 not found in molecular structure %READC-ERR: atom 67 LEU 3HD2 not found in molecular structure %READC-ERR: atom 67 LEU QQD not found in molecular structure %READC-ERR: atom 68 PRO 2HB not found in molecular structure %READC-ERR: atom 68 PRO 3HB not found in molecular structure %READC-ERR: atom 68 PRO QB not found in molecular structure %READC-ERR: atom 68 PRO 2HG not found in molecular structure %READC-ERR: atom 68 PRO 3HG not found in molecular structure %READC-ERR: atom 68 PRO QG not found in molecular structure %READC-ERR: atom 68 PRO 2HD not found in molecular structure %READC-ERR: atom 68 PRO 3HD not found in molecular structure %READC-ERR: atom 68 PRO QD not found in molecular structure %READC-ERR: atom 69 ASN 2HB not found in molecular structure %READC-ERR: atom 69 ASN 3HB not found in molecular structure %READC-ERR: atom 69 ASN QB not found in molecular structure %READC-ERR: atom 69 ASN 1HD2 not found in molecular structure %READC-ERR: atom 69 ASN 2HD2 not found in molecular structure %READC-ERR: atom 69 ASN QD2 not found in molecular structure %READC-ERR: atom 70 VAL QG1 not found in molecular structure %READC-ERR: atom 70 VAL QG2 not found in molecular structure %READC-ERR: atom 70 VAL 1HG1 not found in molecular structure %READC-ERR: atom 70 VAL 2HG1 not found in molecular structure %READC-ERR: atom 70 VAL 3HG1 not found in molecular structure %READC-ERR: atom 70 VAL 1HG2 not found in molecular structure %READC-ERR: atom 70 VAL 2HG2 not found in molecular structure %READC-ERR: atom 70 VAL 3HG2 not found in molecular structure %READC-ERR: atom 70 VAL QQG not found in molecular structure %READC-ERR: atom 71 LEU 2HB not found in molecular structure %READC-ERR: atom 71 LEU 3HB not found in molecular structure %READC-ERR: atom 71 LEU QB not found in molecular structure %READC-ERR: atom 71 LEU QD1 not found in molecular structure %READC-ERR: atom 71 LEU QD2 not found in molecular structure %READC-ERR: atom 71 LEU 1HD1 not found in molecular structure %READC-ERR: atom 71 LEU 2HD1 not found in molecular structure %READC-ERR: atom 71 LEU 3HD1 not found in molecular structure %READC-ERR: atom 71 LEU 1HD2 not found in molecular structure %READC-ERR: atom 71 LEU 2HD2 not found in molecular structure %READC-ERR: atom 71 LEU 3HD2 not found in molecular structure %READC-ERR: atom 71 LEU QQD not found in molecular structure %READC-ERR: atom 72 PHE 2HB not found in molecular structure %READC-ERR: atom 72 PHE 3HB not found in molecular structure %READC-ERR: atom 72 PHE QB not found in molecular structure %READC-ERR: atom 72 PHE QD not found in molecular structure %READC-ERR: atom 72 PHE QE not found in molecular structure %READC-ERR: atom 72 PHE QR not found in molecular structure %READC-ERR: atom 73 LEU 2HB not found in molecular structure %READC-ERR: atom 73 LEU 3HB not found in molecular structure %READC-ERR: atom 73 LEU QB not found in molecular structure %READC-ERR: atom 73 LEU QD1 not found in molecular structure %READC-ERR: atom 73 LEU QD2 not found in molecular structure %READC-ERR: atom 73 LEU 1HD1 not found in molecular structure %READC-ERR: atom 73 LEU 2HD1 not found in molecular structure %READC-ERR: atom 73 LEU 3HD1 not found in molecular structure %READC-ERR: atom 73 LEU 1HD2 not found in molecular structure %READC-ERR: atom 73 LEU 2HD2 not found in molecular structure %READC-ERR: atom 73 LEU 3HD2 not found in molecular structure %READC-ERR: atom 73 LEU QQD not found in molecular structure %READC-ERR: atom 74 LYS 2HB not found in molecular structure %READC-ERR: atom 74 LYS 3HB not found in molecular structure %READC-ERR: atom 74 LYS QB not found in molecular structure %READC-ERR: atom 74 LYS 2HG not found in molecular structure %READC-ERR: atom 74 LYS 3HG not found in molecular structure %READC-ERR: atom 74 LYS QG not found in molecular structure %READC-ERR: atom 74 LYS 2HD not found in molecular structure %READC-ERR: atom 74 LYS 3HD not found in molecular structure %READC-ERR: atom 74 LYS QD not found in molecular structure %READC-ERR: atom 74 LYS 2HE not found in molecular structure %READC-ERR: atom 74 LYS 3HE not found in molecular structure %READC-ERR: atom 74 LYS QE not found in molecular structure %READC-ERR: atom 74 LYS 1HZ not found in molecular structure %READC-ERR: atom 74 LYS 2HZ not found in molecular structure %READC-ERR: atom 74 LYS 3HZ not found in molecular structure %READC-ERR: atom 74 LYS QZ not found in molecular structure %READC-ERR: atom 75 VAL QG1 not found in molecular structure %READC-ERR: atom 75 VAL QG2 not found in molecular structure %READC-ERR: atom 75 VAL 1HG1 not found in molecular structure %READC-ERR: atom 75 VAL 2HG1 not found in molecular structure %READC-ERR: atom 75 VAL 3HG1 not found in molecular structure %READC-ERR: atom 75 VAL 1HG2 not found in molecular structure %READC-ERR: atom 75 VAL 2HG2 not found in molecular structure %READC-ERR: atom 75 VAL 3HG2 not found in molecular structure %READC-ERR: atom 75 VAL QQG not found in molecular structure %READC-ERR: atom 76 ASP 2HB not found in molecular structure %READC-ERR: atom 76 ASP 3HB not found in molecular structure %READC-ERR: atom 76 ASP QB not found in molecular structure %READC-ERR: atom 77 THR QG2 not found in molecular structure %READC-ERR: atom 77 THR 1HG2 not found in molecular structure %READC-ERR: atom 77 THR 2HG2 not found in molecular structure %READC-ERR: atom 77 THR 3HG2 not found in molecular structure %READC-ERR: atom 78 ASP 2HB not found in molecular structure %READC-ERR: atom 78 ASP 3HB not found in molecular structure %READC-ERR: atom 78 ASP QB not found in molecular structure %READC-ERR: atom 79 GLU 2HB not found in molecular structure %READC-ERR: atom 79 GLU 3HB not found in molecular structure %READC-ERR: atom 79 GLU QB not found in molecular structure %READC-ERR: atom 79 GLU 2HG not found in molecular structure %READC-ERR: atom 79 GLU 3HG not found in molecular structure %READC-ERR: atom 79 GLU QG not found in molecular structure %READC-ERR: atom 80 LEU 2HB not found in molecular structure %READC-ERR: atom 80 LEU 3HB not found in molecular structure %READC-ERR: atom 80 LEU QB not found in molecular structure %READC-ERR: atom 80 LEU QD1 not found in molecular structure %READC-ERR: atom 80 LEU QD2 not found in molecular structure %READC-ERR: atom 80 LEU 1HD1 not found in molecular structure %READC-ERR: atom 80 LEU 2HD1 not found in molecular structure %READC-ERR: atom 80 LEU 3HD1 not found in molecular structure %READC-ERR: atom 80 LEU 1HD2 not found in molecular structure %READC-ERR: atom 80 LEU 2HD2 not found in molecular structure %READC-ERR: atom 80 LEU 3HD2 not found in molecular structure %READC-ERR: atom 80 LEU QQD not found in molecular structure %READC-ERR: atom 81 LYS 2HB not found in molecular structure %READC-ERR: atom 81 LYS 3HB not found in molecular structure %READC-ERR: atom 81 LYS QB not found in molecular structure %READC-ERR: atom 81 LYS 2HG not found in molecular structure %READC-ERR: atom 81 LYS 3HG not found in molecular structure %READC-ERR: atom 81 LYS QG not found in molecular structure %READC-ERR: atom 81 LYS 2HD not found in molecular structure %READC-ERR: atom 81 LYS 3HD not found in molecular structure %READC-ERR: atom 81 LYS QD not found in molecular structure %READC-ERR: atom 81 LYS 2HE not found in molecular structure %READC-ERR: atom 81 LYS 3HE not found in molecular structure %READC-ERR: atom 81 LYS QE not found in molecular structure %READC-ERR: atom 81 LYS 1HZ not found in molecular structure %READC-ERR: atom 81 LYS 2HZ not found in molecular structure %READC-ERR: atom 81 LYS 3HZ not found in molecular structure %READC-ERR: atom 81 LYS QZ not found in molecular structure %READC-ERR: atom 82 SER 2HB not found in molecular structure %READC-ERR: atom 82 SER 3HB not found in molecular structure %READC-ERR: atom 82 SER QB not found in molecular structure %READC-ERR: atom 83 VAL QG1 not found in molecular structure %READC-ERR: atom 83 VAL QG2 not found in molecular structure %READC-ERR: atom 83 VAL 1HG1 not found in molecular structure %READC-ERR: atom 83 VAL 2HG1 not found in molecular structure %READC-ERR: atom 83 VAL 3HG1 not found in molecular structure %READC-ERR: atom 83 VAL 1HG2 not found in molecular structure %READC-ERR: atom 83 VAL 2HG2 not found in molecular structure %READC-ERR: atom 83 VAL 3HG2 not found in molecular structure %READC-ERR: atom 83 VAL QQG not found in molecular structure %READC-ERR: atom 84 ALA QB not found in molecular structure %READC-ERR: atom 84 ALA 1HB not found in molecular structure %READC-ERR: atom 84 ALA 2HB not found in molecular structure %READC-ERR: atom 84 ALA 3HB not found in molecular structure %READC-ERR: atom 85 SER 2HB not found in molecular structure %READC-ERR: atom 85 SER 3HB not found in molecular structure %READC-ERR: atom 85 SER QB not found in molecular structure %READC-ERR: atom 86 ASP 2HB not found in molecular structure %READC-ERR: atom 86 ASP 3HB not found in molecular structure %READC-ERR: atom 86 ASP QB not found in molecular structure %READC-ERR: atom 87 TRP 2HB not found in molecular structure %READC-ERR: atom 87 TRP 3HB not found in molecular structure %READC-ERR: atom 87 TRP QB not found in molecular structure %READC-ERR: atom 88 ALA QB not found in molecular structure %READC-ERR: atom 88 ALA 1HB not found in molecular structure %READC-ERR: atom 88 ALA 2HB not found in molecular structure %READC-ERR: atom 88 ALA 3HB not found in molecular structure %READC-ERR: atom 89 ILE QG2 not found in molecular structure %READC-ERR: atom 89 ILE 1HG2 not found in molecular structure %READC-ERR: atom 89 ILE 2HG2 not found in molecular structure %READC-ERR: atom 89 ILE 3HG2 not found in molecular structure %READC-ERR: atom 89 ILE 2HG1 not found in molecular structure %READC-ERR: atom 89 ILE 3HG1 not found in molecular structure %READC-ERR: atom 89 ILE QG1 not found in molecular structure %READC-ERR: atom 89 ILE QD1 not found in molecular structure %READC-ERR: atom 89 ILE 1HD1 not found in molecular structure %READC-ERR: atom 89 ILE 2HD1 not found in molecular structure %READC-ERR: atom 89 ILE 3HD1 not found in molecular structure %READC-ERR: atom 90 GLN 2HB not found in molecular structure %READC-ERR: atom 90 GLN 3HB not found in molecular structure %READC-ERR: atom 90 GLN QB not found in molecular structure %READC-ERR: atom 90 GLN 2HG not found in molecular structure %READC-ERR: atom 90 GLN 3HG not found in molecular structure %READC-ERR: atom 90 GLN QG not found in molecular structure %READC-ERR: atom 90 GLN 1HE2 not found in molecular structure %READC-ERR: atom 90 GLN 2HE2 not found in molecular structure %READC-ERR: atom 90 GLN QE2 not found in molecular structure %READC-ERR: atom 91 ALA QB not found in molecular structure %READC-ERR: atom 91 ALA 1HB not found in molecular structure %READC-ERR: atom 91 ALA 2HB not found in molecular structure %READC-ERR: atom 91 ALA 3HB not found in molecular structure %READC-ERR: atom 92 MET 2HB not found in molecular structure %READC-ERR: atom 92 MET 3HB not found in molecular structure %READC-ERR: atom 92 MET QB not found in molecular structure %READC-ERR: atom 92 MET 2HG not found in molecular structure %READC-ERR: atom 92 MET 3HG not found in molecular structure %READC-ERR: atom 92 MET QG not found in molecular structure %READC-ERR: atom 92 MET QE not found in molecular structure %READC-ERR: atom 92 MET 1HE not found in molecular structure %READC-ERR: atom 92 MET 2HE not found in molecular structure %READC-ERR: atom 92 MET 3HE not found in molecular structure %READC-ERR: atom 93 PRO 2HB not found in molecular structure %READC-ERR: atom 93 PRO 3HB not found in molecular structure %READC-ERR: atom 93 PRO QB not found in molecular structure %READC-ERR: atom 93 PRO 2HG not found in molecular structure %READC-ERR: atom 93 PRO 3HG not found in molecular structure %READC-ERR: atom 93 PRO QG not found in molecular structure %READC-ERR: atom 93 PRO 2HD not found in molecular structure %READC-ERR: atom 93 PRO 3HD not found in molecular structure %READC-ERR: atom 93 PRO QD not found in molecular structure %READC-ERR: atom 94 THR QG2 not found in molecular structure %READC-ERR: atom 94 THR 1HG2 not found in molecular structure %READC-ERR: atom 94 THR 2HG2 not found in molecular structure %READC-ERR: atom 94 THR 3HG2 not found in molecular structure %READC-ERR: atom 95 PHE 2HB not found in molecular structure %READC-ERR: atom 95 PHE 3HB not found in molecular structure %READC-ERR: atom 95 PHE QB not found in molecular structure %READC-ERR: atom 95 PHE QD not found in molecular structure %READC-ERR: atom 95 PHE QE not found in molecular structure %READC-ERR: atom 95 PHE QR not found in molecular structure %READC-ERR: atom 96 MET 2HB not found in molecular structure %READC-ERR: atom 96 MET 3HB not found in molecular structure %READC-ERR: atom 96 MET QB not found in molecular structure %READC-ERR: atom 96 MET 2HG not found in molecular structure %READC-ERR: atom 96 MET 3HG not found in molecular structure %READC-ERR: atom 96 MET QG not found in molecular structure %READC-ERR: atom 96 MET QE not found in molecular structure %READC-ERR: atom 96 MET 1HE not found in molecular structure %READC-ERR: atom 96 MET 2HE not found in molecular structure %READC-ERR: atom 96 MET 3HE not found in molecular structure %READC-ERR: atom 97 PHE 2HB not found in molecular structure %READC-ERR: atom 97 PHE 3HB not found in molecular structure %READC-ERR: atom 97 PHE QB not found in molecular structure %READC-ERR: atom 97 PHE QD not found in molecular structure %READC-ERR: atom 97 PHE QE not found in molecular structure %READC-ERR: atom 97 PHE QR not found in molecular structure %READC-ERR: atom 98 LEU 2HB not found in molecular structure %READC-ERR: atom 98 LEU 3HB not found in molecular structure %READC-ERR: atom 98 LEU QB not found in molecular structure %READC-ERR: atom 98 LEU QD1 not found in molecular structure %READC-ERR: atom 98 LEU QD2 not found in molecular structure %READC-ERR: atom 98 LEU 1HD1 not found in molecular structure %READC-ERR: atom 98 LEU 2HD1 not found in molecular structure %READC-ERR: atom 98 LEU 3HD1 not found in molecular structure %READC-ERR: atom 98 LEU 1HD2 not found in molecular structure %READC-ERR: atom 98 LEU 2HD2 not found in molecular structure %READC-ERR: atom 98 LEU 3HD2 not found in molecular structure %READC-ERR: atom 98 LEU QQD not found in molecular structure %READC-ERR: atom 99 LYS 2HB not found in molecular structure %READC-ERR: atom 99 LYS 3HB not found in molecular structure %READC-ERR: atom 99 LYS QB not found in molecular structure %READC-ERR: atom 99 LYS 2HG not found in molecular structure %READC-ERR: atom 99 LYS 3HG not found in molecular structure %READC-ERR: atom 99 LYS QG not found in molecular structure %READC-ERR: atom 99 LYS 2HD not found in molecular structure %READC-ERR: atom 99 LYS 3HD not found in molecular structure %READC-ERR: atom 99 LYS QD not found in molecular structure %READC-ERR: atom 99 LYS 2HE not found in molecular structure %READC-ERR: atom 99 LYS 3HE not found in molecular structure %READC-ERR: atom 99 LYS QE not found in molecular structure %READC-ERR: atom 99 LYS 1HZ not found in molecular structure %READC-ERR: atom 99 LYS 2HZ not found in molecular structure %READC-ERR: atom 99 LYS 3HZ not found in molecular structure %READC-ERR: atom 99 LYS QZ not found in molecular structure %READC-ERR: atom 100 GLU 2HB not found in molecular structure %READC-ERR: atom 100 GLU 3HB not found in molecular structure %READC-ERR: atom 100 GLU QB not found in molecular structure %READC-ERR: atom 100 GLU 2HG not found in molecular structure %READC-ERR: atom 100 GLU 3HG not found in molecular structure %READC-ERR: atom 100 GLU QG not found in molecular structure %READC-ERR: atom 101 GLY 1HA not found in molecular structure %READC-ERR: atom 101 GLY 2HA not found in molecular structure %READC-ERR: atom 101 GLY QA not found in molecular structure %READC-ERR: atom 102 LYS 2HB not found in molecular structure %READC-ERR: atom 102 LYS 3HB not found in molecular structure %READC-ERR: atom 102 LYS QB not found in molecular structure %READC-ERR: atom 102 LYS 2HG not found in molecular structure %READC-ERR: atom 102 LYS 3HG not found in molecular structure %READC-ERR: atom 102 LYS QG not found in molecular structure %READC-ERR: atom 102 LYS 2HD not found in molecular structure %READC-ERR: atom 102 LYS 3HD not found in molecular structure %READC-ERR: atom 102 LYS QD not found in molecular structure %READC-ERR: atom 102 LYS 2HE not found in molecular structure %READC-ERR: atom 102 LYS 3HE not found in molecular structure %READC-ERR: atom 102 LYS QE not found in molecular structure %READC-ERR: atom 102 LYS 1HZ not found in molecular structure %READC-ERR: atom 102 LYS 2HZ not found in molecular structure %READC-ERR: atom 102 LYS 3HZ not found in molecular structure %READC-ERR: atom 102 LYS QZ not found in molecular structure %READC-ERR: atom 103 ILE QG2 not found in molecular structure %READC-ERR: atom 103 ILE 1HG2 not found in molecular structure %READC-ERR: atom 103 ILE 2HG2 not found in molecular structure %READC-ERR: atom 103 ILE 3HG2 not found in molecular structure %READC-ERR: atom 103 ILE 2HG1 not found in molecular structure %READC-ERR: atom 103 ILE 3HG1 not found in molecular structure %READC-ERR: atom 103 ILE QG1 not found in molecular structure %READC-ERR: atom 103 ILE QD1 not found in molecular structure %READC-ERR: atom 103 ILE 1HD1 not found in molecular structure %READC-ERR: atom 103 ILE 2HD1 not found in molecular structure %READC-ERR: atom 103 ILE 3HD1 not found in molecular structure %READC-ERR: atom 104 LEU 2HB not found in molecular structure %READC-ERR: atom 104 LEU 3HB not found in molecular structure %READC-ERR: atom 104 LEU QB not found in molecular structure %READC-ERR: atom 104 LEU QD1 not found in molecular structure %READC-ERR: atom 104 LEU QD2 not found in molecular structure %READC-ERR: atom 104 LEU 1HD1 not found in molecular structure %READC-ERR: atom 104 LEU 2HD1 not found in molecular structure %READC-ERR: atom 104 LEU 3HD1 not found in molecular structure %READC-ERR: atom 104 LEU 1HD2 not found in molecular structure %READC-ERR: atom 104 LEU 2HD2 not found in molecular structure %READC-ERR: atom 104 LEU 3HD2 not found in molecular structure %READC-ERR: atom 104 LEU QQD not found in molecular structure %READC-ERR: atom 105 ASP 2HB not found in molecular structure %READC-ERR: atom 105 ASP 3HB not found in molecular structure %READC-ERR: atom 105 ASP QB not found in molecular structure %READC-ERR: atom 106 LYS 2HB not found in molecular structure %READC-ERR: atom 106 LYS 3HB not found in molecular structure %READC-ERR: atom 106 LYS QB not found in molecular structure %READC-ERR: atom 106 LYS 2HG not found in molecular structure %READC-ERR: atom 106 LYS 3HG not found in molecular structure %READC-ERR: atom 106 LYS QG not found in molecular structure %READC-ERR: atom 106 LYS 2HD not found in molecular structure %READC-ERR: atom 106 LYS 3HD not found in molecular structure %READC-ERR: atom 106 LYS QD not found in molecular structure %READC-ERR: atom 106 LYS 2HE not found in molecular structure %READC-ERR: atom 106 LYS 3HE not found in molecular structure %READC-ERR: atom 106 LYS QE not found in molecular structure %READC-ERR: atom 106 LYS 1HZ not found in molecular structure %READC-ERR: atom 106 LYS 2HZ not found in molecular structure %READC-ERR: atom 106 LYS 3HZ not found in molecular structure %READC-ERR: atom 106 LYS QZ not found in molecular structure %READC-ERR: atom 107 VAL QG1 not found in molecular structure %READC-ERR: atom 107 VAL QG2 not found in molecular structure %READC-ERR: atom 107 VAL 1HG1 not found in molecular structure %READC-ERR: atom 107 VAL 2HG1 not found in molecular structure %READC-ERR: atom 107 VAL 3HG1 not found in molecular structure %READC-ERR: atom 107 VAL 1HG2 not found in molecular structure %READC-ERR: atom 107 VAL 2HG2 not found in molecular structure %READC-ERR: atom 107 VAL 3HG2 not found in molecular structure %READC-ERR: atom 107 VAL QQG not found in molecular structure %READC-ERR: atom 108 VAL QG1 not found in molecular structure %READC-ERR: atom 108 VAL QG2 not found in molecular structure %READC-ERR: atom 108 VAL 1HG1 not found in molecular structure %READC-ERR: atom 108 VAL 2HG1 not found in molecular structure %READC-ERR: atom 108 VAL 3HG1 not found in molecular structure %READC-ERR: atom 108 VAL 1HG2 not found in molecular structure %READC-ERR: atom 108 VAL 2HG2 not found in molecular structure %READC-ERR: atom 108 VAL 3HG2 not found in molecular structure %READC-ERR: atom 108 VAL QQG not found in molecular structure %READC-ERR: atom 109 GLY 1HA not found in molecular structure %READC-ERR: atom 109 GLY 2HA not found in molecular structure %READC-ERR: atom 109 GLY QA not found in molecular structure %READC-ERR: atom 110 ALA QB not found in molecular structure %READC-ERR: atom 110 ALA 1HB not found in molecular structure %READC-ERR: atom 110 ALA 2HB not found in molecular structure %READC-ERR: atom 110 ALA 3HB not found in molecular structure %READC-ERR: atom 111 LYS 2HB not found in molecular structure %READC-ERR: atom 111 LYS 3HB not found in molecular structure %READC-ERR: atom 111 LYS QB not found in molecular structure %READC-ERR: atom 111 LYS 2HG not found in molecular structure %READC-ERR: atom 111 LYS 3HG not found in molecular structure %READC-ERR: atom 111 LYS QG not found in molecular structure %READC-ERR: atom 111 LYS 2HD not found in molecular structure %READC-ERR: atom 111 LYS 3HD not found in molecular structure %READC-ERR: atom 111 LYS QD not found in molecular structure %READC-ERR: atom 111 LYS 2HE not found in molecular structure %READC-ERR: atom 111 LYS 3HE not found in molecular structure %READC-ERR: atom 111 LYS QE not found in molecular structure %READC-ERR: atom 111 LYS 1HZ not found in molecular structure %READC-ERR: atom 111 LYS 2HZ not found in molecular structure %READC-ERR: atom 111 LYS 3HZ not found in molecular structure %READC-ERR: atom 111 LYS QZ not found in molecular structure %READC-ERR: atom 112 LYS 2HB not found in molecular structure %READC-ERR: atom 112 LYS 3HB not found in molecular structure %READC-ERR: atom 112 LYS QB not found in molecular structure %READC-ERR: atom 112 LYS 2HG not found in molecular structure %READC-ERR: atom 112 LYS 3HG not found in molecular structure %READC-ERR: atom 112 LYS QG not found in molecular structure %READC-ERR: atom 112 LYS 2HD not found in molecular structure %READC-ERR: atom 112 LYS 3HD not found in molecular structure %READC-ERR: atom 112 LYS QD not found in molecular structure %READC-ERR: atom 112 LYS 2HE not found in molecular structure %READC-ERR: atom 112 LYS 3HE not found in molecular structure %READC-ERR: atom 112 LYS QE not found in molecular structure %READC-ERR: atom 112 LYS 1HZ not found in molecular structure %READC-ERR: atom 112 LYS 2HZ not found in molecular structure %READC-ERR: atom 112 LYS 3HZ not found in molecular structure %READC-ERR: atom 112 LYS QZ not found in molecular structure %READC-ERR: atom 113 ASP 2HB not found in molecular structure %READC-ERR: atom 113 ASP 3HB not found in molecular structure %READC-ERR: atom 113 ASP QB not found in molecular structure %READC-ERR: atom 114 GLU 2HB not found in molecular structure %READC-ERR: atom 114 GLU 3HB not found in molecular structure %READC-ERR: atom 114 GLU QB not found in molecular structure %READC-ERR: atom 114 GLU 2HG not found in molecular structure %READC-ERR: atom 114 GLU 3HG not found in molecular structure %READC-ERR: atom 114 GLU QG not found in molecular structure %READC-ERR: atom 115 LEU 2HB not found in molecular structure %READC-ERR: atom 115 LEU 3HB not found in molecular structure %READC-ERR: atom 115 LEU QB not found in molecular structure %READC-ERR: atom 115 LEU QD1 not found in molecular structure %READC-ERR: atom 115 LEU QD2 not found in molecular structure %READC-ERR: atom 115 LEU 1HD1 not found in molecular structure %READC-ERR: atom 115 LEU 2HD1 not found in molecular structure %READC-ERR: atom 115 LEU 3HD1 not found in molecular structure %READC-ERR: atom 115 LEU 1HD2 not found in molecular structure %READC-ERR: atom 115 LEU 2HD2 not found in molecular structure %READC-ERR: atom 115 LEU 3HD2 not found in molecular structure %READC-ERR: atom 115 LEU QQD not found in molecular structure %READC-ERR: atom 116 GLN 2HB not found in molecular structure %READC-ERR: atom 116 GLN 3HB not found in molecular structure %READC-ERR: atom 116 GLN QB not found in molecular structure %READC-ERR: atom 116 GLN 2HG not found in molecular structure %READC-ERR: atom 116 GLN 3HG not found in molecular structure %READC-ERR: atom 116 GLN QG not found in molecular structure %READC-ERR: atom 116 GLN 1HE2 not found in molecular structure %READC-ERR: atom 116 GLN 2HE2 not found in molecular structure %READC-ERR: atom 116 GLN QE2 not found in molecular structure %READC-ERR: atom 117 SER 2HB not found in molecular structure %READC-ERR: atom 117 SER 3HB not found in molecular structure %READC-ERR: atom 117 SER QB not found in molecular structure %READC-ERR: atom 118 THR QG2 not found in molecular structure %READC-ERR: atom 118 THR 1HG2 not found in molecular structure %READC-ERR: atom 118 THR 2HG2 not found in molecular structure %READC-ERR: atom 118 THR 3HG2 not found in molecular structure %READC-ERR: atom 119 ILE QG2 not found in molecular structure %READC-ERR: atom 119 ILE 1HG2 not found in molecular structure %READC-ERR: atom 119 ILE 2HG2 not found in molecular structure %READC-ERR: atom 119 ILE 3HG2 not found in molecular structure %READC-ERR: atom 119 ILE 2HG1 not found in molecular structure %READC-ERR: atom 119 ILE 3HG1 not found in molecular structure %READC-ERR: atom 119 ILE QG1 not found in molecular structure %READC-ERR: atom 119 ILE QD1 not found in molecular structure %READC-ERR: atom 119 ILE 1HD1 not found in molecular structure %READC-ERR: atom 119 ILE 2HD1 not found in molecular structure %READC-ERR: atom 119 ILE 3HD1 not found in molecular structure %READC-ERR: atom 120 ALA QB not found in molecular structure %READC-ERR: atom 120 ALA 1HB not found in molecular structure %READC-ERR: atom 120 ALA 2HB not found in molecular structure %READC-ERR: atom 120 ALA 3HB not found in molecular structure %READC-ERR: atom 121 LYS 2HB not found in molecular structure %READC-ERR: atom 121 LYS 3HB not found in molecular structure %READC-ERR: atom 121 LYS QB not found in molecular structure %READC-ERR: atom 121 LYS 2HG not found in molecular structure %READC-ERR: atom 121 LYS 3HG not found in molecular structure %READC-ERR: atom 121 LYS QG not found in molecular structure %READC-ERR: atom 121 LYS 2HD not found in molecular structure %READC-ERR: atom 121 LYS 3HD not found in molecular structure %READC-ERR: atom 121 LYS QD not found in molecular structure %READC-ERR: atom 121 LYS 2HE not found in molecular structure %READC-ERR: atom 121 LYS 3HE not found in molecular structure %READC-ERR: atom 121 LYS QE not found in molecular structure %READC-ERR: atom 121 LYS 1HZ not found in molecular structure %READC-ERR: atom 121 LYS 2HZ not found in molecular structure %READC-ERR: atom 121 LYS 3HZ not found in molecular structure %READC-ERR: atom 121 LYS QZ not found in molecular structure %READC-ERR: atom 122 HIS 2HB not found in molecular structure %READC-ERR: atom 122 HIS 3HB not found in molecular structure %READC-ERR: atom 122 HIS QB not found in molecular structure %READC-ERR: atom 123 LEU 2HB not found in molecular structure %READC-ERR: atom 123 LEU 3HB not found in molecular structure %READC-ERR: atom 123 LEU QB not found in molecular structure %READC-ERR: atom 123 LEU QD1 not found in molecular structure %READC-ERR: atom 123 LEU QD2 not found in molecular structure %READC-ERR: atom 123 LEU 1HD1 not found in molecular structure %READC-ERR: atom 123 LEU 2HD1 not found in molecular structure %READC-ERR: atom 123 LEU 3HD1 not found in molecular structure %READC-ERR: atom 123 LEU 1HD2 not found in molecular structure %READC-ERR: atom 123 LEU 2HD2 not found in molecular structure %READC-ERR: atom 123 LEU 3HD2 not found in molecular structure %READC-ERR: atom 123 LEU QQD not found in molecular structure %READC-ERR: atom 124 ALA QB not found in molecular structure %READC-ERR: atom 124 ALA 1HB not found in molecular structure %READC-ERR: atom 124 ALA 2HB not found in molecular structure %READC-ERR: atom 124 ALA 3HB not found in molecular structure %READC-ERR: atom 124 ALA O not found in molecular structure COOR>END CNSsolve>parameter @TOPPAR:parallhdg5.3.pro end PARRDR>! JFD adds FES complex parameters from Milo Westler's calculations PARRDR>! and standard topology. PARRDR> PARRDR>remark file protein-allhdg-ucl.param version UCL date 07-JUL-01 PARRDR>remark for file protein-allhdg-ucl.top version UCL date 14-MAR-00 PARRDR>remark for file protein-allhdg-dih-ucl.top version UCL date 07-JUL-01 PARRDR>remark Geometric energy function parameters for distance geometry and PARRDR>remark simulated annealing. PARRDR>remark Original author: Michael Nilges, EMBL Heidelberg PARRDR>remark Modifications: Mark A. Williams, UCL London PARRDR> PARRDR>set echo off message off end SHOW: sum over selected elements = 2.000000 CNSsolve> CNSsolve> if ( $log_level = verbose ) then CNSsolve> set message=normal echo=on end CNSsolve> else CNSsolve> set message=off echo=off end CNSsolve> end if CNSsolve> CNSsolve> CNSsolve> identity (store1) (none) SELRPN: 0 atoms have been selected out of 1960 CNSsolve> CNSsolve> identity (store1) (&atom_build) SELRPN: 619 atoms have been selected out of 1960 CNSsolve> identity (store1) (store1 or hydrogen) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> CNSsolve> show sum(1) (store1) SELRPN: 983 atoms have been selected out of 1960 SHOW: sum over selected elements = 983.000000 CNSsolve> evaluate ($tobuild=$result) EVALUATE: symbol $TOBUILD set to 983.000 (real) CNSsolve> CNSsolve> !evaluate ($tobuild=0) CNSsolve> CNSsolve> if ( $tobuild > 0 ) then NEXTCD: condition evaluated as true CNSsolve> CNSsolve> fix selection=(not(store1)) end SELRPN: 977 atoms have been selected out of 1960 CNSsolve> CNSsolve> show sum(1) (store1) SELRPN: 983 atoms have been selected out of 1960 SHOW: sum over selected elements = 983.000000 CNSsolve> evaluate ($moving=$result) EVALUATE: symbol $MOVING set to 983.000 (real) CNSsolve> CNSsolve> if ( $moving > 0 ) then NEXTCD: condition evaluated as true CNSsolve> for $id in id (tag and byres(store1)) loop avco SELRPN: 124 atoms have been selected out of 1960 FOR ID LOOP: symbol ID set to 1.00000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 1.113000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 1.11300 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 0.278444 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.278444 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = -1.629333 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -1.62933 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 20.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = 5.830600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 5.83060 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = 0.080600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.806000E-01 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = -1.386000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -1.38600 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 27.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 7.811133 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 7.81113 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = -3.080800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.08080 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 0.222400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 0.222400 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 45.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 12.025067 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 12.0251 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 1.341867 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.34187 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = -0.235333 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.235333 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 63.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 15.962933 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 15.9629 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = -0.344067 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.344067 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 1.647733 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.64773 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 81.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 16.673067 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 16.6731 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 4.063200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 4.06320 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 4.282867 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 4.28287 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 99.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 20.002067 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 20.0021 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 4.749400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 4.74940 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 8.534733 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 8.53473 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 117.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 16.099467 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 16.0995 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 6.656733 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 6.65673 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 9.046000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 9.04600 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 135.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 18.211273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 18.2113 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 5.623182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 5.62318 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 14.266545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 14.2665 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 154.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 21.150182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 21.1502 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 9.017909 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 9.01791 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 15.236636 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 15.2366 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 169.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 23.149800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 23.1498 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 6.771600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 6.77160 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 18.126300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 18.1263 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 186.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 25.331286 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 25.3313 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 9.304286 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 9.30429 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 20.595286 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 20.5953 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 196.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 29.162667 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 29.1627 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 10.001111 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 10.0011 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 20.948333 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 20.9483 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 207.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 30.855636 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 30.8556 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 9.100545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 9.10055 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 25.591000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 25.5910 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 222.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 34.433000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 34.4330 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 7.560636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 7.56064 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 24.270545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 24.2705 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 237.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = 37.896800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 37.8968 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = 8.740800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 8.74080 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = 22.386600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 22.3866 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 244.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 37.912727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 37.9127 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 11.203182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 11.2032 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 24.917818 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 24.9178 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 261.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 41.806500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 41.8065 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 10.875000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 10.8750 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 27.452600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 27.4526 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 277.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 39.444909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 39.4449 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 11.037364 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 11.0374 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 31.224091 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 31.2241 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 296.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 41.750857 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 41.7509 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 14.453714 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 14.4537 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 32.402857 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 32.4029 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 306.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 42.003000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 42.0030 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 14.470111 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 14.4701 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 36.226778 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 36.2268 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 317.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 41.810133 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 41.8101 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 18.768933 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 18.7689 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 36.230533 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 36.2305 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 335.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 42.137273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 42.1373 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 16.913091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 16.9131 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 41.216818 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 41.2168 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 349.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 44.904300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 44.9043 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 14.170800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 14.1708 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 43.534100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 43.5341 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 365.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 41.262455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 41.2625 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 14.163455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 14.1635 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 46.365818 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 46.3658 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 380.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 39.157273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 39.1573 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 13.834091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 13.8341 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 42.042364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 42.0424 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 394.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1960 SHOW: average of selected elements = 43.829864 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 43.8299 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1960 SHOW: average of selected elements = 9.176682 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 9.17668 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1960 SHOW: average of selected elements = 39.898455 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 39.8985 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 418.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 41.612200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 41.6122 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 8.176400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 8.17640 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 43.975800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 43.9758 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 432.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 36.980545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 36.9805 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 10.002364 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 10.0024 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 44.292727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 44.2927 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 447.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 36.957818 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 36.9578 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 8.701273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 8.70127 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 38.921364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 38.9214 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 464.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 40.297455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 40.2975 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 5.293909 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 5.29391 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 40.348636 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 40.3486 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 483.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 37.121091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 37.1211 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 4.329273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 4.32927 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 44.433909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 44.4339 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 500.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 33.190909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 33.1909 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 4.963636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 4.96364 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 40.021091 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 40.0211 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 522.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 36.222143 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 36.2221 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 2.652286 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 2.65229 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 38.221857 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 38.2219 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 532.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 37.765500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 37.7655 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = -0.158000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.158000 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 40.921200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 40.9212 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 546.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 33.110091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 33.1101 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -0.520091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.520091 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 42.684636 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 42.6846 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 561.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 32.528889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 32.5289 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = -0.201778 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.201778 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 38.254000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 38.2540 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 572.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 35.205545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 35.2055 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -4.151455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.15145 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 38.323727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 38.3237 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 594.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 36.179182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 36.1792 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -0.098182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.981818E-01 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 35.183000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 35.1830 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 608.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 40.089727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 40.0897 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -1.319182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.31918 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 32.305818 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 32.3058 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 627.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 42.380500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 42.3805 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 1.778600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.77860 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 34.368600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 34.3686 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 643.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 44.611800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 44.6118 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 3.326100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 3.32610 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 31.010000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 31.0100 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 659.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 47.577400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 47.5774 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 5.622100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 5.62210 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 33.295300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 33.2953 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 675.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 49.332400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 49.3324 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 7.970200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 7.97020 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 29.392500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 29.3925 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 687.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 51.661278 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 51.6613 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 9.349556 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 9.34956 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 33.490833 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 33.4908 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 707.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 52.694545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 52.6945 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 12.781455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 12.7815 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 28.286636 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 28.2866 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 721.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 54.755857 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 54.7559 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 15.784429 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 15.7844 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 27.893714 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 27.8937 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 731.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 53.293222 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 53.2932 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 18.994444 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 18.9944 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 26.064778 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 26.0648 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 742.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1960 SHOW: average of selected elements = 57.732591 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 57.7326 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1960 SHOW: average of selected elements = 18.664182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 18.6642 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1960 SHOW: average of selected elements = 28.901182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 28.9012 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 766.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 58.015625 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 58.0156 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 16.600875 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 16.6009 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 24.908000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 24.9080 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 776.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = 58.852400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 58.8524 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = 15.330400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 15.3304 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = 21.704000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 21.7040 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 783.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 59.113750 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 59.1138 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 12.218125 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 12.2181 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 20.915625 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 20.9156 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 797.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 56.890375 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 56.8904 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 11.835000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 11.8350 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 23.681875 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 23.6819 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 807.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1960 SHOW: average of selected elements = 53.163929 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 53.1639 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1960 SHOW: average of selected elements = 15.842929 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 15.8429 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1960 SHOW: average of selected elements = 20.800714 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 20.8007 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 831.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 55.287444 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 55.2874 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 11.106056 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 11.1061 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 16.849222 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 16.8492 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 851.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 52.731364 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 52.7314 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 8.713545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 8.71355 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 21.476727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 21.4767 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 870.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 49.870857 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 49.8709 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 11.647286 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 11.6473 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 21.939714 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 21.9397 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 880.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 48.179000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 48.1790 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 11.142750 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 11.1428 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 18.901750 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 18.9018 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 894.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 49.727944 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 49.7279 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 5.559111 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 5.55911 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 17.965000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 17.9650 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 914.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 47.003056 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 47.0031 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 7.258667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 7.25867 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 24.705556 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 24.7056 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 934.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 44.472143 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 44.4721 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 8.950143 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 8.95014 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 21.651143 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 21.6511 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 944.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 43.531700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 43.5317 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 7.298100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 7.29810 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 17.834800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 17.8348 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 956.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 44.763000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 44.7630 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 3.412636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 3.41264 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 20.051455 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 20.0515 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 975.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 41.527143 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 41.5271 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 5.151429 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 5.15143 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 22.566857 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 22.5669 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 985.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 38.206818 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 38.2068 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 6.405636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 6.40564 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 19.047455 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 19.0475 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1007.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 40.832545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 40.8325 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 1.751727 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.75173 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 18.178273 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 18.1783 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1029.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 39.776545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 39.7765 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -0.053182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.531818E-01 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 22.332545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 22.3325 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1048.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 35.932500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 35.9325 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 1.973250 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.97325 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 23.664000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 23.6640 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1062.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 35.612700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 35.6127 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = -1.267400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.26740 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 26.357100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 26.3571 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1076.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 39.598800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 39.5988 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 0.657600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.657600 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 27.253800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 27.2538 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1092.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 38.799000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 38.7990 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 4.118727 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 4.11873 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 30.608727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 30.6087 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1111.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 41.855111 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 41.8551 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 4.869278 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 4.86928 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 27.479278 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 27.4793 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1131.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 42.721000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 42.7210 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 8.745545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 8.74555 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 32.507818 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 32.5078 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1150.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 45.702182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 45.7022 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 12.223545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 12.2235 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 29.917455 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 29.9175 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1172.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 48.059800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 48.0598 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 12.419900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 12.4199 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 34.094400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 34.0944 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1188.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 49.831000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 49.8310 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 16.599900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 16.5999 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 33.292600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 33.2926 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1200.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 53.968727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 53.9687 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 15.146273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 15.1463 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 34.545909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 34.5459 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1214.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 54.041900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 54.0419 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 19.644400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 19.6444 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 34.773900 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 34.7739 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1226.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 50.876000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 50.8760 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 19.417727 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 19.4177 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 38.593273 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 38.5933 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1241.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 50.612091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 50.6121 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 14.813727 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 14.8137 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 39.246455 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 39.2465 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1260.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 56.527909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 56.5279 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 15.235455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 15.2355 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 38.384182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 38.3842 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1282.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 54.939556 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 54.9396 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 13.915333 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 13.9153 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 42.449889 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 42.4499 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1293.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 52.429600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 52.4296 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 11.213600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 11.2136 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 41.342400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 41.3424 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1309.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 55.221571 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 55.2216 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 9.877286 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 9.87729 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 39.083429 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 39.0834 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1319.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 58.329556 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 58.3296 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 9.603333 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 9.60333 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 41.711111 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 41.7111 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1330.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 55.156700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 55.1567 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 7.711500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 7.71150 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 44.176400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 44.1764 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1342.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1960 SHOW: average of selected elements = 52.005773 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 52.0058 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1960 SHOW: average of selected elements = 4.405455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 4.40545 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1960 SHOW: average of selected elements = 40.647682 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 40.6477 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1366.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 58.282143 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 58.2821 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 5.269429 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 5.26943 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 39.773857 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 39.7739 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1376.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 57.242273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 57.2423 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 7.570636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 7.57064 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 36.730364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 36.7304 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1395.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 62.619909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 62.6199 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 8.417091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 8.41709 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 36.319909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 36.3199 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1412.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 60.633143 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 60.6331 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 7.512000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 7.51200 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 32.324286 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 32.3243 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1422.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 58.281000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 58.2810 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 9.974800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 9.97480 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 30.416900 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 30.4169 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1439.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 56.179125 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 56.1791 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 8.551000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 8.55100 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 27.792875 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 27.7929 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1453.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 55.075455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 55.0755 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 6.075818 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 6.07582 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 31.354000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 31.3540 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1467.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 52.119444 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 52.1194 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 4.638944 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 4.63894 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 27.613333 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 27.6133 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1487.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 50.431500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 50.4315 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 1.328200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.32820 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 33.180000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 33.1800 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1504.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 47.974111 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 47.9741 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = -1.509556 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.50956 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 29.386722 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 29.3867 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1524.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 46.056455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 46.0565 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -1.507455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.50745 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 34.623727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 34.6237 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1543.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 41.898182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 41.8982 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -5.725636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.72564 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 34.451000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 34.4510 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1565.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 39.133273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 39.1333 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -4.404000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.40400 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 36.648909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 36.6489 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1580.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = 42.644800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 42.6448 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = -2.105800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.10580 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = 38.631400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 38.6314 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1587.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 44.189909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 44.1899 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -5.850364 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.85036 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 39.160000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 39.1600 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1609.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 48.689000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 48.6890 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -4.518182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.51818 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 38.171818 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 38.1718 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1628.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 47.511455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 47.5115 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -6.538000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -6.53800 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 33.991182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 33.9912 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1647.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 50.474300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 50.4743 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = -4.678200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.67820 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 31.749900 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 31.7499 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1659.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 54.512182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 54.5122 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -2.236000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.23600 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 33.436182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 33.4362 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1681.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 54.902000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 54.9020 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 0.348800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.348800 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 29.408300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 29.4083 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1697.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 58.670400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 58.6704 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 2.274600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 2.27460 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 29.931200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 29.9312 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1713.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = 58.136400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 58.1364 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = 4.856600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 4.85660 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = 27.481200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 27.4812 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1720.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 57.890857 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 57.8909 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 5.549286 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 5.54929 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 23.728143 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 23.7281 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1730.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 58.752000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 58.7520 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 1.645182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.64518 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 22.071455 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 22.0715 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1752.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 55.565364 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 55.5654 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 2.926727 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 2.92673 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 17.314182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 17.3142 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1774.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 57.298700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 57.2987 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = -2.126100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.12610 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 18.191100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 18.1911 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1786.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 56.563909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 56.5639 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -1.734000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.73400 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 23.077909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 23.0779 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1801.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 52.324273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 52.3243 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 0.484364 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.484364 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 21.831091 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 21.8311 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1820.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 51.204273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 51.2043 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -2.319182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.31918 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 18.257545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 18.2575 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1837.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 53.200556 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 53.2006 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = -5.676444 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.67644 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 21.474889 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 21.4749 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1848.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 50.932818 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 50.9328 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -3.505909 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.50591 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 24.353545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 24.3535 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1862.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 47.674727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 47.6747 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -3.695455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.69545 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 21.508818 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 21.5088 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1881.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 48.502857 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 48.5029 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = -7.661429 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.66143 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 20.890857 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 20.8909 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1891.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 50.268182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 50.2682 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -8.599636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -8.59964 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 24.753364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 24.7534 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1913.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 45.354000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 45.3540 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = -6.776667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -6.77667 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 26.414933 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 26.4149 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1931.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 44.183091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 44.1831 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -8.534364 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -8.53436 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 20.809455 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 20.8095 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1950.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 1960 SHOW: average of selected elements = 42.960667 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 42.9607 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 1960 SHOW: average of selected elements = -12.275500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -12.2755 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 1960 SHOW: average of selected elements = 21.620500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 21.6205 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) CNSsolve> evaluate ($ave_x=$result) CNSsolve> show ave(y) (byres(id $id) and known) CNSsolve> evaluate ($ave_y=$result) CNSsolve> show ave(z) (byres(id $id) and known) CNSsolve> evaluate ($ave_z=$result) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) CNSsolve> do (y=$ave_y) (byres(id $id) and store1) CNSsolve> do (z=$ave_z) (byres(id $id) and store1) CNSsolve> CNSsolve> end loop avco CNSsolve> CNSsolve> do (x=x+random(2.0)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> do (y=y+random(2.0)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> do (z=z+random(2.0)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> CNSsolve> {- start parameter for the side chain building -} CNSsolve> parameter PARRDR> nbonds NBDSET> rcon=20. nbxmod=-2 repel=0.9 wmin=0.1 tolerance=1. NBDSET> rexp=2 irexp=2 inhibit=0.25 NBDSET> end PARRDR> end CNSsolve> CNSsolve> {- Friction coefficient, in 1/ps. -} CNSsolve> do (fbeta=100) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> CNSsolve> evaluate ($bath=300.0) EVALUATE: symbol $BATH set to 300.000 (real) CNSsolve> evaluate ($nstep=500) EVALUATE: symbol $NSTEP set to 500.000 (real) CNSsolve> evaluate ($timestep=0.0005) EVALUATE: symbol $TIMESTEP set to 0.500000E-03 (real) CNSsolve> CNSsolve> do (refy=mass) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> CNSsolve> do (mass=20) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> CNSsolve> igroup interaction SELRPN> (store1) (store1 or known) SELRPN: 983 atoms have been selected out of 1960 SELRPN: 1960 atoms have been selected out of 1960 IGROup> end CNSsolve> CNSsolve> {- turn on initial energy terms -} CNSsolve> flags exclude * include bond angle vdw end CNSsolve> CNSsolve> minimize powell nstep=50 nprint=10 end POWELL: number of degrees of freedom= 2949 NBONDS: generating intra-molecular exclusion list with mode=-2 MAKINB: mode -2 found 983 exclusions and 0 interactions(1-4) %atoms " -1 -MET -HE3 " and " -1 -MET -HT3 " only 0.09 A apart %atoms " -7 -HIS -HB1 " and " -7 -HIS -HE1 " only 0.08 A apart %atoms " -21 -CYS -HN " and " -21 -CYS -HB1 " only 0.07 A apart %atoms " -24 -VAL -HG22" and " -24 -VAL -HG23" only 0.08 A apart %atoms " -27 -TRP -HE1 " and " -27 -TRP -HZ2 " only 0.10 A apart %atoms " -31 -LEU -HB2 " and " -31 -LEU -HD23" only 0.06 A apart %atoms " -33 -LYS -HB2 " and " -33 -LYS -HZ1 " only 0.10 A apart %atoms " -42 -VAL -HN " and " -42 -VAL -HB " only 0.06 A apart %atoms " -52 -PRO -HB1 " and " -52 -PRO -HG2 " only 0.10 A apart %atoms " -53 -CYS -HA " and " -53 -CYS -HB1 " only 0.08 A apart %atoms " -54 -ARG -HD2 " and " -54 -ARG -HH22" only 0.10 A apart %atoms " -60 -PHE -HN " and " -60 -PHE -HB1 " only 0.09 A apart %atoms " -66 -LYS -CB " and " -66 -LYS -HZ2 " only 0.09 A apart %atoms " -66 -LYS -HG2 " and " -66 -LYS -HD1 " only 0.10 A apart %atoms " -71 -LEU -HG " and " -71 -LEU -HD13" only 0.06 A apart %atoms " -75 -VAL -HA " and " -75 -VAL -HG22" only 0.08 A apart %atoms " -80 -LEU -HA " and " -80 -LEU -HB1 " only 0.07 A apart %atoms " -94 -THR -CB " and " -94 -THR -HG21" only 0.04 A apart %atoms " -99 -LYS -HD1 " and " -99 -LYS -HZ3 " only 0.09 A apart %atoms " -108 -VAL -CB " and " -108 -VAL -HG23" only 0.08 A apart %atoms " -121 -LYS -HG1 " and " -121 -LYS -HG2 " only 0.09 A apart NBONDS: found 120183 intra-atom interactions NBONDS: found 21 nonbonded violations %atoms " -60 -PHE -HA " and " -60 -PHE -HB1 " only 0.09 A apart %atoms " -81 -LYS -HB2 " and " -81 -LYS -HE2 " only 0.06 A apart %atoms " -83 -VAL -HA " and " -83 -VAL -HG21" only 0.07 A apart NBONDS: found 119191 intra-atom interactions NBONDS: found 3 nonbonded violations NBONDS: found 112945 intra-atom interactions NBONDS: found 108972 intra-atom interactions NBONDS: found 110091 intra-atom interactions NBONDS: found 110151 intra-atom interactions --------------- cycle= 10 ------ stepsize= 0.0000 ----------------------- | Etotal =498355.971 grad(E)=597.380 E(BOND)=87469.192 E(ANGL)=234225.677 | | E(VDW )=176661.102 | ------------------------------------------------------------------------------- NBONDS: found 110843 intra-atom interactions NBONDS: found 111047 intra-atom interactions NBONDS: found 110854 intra-atom interactions NBONDS: found 110850 intra-atom interactions --------------- cycle= 20 ------ stepsize= 0.0001 ----------------------- | Etotal =174612.031 grad(E)=333.274 E(BOND)=27079.507 E(ANGL)=58964.399 | | E(VDW )=88568.124 | ------------------------------------------------------------------------------- NBONDS: found 110894 intra-atom interactions NBONDS: found 110885 intra-atom interactions --------------- cycle= 30 ------ stepsize= 0.0001 ----------------------- | Etotal =148107.863 grad(E)=310.759 E(BOND)=23771.813 E(ANGL)=44744.373 | | E(VDW )=79591.677 | ------------------------------------------------------------------------------- NBONDS: found 110824 intra-atom interactions NBONDS: found 110848 intra-atom interactions --------------- cycle= 40 ------ stepsize= 0.0000 ----------------------- | Etotal =143411.975 grad(E)=307.835 E(BOND)=24026.807 E(ANGL)=42086.542 | | E(VDW )=77298.625 | ------------------------------------------------------------------------------- --------------- cycle= 50 ------ stepsize= 0.0006 ----------------------- | Etotal =143161.809 grad(E)=307.457 E(BOND)=23996.091 E(ANGL)=41935.241 | | E(VDW )=77230.478 | ------------------------------------------------------------------------------- POWELL: STEP number limit. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> CNSsolve> flags exclude vdw include impr end CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=50 Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=580898.210 E(kin)=907.693 temperature=309.781 | | Etotal =579990.517 grad(E)=562.690 E(BOND)=23996.091 E(ANGL)=41935.241 | | E(IMPR)=514059.186 | ------------------------------------------------------------------------------- -------------------- final step= 50 at 0.02500 ps --------------------- | E(kin)+E(total)=385809.438 E(kin)=56645.178 temperature=19332.079 | | Etotal =329164.260 grad(E)=358.625 E(BOND)=41776.817 E(ANGL)=122932.472 | | E(IMPR)=164454.971 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 44.06521 5.08624 28.26368 velocity [A/ps] : -1.23967 -0.82169 -0.70870 ang. mom. [amu A/ps] : 143973.39736 247676.11294 -92409.39523 kin. ener. [Kcal/mol] : 63.76830 CNSsolve> CNSsolve> flags include vdw end CNSsolve> CNSsolve> minimize powell nstep=50 nprint=10 end POWELL: number of degrees of freedom= 2949 NBONDS: found 109880 intra-atom interactions NBONDS: found 109839 intra-atom interactions NBONDS: found 110005 intra-atom interactions NBONDS: found 110093 intra-atom interactions NBONDS: found 110041 intra-atom interactions --------------- cycle= 10 ------ stepsize= 0.0002 ----------------------- | Etotal =303770.040 grad(E)=372.966 E(BOND)=41240.742 E(ANGL)=78765.369 | | E(IMPR)=133096.449 E(VDW )=50667.481 | ------------------------------------------------------------------------------- NBONDS: found 110417 intra-atom interactions NBONDS: found 110584 intra-atom interactions NBONDS: found 110642 intra-atom interactions --------------- cycle= 20 ------ stepsize= 0.0001 ----------------------- | Etotal =200077.342 grad(E)=256.229 E(BOND)=22624.444 E(ANGL)=33825.319 | | E(IMPR)=91852.544 E(VDW )=51775.035 | ------------------------------------------------------------------------------- NBONDS: found 110620 intra-atom interactions NBONDS: found 110662 intra-atom interactions NBONDS: found 110678 intra-atom interactions --------------- cycle= 30 ------ stepsize= 0.0001 ----------------------- | Etotal =170242.695 grad(E)=268.733 E(BOND)=24147.525 E(ANGL)=31474.670 | | E(IMPR)=64505.040 E(VDW )=50115.460 | ------------------------------------------------------------------------------- NBONDS: found 110661 intra-atom interactions NBONDS: found 110625 intra-atom interactions --------------- cycle= 40 ------ stepsize= 0.0000 ----------------------- | Etotal =142796.331 grad(E)=252.316 E(BOND)=21338.866 E(ANGL)=20826.704 | | E(IMPR)=52818.626 E(VDW )=47812.135 | ------------------------------------------------------------------------------- NBONDS: found 110638 intra-atom interactions NBONDS: found 110635 intra-atom interactions NBONDS: found 110655 intra-atom interactions --------------- cycle= 50 ------ stepsize= -0.0001 ----------------------- | Etotal =131974.513 grad(E)=256.156 E(BOND)=21012.908 E(ANGL)=18115.532 | | E(IMPR)=44753.222 E(VDW )=48092.851 | ------------------------------------------------------------------------------- POWELL: STEP number limit. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=50 Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=132835.642 E(kin)=861.129 temperature=293.889 | | Etotal =131974.513 grad(E)=256.156 E(BOND)=21012.908 E(ANGL)=18115.532 | | E(IMPR)=44753.222 E(VDW )=48092.851 | ------------------------------------------------------------------------------- NBONDS: found 110704 intra-atom interactions NBONDS: found 110657 intra-atom interactions -------------------- final step= 50 at 0.02500 ps --------------------- | E(kin)+E(total)=128183.575 E(kin)=3966.534 temperature=1353.714 | | Etotal =124217.040 grad(E)=258.073 E(BOND)=21676.370 E(ANGL)=16785.188 | | E(IMPR)=38569.565 E(VDW )=47185.917 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 44.07176 5.09762 28.26017 velocity [A/ps] : -0.20849 -0.18155 -0.00481 ang. mom. [amu A/ps] : -35276.24618 7427.42494 33521.56781 kin. ener. [Kcal/mol] : 1.79624 CNSsolve> CNSsolve> parameter PARRDR> nbonds NBDSET> rcon=2. nbxmod=-3 repel=0.75 NBDSET> end PARRDR> end CNSsolve> CNSsolve> minimize powell nstep=100 nprint=25 end POWELL: number of degrees of freedom= 2949 NBONDS: generating intra-molecular exclusion list with mode=-3 MAKINB: mode -3 found 3235 exclusions and 0 interactions(1-4) NBONDS: found 108420 intra-atom interactions NBONDS: found 108941 intra-atom interactions NBONDS: found 108853 intra-atom interactions NBONDS: found 108901 intra-atom interactions --------------- cycle= 25 ------ stepsize= 0.0000 ----------------------- | Etotal =38238.866 grad(E)=67.106 E(BOND)=2053.542 E(ANGL)=11154.717 | | E(IMPR)=25018.130 E(VDW )=12.478 | ------------------------------------------------------------------------------- --------------- cycle= 50 ------ stepsize= 0.0000 ----------------------- | Etotal =38109.760 grad(E)=67.000 E(BOND)=2176.760 E(ANGL)=11110.002 | | E(IMPR)=24808.977 E(VDW )=14.021 | ------------------------------------------------------------------------------- --------------- cycle= 75 ------ stepsize= 0.0000 ----------------------- | Etotal =38109.757 grad(E)=67.000 E(BOND)=2176.763 E(ANGL)=11110.001 | | E(IMPR)=24808.972 E(VDW )=14.021 | ------------------------------------------------------------------------------- --------------- cycle= 100 ------ stepsize= 0.0000 ----------------------- | Etotal =38109.757 grad(E)=67.000 E(BOND)=2176.763 E(ANGL)=11110.001 | | E(IMPR)=24808.972 E(VDW )=14.021 | ------------------------------------------------------------------------------- POWELL: STEP number limit. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=$nstep Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=38976.434 E(kin)=866.676 temperature=295.783 | | Etotal =38109.757 grad(E)=67.000 E(BOND)=2176.763 E(ANGL)=11110.001 | | E(IMPR)=24808.972 E(VDW )=14.021 | ------------------------------------------------------------------------------- NBONDS: found 108948 intra-atom interactions NBONDS: found 108930 intra-atom interactions NBONDS: found 108931 intra-atom interactions NBONDS: found 108909 intra-atom interactions NBONDS: found 108977 intra-atom interactions NBONDS: found 109040 intra-atom interactions NBONDS: found 109024 intra-atom interactions NBONDS: found 109034 intra-atom interactions NBONDS: found 109037 intra-atom interactions NBONDS: found 108998 intra-atom interactions NBONDS: found 108973 intra-atom interactions NBONDS: found 108971 intra-atom interactions NBONDS: found 109017 intra-atom interactions NBONDS: found 108978 intra-atom interactions NBONDS: found 108959 intra-atom interactions NBONDS: found 108977 intra-atom interactions NBONDS: found 108973 intra-atom interactions -------------------- final step= 500 at 0.25000 ps --------------------- | E(kin)+E(total)=2866.385 E(kin)=812.396 temperature=277.257 | | Etotal =2053.989 grad(E)=36.113 E(BOND)=139.261 E(ANGL)=1848.406 | | E(IMPR)=54.178 E(VDW )=12.143 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 44.06969 5.09031 28.25941 velocity [A/ps] : -0.03833 0.10596 0.01602 ang. mom. [amu A/ps] : 136.03020 -62067.54222 1590.34122 kin. ener. [Kcal/mol] : 0.30434 CNSsolve> CNSsolve> {- turn on all energy terms -} CNSsolve> flags include dihe ? end EFLAGS: the following energy flags are set EFLAGS: BOND ANGL DIHE IMPR VDW CNSsolve> CNSsolve> {- set repel to ~vdw radii -} CNSsolve> parameter PARRDR> nbonds NBDSET> repel=0.89 NBDSET> end PARRDR> end CNSsolve> CNSsolve> minimize powell nstep=500 nprint=50 end POWELL: number of degrees of freedom= 2949 NBONDS: generating intra-molecular exclusion list with mode=-3 MAKINB: mode -3 found 3235 exclusions and 0 interactions(1-4) NBONDS: found 108994 intra-atom interactions NBONDS: found 108998 intra-atom interactions NBONDS: found 108976 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0000 ----------------------- | Etotal =626.533 grad(E)=22.626 E(BOND)=54.478 E(ANGL)=341.868 | | E(DIHE)=83.733 E(IMPR)=47.497 E(VDW )=98.957 | ------------------------------------------------------------------------------- POWELL: Line search terminated POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> flags exclude * include bond angl impr dihe vdw end CNSsolve> CNSsolve> {- return masses to something sensible -} CNSsolve> do (mass=refy) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=$nstep Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=1510.657 E(kin)=884.125 temperature=301.737 | | Etotal =626.533 grad(E)=22.626 E(BOND)=54.478 E(ANGL)=341.868 | | E(DIHE)=83.733 E(IMPR)=47.497 E(VDW )=98.957 | ------------------------------------------------------------------------------- NBONDS: found 108955 intra-atom interactions NBONDS: found 108950 intra-atom interactions NBONDS: found 108961 intra-atom interactions NBONDS: found 108940 intra-atom interactions NBONDS: found 108903 intra-atom interactions NBONDS: found 108889 intra-atom interactions NBONDS: found 108925 intra-atom interactions NBONDS: found 108955 intra-atom interactions NBONDS: found 108973 intra-atom interactions NBONDS: found 108972 intra-atom interactions NBONDS: found 108938 intra-atom interactions NBONDS: found 108915 intra-atom interactions NBONDS: found 108876 intra-atom interactions NBONDS: found 108887 intra-atom interactions NBONDS: found 108898 intra-atom interactions NBONDS: found 108923 intra-atom interactions NBONDS: found 108947 intra-atom interactions NBONDS: found 108915 intra-atom interactions NBONDS: found 108912 intra-atom interactions NBONDS: found 108878 intra-atom interactions NBONDS: found 108864 intra-atom interactions NBONDS: found 108873 intra-atom interactions NBONDS: found 108884 intra-atom interactions NBONDS: found 108904 intra-atom interactions NBONDS: found 108854 intra-atom interactions NBONDS: found 108861 intra-atom interactions NBONDS: found 108861 intra-atom interactions NBONDS: found 108888 intra-atom interactions NBONDS: found 108917 intra-atom interactions NBONDS: found 108915 intra-atom interactions NBONDS: found 108898 intra-atom interactions NBONDS: found 108917 intra-atom interactions NBONDS: found 108853 intra-atom interactions NBONDS: found 108887 intra-atom interactions NBONDS: found 108887 intra-atom interactions NBONDS: found 108895 intra-atom interactions NBONDS: found 108876 intra-atom interactions NBONDS: found 108872 intra-atom interactions NBONDS: found 108875 intra-atom interactions NBONDS: found 108872 intra-atom interactions NBONDS: found 108887 intra-atom interactions NBONDS: found 108918 intra-atom interactions NBONDS: found 108896 intra-atom interactions NBONDS: found 108869 intra-atom interactions NBONDS: found 108865 intra-atom interactions NBONDS: found 108892 intra-atom interactions NBONDS: found 108913 intra-atom interactions NBONDS: found 108904 intra-atom interactions NBONDS: found 108903 intra-atom interactions NBONDS: found 108880 intra-atom interactions NBONDS: found 108862 intra-atom interactions NBONDS: found 108823 intra-atom interactions NBONDS: found 108866 intra-atom interactions NBONDS: found 108874 intra-atom interactions NBONDS: found 108876 intra-atom interactions NBONDS: found 108872 intra-atom interactions NBONDS: found 108859 intra-atom interactions NBONDS: found 108899 intra-atom interactions NBONDS: found 108876 intra-atom interactions NBONDS: found 108843 intra-atom interactions NBONDS: found 108847 intra-atom interactions NBONDS: found 108886 intra-atom interactions NBONDS: found 108888 intra-atom interactions NBONDS: found 108893 intra-atom interactions NBONDS: found 108866 intra-atom interactions NBONDS: found 108896 intra-atom interactions NBONDS: found 108873 intra-atom interactions NBONDS: found 108847 intra-atom interactions NBONDS: found 108843 intra-atom interactions NBONDS: found 108862 intra-atom interactions NBONDS: found 108864 intra-atom interactions NBONDS: found 108855 intra-atom interactions NBONDS: found 108873 intra-atom interactions NBONDS: found 108919 intra-atom interactions NBONDS: found 108912 intra-atom interactions NBONDS: found 108903 intra-atom interactions NBONDS: found 108904 intra-atom interactions NBONDS: found 108896 intra-atom interactions NBONDS: found 108910 intra-atom interactions NBONDS: found 108926 intra-atom interactions NBONDS: found 108919 intra-atom interactions NBONDS: found 108924 intra-atom interactions NBONDS: found 108947 intra-atom interactions NBONDS: found 108936 intra-atom interactions NBONDS: found 108911 intra-atom interactions NBONDS: found 108888 intra-atom interactions NBONDS: found 108859 intra-atom interactions NBONDS: found 108865 intra-atom interactions NBONDS: found 108904 intra-atom interactions NBONDS: found 108933 intra-atom interactions NBONDS: found 108951 intra-atom interactions NBONDS: found 108910 intra-atom interactions NBONDS: found 108871 intra-atom interactions NBONDS: found 108851 intra-atom interactions NBONDS: found 108869 intra-atom interactions NBONDS: found 108881 intra-atom interactions NBONDS: found 108879 intra-atom interactions NBONDS: found 108880 intra-atom interactions NBONDS: found 108865 intra-atom interactions NBONDS: found 108838 intra-atom interactions NBONDS: found 108834 intra-atom interactions NBONDS: found 108873 intra-atom interactions NBONDS: found 108885 intra-atom interactions NBONDS: found 108891 intra-atom interactions NBONDS: found 108896 intra-atom interactions NBONDS: found 108890 intra-atom interactions NBONDS: found 108879 intra-atom interactions NBONDS: found 108885 intra-atom interactions NBONDS: found 108882 intra-atom interactions NBONDS: found 108861 intra-atom interactions NBONDS: found 108859 intra-atom interactions NBONDS: found 108851 intra-atom interactions NBONDS: found 108850 intra-atom interactions NBONDS: found 108877 intra-atom interactions NBONDS: found 108903 intra-atom interactions NBONDS: found 108920 intra-atom interactions NBONDS: found 108920 intra-atom interactions NBONDS: found 108902 intra-atom interactions NBONDS: found 108895 intra-atom interactions NBONDS: found 108874 intra-atom interactions NBONDS: found 108871 intra-atom interactions NBONDS: found 108872 intra-atom interactions NBONDS: found 108870 intra-atom interactions NBONDS: found 108867 intra-atom interactions NBONDS: found 108875 intra-atom interactions NBONDS: found 108918 intra-atom interactions NBONDS: found 108942 intra-atom interactions NBONDS: found 108950 intra-atom interactions NBONDS: found 108939 intra-atom interactions NBONDS: found 108927 intra-atom interactions NBONDS: found 108920 intra-atom interactions NBONDS: found 108930 intra-atom interactions NBONDS: found 108919 intra-atom interactions NBONDS: found 108906 intra-atom interactions NBONDS: found 108894 intra-atom interactions NBONDS: found 108917 intra-atom interactions NBONDS: found 108934 intra-atom interactions NBONDS: found 108947 intra-atom interactions NBONDS: found 108946 intra-atom interactions NBONDS: found 108941 intra-atom interactions NBONDS: found 108933 intra-atom interactions NBONDS: found 108920 intra-atom interactions NBONDS: found 108916 intra-atom interactions NBONDS: found 108892 intra-atom interactions NBONDS: found 108883 intra-atom interactions NBONDS: found 108870 intra-atom interactions NBONDS: found 108880 intra-atom interactions NBONDS: found 108887 intra-atom interactions NBONDS: found 108902 intra-atom interactions NBONDS: found 108926 intra-atom interactions NBONDS: found 108955 intra-atom interactions NBONDS: found 108961 intra-atom interactions NBONDS: found 108940 intra-atom interactions NBONDS: found 108907 intra-atom interactions NBONDS: found 108882 intra-atom interactions NBONDS: found 108857 intra-atom interactions NBONDS: found 108847 intra-atom interactions NBONDS: found 108846 intra-atom interactions NBONDS: found 108871 intra-atom interactions NBONDS: found 108917 intra-atom interactions NBONDS: found 108944 intra-atom interactions NBONDS: found 108953 intra-atom interactions NBONDS: found 108923 intra-atom interactions NBONDS: found 108875 intra-atom interactions NBONDS: found 108837 intra-atom interactions NBONDS: found 108827 intra-atom interactions NBONDS: found 108860 intra-atom interactions NBONDS: found 108890 intra-atom interactions NBONDS: found 108921 intra-atom interactions NBONDS: found 108928 intra-atom interactions NBONDS: found 108900 intra-atom interactions NBONDS: found 108884 intra-atom interactions NBONDS: found 108870 intra-atom interactions NBONDS: found 108868 intra-atom interactions NBONDS: found 108878 intra-atom interactions NBONDS: found 108887 intra-atom interactions NBONDS: found 108886 intra-atom interactions NBONDS: found 108908 intra-atom interactions NBONDS: found 108908 intra-atom interactions NBONDS: found 108916 intra-atom interactions NBONDS: found 108918 intra-atom interactions NBONDS: found 108899 intra-atom interactions NBONDS: found 108901 intra-atom interactions NBONDS: found 108895 intra-atom interactions NBONDS: found 108883 intra-atom interactions NBONDS: found 108898 intra-atom interactions NBONDS: found 108908 intra-atom interactions NBONDS: found 108914 intra-atom interactions NBONDS: found 108898 intra-atom interactions NBONDS: found 108893 intra-atom interactions NBONDS: found 108889 intra-atom interactions NBONDS: found 108883 intra-atom interactions NBONDS: found 108885 intra-atom interactions NBONDS: found 108890 intra-atom interactions NBONDS: found 108885 intra-atom interactions NBONDS: found 108898 intra-atom interactions NBONDS: found 108899 intra-atom interactions NBONDS: found 108899 intra-atom interactions NBONDS: found 108881 intra-atom interactions NBONDS: found 108884 intra-atom interactions NBONDS: found 108877 intra-atom interactions NBONDS: found 108867 intra-atom interactions NBONDS: found 108868 intra-atom interactions NBONDS: found 108857 intra-atom interactions NBONDS: found 108865 intra-atom interactions NBONDS: found 108868 intra-atom interactions NBONDS: found 108888 intra-atom interactions NBONDS: found 108888 intra-atom interactions NBONDS: found 108882 intra-atom interactions NBONDS: found 108881 intra-atom interactions NBONDS: found 108872 intra-atom interactions NBONDS: found 108884 intra-atom interactions NBONDS: found 108882 intra-atom interactions NBONDS: found 108879 intra-atom interactions NBONDS: found 108876 intra-atom interactions NBONDS: found 108863 intra-atom interactions NBONDS: found 108847 intra-atom interactions NBONDS: found 108858 intra-atom interactions NBONDS: found 108861 intra-atom interactions NBONDS: found 108873 intra-atom interactions NBONDS: found 108894 intra-atom interactions NBONDS: found 108895 intra-atom interactions NBONDS: found 108893 intra-atom interactions NBONDS: found 108898 intra-atom interactions NBONDS: found 108886 intra-atom interactions NBONDS: found 108908 intra-atom interactions NBONDS: found 108906 intra-atom interactions NBONDS: found 108886 intra-atom interactions NBONDS: found 108869 intra-atom interactions NBONDS: found 108842 intra-atom interactions NBONDS: found 108829 intra-atom interactions NBONDS: found 108836 intra-atom interactions -------------------- final step= 500 at 0.25000 ps --------------------- | E(kin)+E(total)=4237.158 E(kin)=2300.345 temperature=785.070 | | Etotal =1936.813 grad(E)=28.873 E(BOND)=3.168 E(ANGL)=1759.701 | | E(DIHE)=15.220 E(IMPR)=79.072 E(VDW )=79.652 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 44.01125 4.55056 28.01480 velocity [A/ps] : 0.85560 -0.99399 0.37634 ang. mom. [amu A/ps] : -3737.54363 -11435.09526 -20178.20443 kin. ener. [Kcal/mol] : 2.27117 CNSsolve> CNSsolve> {- some final minimisation -} CNSsolve> minimize powell POWELL> nstep=500 POWELL> drop=40.0 POWELL> nprint=50 POWELL> end POWELL: number of degrees of freedom= 2949 NBONDS: found 108853 intra-atom interactions NBONDS: found 108896 intra-atom interactions NBONDS: found 108856 intra-atom interactions NBONDS: found 108880 intra-atom interactions NBONDS: found 108855 intra-atom interactions POWELL: Line search terminated POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> print thres=0.02 bonds (atom-i |atom-j ) dist. equil. delta energy const. ( 54 NE | 54 HE ) 1.416 0.980 0.436 189.974 1000.000 Number of violations greater 0.020: 1 RMS deviation= 0.014 CNSsolve> print thres=5. angles (atom-i |atom-j |atom-k ) angle equil. delta energy const. ( 54 CD | 54 NE | 54 HE ) 150.670 118.099 32.572 161.587 500.000 ( 54 HE | 54 NE | 54 CZ ) 82.883 119.249 -36.366 201.423 500.000 Number of violations greater 5.000: 2 RMS deviation= 1.191 CNSsolve> CNSsolve> end if CNSsolve> CNSsolve> fix selection=( none ) end SELRPN: 0 atoms have been selected out of 1960 CNSsolve> CNSsolve> end if CNSsolve> CNSsolve> set echo=false end SELRPN: 0 atoms have been selected out of 1960 SHOW: zero atoms selected NEXTCD: condition evaluated as true SELRPN: 0 atoms have been selected out of 1960 CNSsolve> CNSsolve> if (&set_bfactor=true) then NEXTCD: condition evaluated as false CNSsolve> do (b=&bfactor) ( all ) CNSsolve> else CNSsolve> show ave(b) (known and not(store1)) SELRPN: 977 atoms have been selected out of 1960 SHOW: average of selected elements = 0.000000 CNSsolve> do (b=$result) (store1 and (attr b < 0.01)) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> end if CNSsolve> CNSsolve> if (&set_occupancy=true) then NEXTCD: condition evaluated as false CNSsolve> do (q=&occupancy) ( all ) CNSsolve> end if CNSsolve> CNSsolve> set echo=false end SELRPN: 983 atoms have been selected out of 1960 SHOW: sum over selected elements = 983.000000 NEXTCD: condition evaluated as false CNSsolve> CNSsolve> set remarks=reset end CNSsolve> CNSsolve> buffer message BUFFER> to=remarks BUFFER> dump BUFFER> end CNSsolve> CNSsolve> write coordinates output=&coordinate_outfile end ASSFIL: file 1xxx_2_cns.pdb opened. CNSsolve> CNSsolve>stop HEAP: maximum use = 1246520 current use = 0 bytes HEAP: maximum overhead = 936 current overhead = 64 bytes ============================================================ Maximum dynamic memory allocation: 1246520 bytes Maximum dynamic memory overhead: 936 bytes Program started at: 09:32:36 on 11-Sep-04 Program stopped at: 09:33:01 on 11-Sep-04 CPU time used: 25.1500 seconds ============================================================