============================================================ | | | Crystallography & NMR System (CNS) | | CNSsolve | | | ============================================================ Version: 1.1 Status: Developmental version ============================================================ Written by: A.T.Brunger, P.D.Adams, G.M.Clore, W.L.DeLano, P.Gros, R.W.Grosse-Kunstleve, J.-S.Jiang, J.Kuszewski, M.Nilges, N.S.Pannu, R.J.Read, L.M.Rice, T.Simonson, G.L.Warren. Copyright (c) 1997-1999 Yale University ============================================================ Running on machine: cesg-master.biochem.wisc.edu (Linux,32-bit) Program started by: volkman Program started at: 09:31:20 on 11-Sep-04 ============================================================ FFT3C: Using FFTPACK4.1 CNSsolve>define( DEFINE>{* selection of atoms other than hydrogens for which coordinates DEFINE> will be generated *} DEFINE>{* to generate coordinates for all unknown atoms use: (not(known)) *} DEFINE>{===>} atom_build=(not(known)); DEFINE>{============================= output files ================================} DEFINE> DEFINE>{* input coordinate file *} DEFINE>{===>} coordinate_infile="1xxx_19.pdb"; DEFINE> DEFINE>{* output coordinate file *} DEFINE>{===>} coordinate_outfile="1xxx_19_cns.pdb"; DEFINE>) CNSsolve> CNSsolve> checkversion 1.1 Program version= 1.1 File version= 1.1 CNSsolve> CNSsolve> evaluate ($log_level=verbose) Assuming literal string "VERBOSE" EVALUATE: symbol $LOG_LEVEL set to "VERBOSE" (string) CNSsolve> evaluate ($par_nonbonded="PROLSQ") EVALUATE: symbol $PAR_NONBONDED set to "PROLSQ" (string) CNSsolve> CNSsolve> !@generateProtonsJFD.inp CNSsolve> CNSsolve>{===========================================================================} CNSsolve>{ things below this line do not need to be changed } CNSsolve>{===========================================================================} CNSsolve> CNSsolve>remarks changed Tue Sep 2 09:48:07 CDT 2003 CNSsolve>remarks by jfd to include a fes residue CNSsolve> CNSsolve>!@generate_tmoc.inp CNSsolve> CNSsolve>topology reset end CNSsolve>structure reset end Status of internal molecular topology database: -> NATOM= 0(MAXA= 40000) NBOND= 0(MAXB= 40000) -> NTHETA= 0(MAXT= 80000) NGRP= 0(MAXGRP= 40000) -> NPHI= 0(MAXP= 80000) NIMPHI= 0(MAXIMP= 40000) -> NNB= 0(MAXNB= 40000) CNSsolve> CNSsolve>topology RTFRDR>{===>} @TOPPAR:topallhdg5.3.pro ASSFIL: file /u/volkman/waterrefine/toppar/topallhdg5.3.pro opened. RTFRDR>remark file topallhdg.pro version 5.3 date 23-Sept-02 RTFRDR>remark for file parallhdg.pro version 5.3 date 13-Feb-02 or later RTFRDR>remark Geometric energy function parameters for distance geometry and RTFRDR>remark simulated annealing. RTFRDR>remark Author: Michael Nilges, EMBL Heidelberg; Institut Pasteur, Paris RTFRDR>remark This file contains modifications from M. Williams, UCL London RTFRDR>remark Last modification 16-Sept-02 RTFRDR> RTFRDR>set echo off message off end RTFRDR>end CNSsolve> CNSsolve>! no chain id. CNSsolve>segment name=" " SEGMENT> chain CHAIN> @TOPPAR:topallhdg5.3.pep CHAIN>REMARKS TOPH19.pep -MACRO for protein sequence CHAIN>SET ECHO=FALSE END CHAIN> sequence SEQUENCE> @1xxx.seq SEQUENCE>MET SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =CYS SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =TRP SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =TRP SEQUence-element (terminate with END) =CYS SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =CYS SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =TRP SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) = end SEGMNT: 124 residues were inserted into segment " " CHAIN> end SEGMENT>end Status of internal molecular topology database: -> NATOM= 1962(MAXA= 40000) NBOND= 1986(MAXB= 40000) -> NTHETA= 3608(MAXT= 80000) NGRP= 126(MAXGRP= 40000) -> NPHI= 3136(MAXP= 80000) NIMPHI= 1032(MAXIMP= 40000) -> NNB= 738(MAXNB= 40000) CNSsolve> CNSsolve>! removes the hydrogen on the cys-en CNSsolve>! and changes the atom type from SH1E to S. CNSsolve>patch DISU reference=1=( resid 50 ) PATCH> reference=2=( resid 53 ) PATCH> end Status of internal molecular topology database: -> NATOM= 1960(MAXA= 40000) NBOND= 1985(MAXB= 40000) -> NTHETA= 3608(MAXT= 80000) NGRP= 128(MAXGRP= 40000) -> NPHI= 3142(MAXP= 80000) NIMPHI= 1032(MAXIMP= 40000) -> NNB= 738(MAXNB= 40000) CNSsolve> CNSsolve>! turn peptide from trans to cis CNSsolve>patch CISP reference=nil=( resid 92 ) end Status of internal molecular topology database: -> NATOM= 1960(MAXA= 40000) NBOND= 1985(MAXB= 40000) -> NTHETA= 3608(MAXT= 80000) NGRP= 128(MAXGRP= 40000) -> NPHI= 3142(MAXP= 80000) NIMPHI= 1032(MAXIMP= 40000) -> NNB= 738(MAXNB= 40000) CNSsolve> CNSsolve>coor @&coordinate_infile COOR>HEADER Structures from CYANA 09-09-2004 COOR>REMARK model 19 COOR>ATOM 4051 N MET A 1 1.325 0.000 0.000 1.00 0.00 %READC-ERR: atom 1 MET HN not found in molecular structure %READC-ERR: atom 1 MET 2HB not found in molecular structure %READC-ERR: atom 1 MET 3HB not found in molecular structure %READC-ERR: atom 1 MET QB not found in molecular structure %READC-ERR: atom 1 MET 2HG not found in molecular structure %READC-ERR: atom 1 MET 3HG not found in molecular structure %READC-ERR: atom 1 MET QG not found in molecular structure %READC-ERR: atom 1 MET QE not found in molecular structure %READC-ERR: atom 1 MET 1HE not found in molecular structure %READC-ERR: atom 1 MET 2HE not found in molecular structure %READC-ERR: atom 1 MET 3HE not found in molecular structure %READC-ERR: atom 2 GLY 1HA not found in molecular structure %READC-ERR: atom 2 GLY 2HA not found in molecular structure %READC-ERR: atom 2 GLY QA not found in molecular structure %READC-ERR: atom 3 HIS 2HB not found in molecular structure %READC-ERR: atom 3 HIS 3HB not found in molecular structure %READC-ERR: atom 3 HIS QB not found in molecular structure %READC-ERR: atom 4 HIS 2HB not found in molecular structure %READC-ERR: atom 4 HIS 3HB not found in molecular structure %READC-ERR: atom 4 HIS QB not found in molecular structure %READC-ERR: atom 5 HIS 2HB not found in molecular structure %READC-ERR: atom 5 HIS 3HB not found in molecular structure %READC-ERR: atom 5 HIS QB not found in molecular structure %READC-ERR: atom 6 HIS 2HB not found in molecular structure %READC-ERR: atom 6 HIS 3HB not found in molecular structure %READC-ERR: atom 6 HIS QB not found in molecular structure %READC-ERR: atom 7 HIS 2HB not found in molecular structure %READC-ERR: atom 7 HIS 3HB not found in molecular structure %READC-ERR: atom 7 HIS QB not found in molecular structure %READC-ERR: atom 8 HIS 2HB not found in molecular structure %READC-ERR: atom 8 HIS 3HB not found in molecular structure %READC-ERR: atom 8 HIS QB not found in molecular structure %READC-ERR: atom 9 LEU 2HB not found in molecular structure %READC-ERR: atom 9 LEU 3HB not found in molecular structure %READC-ERR: atom 9 LEU QB not found in molecular structure %READC-ERR: atom 9 LEU QD1 not found in molecular structure %READC-ERR: atom 9 LEU QD2 not found in molecular structure %READC-ERR: atom 9 LEU 1HD1 not found in molecular structure %READC-ERR: atom 9 LEU 2HD1 not found in molecular structure %READC-ERR: atom 9 LEU 3HD1 not found in molecular structure %READC-ERR: atom 9 LEU 1HD2 not found in molecular structure %READC-ERR: atom 9 LEU 2HD2 not found in molecular structure %READC-ERR: atom 9 LEU 3HD2 not found in molecular structure %READC-ERR: atom 9 LEU QQD not found in molecular structure %READC-ERR: atom 10 GLU 2HB not found in molecular structure %READC-ERR: atom 10 GLU 3HB not found in molecular structure %READC-ERR: atom 10 GLU QB not found in molecular structure %READC-ERR: atom 10 GLU 2HG not found in molecular structure %READC-ERR: atom 10 GLU 3HG not found in molecular structure %READC-ERR: atom 10 GLU QG not found in molecular structure %READC-ERR: atom 11 MET 2HB not found in molecular structure %READC-ERR: atom 11 MET 3HB not found in molecular structure %READC-ERR: atom 11 MET QB not found in molecular structure %READC-ERR: atom 11 MET 2HG not found in molecular structure %READC-ERR: atom 11 MET 3HG not found in molecular structure %READC-ERR: atom 11 MET QG not found in molecular structure %READC-ERR: atom 11 MET QE not found in molecular structure %READC-ERR: atom 11 MET 1HE not found in molecular structure %READC-ERR: atom 11 MET 2HE not found in molecular structure %READC-ERR: atom 11 MET 3HE not found in molecular structure %READC-ERR: atom 12 ALA QB not found in molecular structure %READC-ERR: atom 12 ALA 1HB not found in molecular structure %READC-ERR: atom 12 ALA 2HB not found in molecular structure %READC-ERR: atom 12 ALA 3HB not found in molecular structure %READC-ERR: atom 13 SER 2HB not found in molecular structure %READC-ERR: atom 13 SER 3HB not found in molecular structure %READC-ERR: atom 13 SER QB not found in molecular structure %READC-ERR: atom 14 GLU 2HB not found in molecular structure %READC-ERR: atom 14 GLU 3HB not found in molecular structure %READC-ERR: atom 14 GLU QB not found in molecular structure %READC-ERR: atom 14 GLU 2HG not found in molecular structure %READC-ERR: atom 14 GLU 3HG not found in molecular structure %READC-ERR: atom 14 GLU QG not found in molecular structure %READC-ERR: atom 15 GLU 2HB not found in molecular structure %READC-ERR: atom 15 GLU 3HB not found in molecular structure %READC-ERR: atom 15 GLU QB not found in molecular structure %READC-ERR: atom 15 GLU 2HG not found in molecular structure %READC-ERR: atom 15 GLU 3HG not found in molecular structure %READC-ERR: atom 15 GLU QG not found in molecular structure %READC-ERR: atom 16 GLY 1HA not found in molecular structure %READC-ERR: atom 16 GLY 2HA not found in molecular structure %READC-ERR: atom 16 GLY QA not found in molecular structure %READC-ERR: atom 17 GLN 2HB not found in molecular structure %READC-ERR: atom 17 GLN 3HB not found in molecular structure %READC-ERR: atom 17 GLN QB not found in molecular structure %READC-ERR: atom 17 GLN 2HG not found in molecular structure %READC-ERR: atom 17 GLN 3HG not found in molecular structure %READC-ERR: atom 17 GLN QG not found in molecular structure %READC-ERR: atom 17 GLN 1HE2 not found in molecular structure %READC-ERR: atom 17 GLN 2HE2 not found in molecular structure %READC-ERR: atom 17 GLN QE2 not found in molecular structure %READC-ERR: atom 18 VAL QG1 not found in molecular structure %READC-ERR: atom 18 VAL QG2 not found in molecular structure %READC-ERR: atom 18 VAL 1HG1 not found in molecular structure %READC-ERR: atom 18 VAL 2HG1 not found in molecular structure %READC-ERR: atom 18 VAL 3HG1 not found in molecular structure %READC-ERR: atom 18 VAL 1HG2 not found in molecular structure %READC-ERR: atom 18 VAL 2HG2 not found in molecular structure %READC-ERR: atom 18 VAL 3HG2 not found in molecular structure %READC-ERR: atom 18 VAL QQG not found in molecular structure %READC-ERR: atom 19 ILE QG2 not found in molecular structure %READC-ERR: atom 19 ILE 1HG2 not found in molecular structure %READC-ERR: atom 19 ILE 2HG2 not found in molecular structure %READC-ERR: atom 19 ILE 3HG2 not found in molecular structure %READC-ERR: atom 19 ILE 2HG1 not found in molecular structure %READC-ERR: atom 19 ILE 3HG1 not found in molecular structure %READC-ERR: atom 19 ILE QG1 not found in molecular structure %READC-ERR: atom 19 ILE QD1 not found in molecular structure %READC-ERR: atom 19 ILE 1HD1 not found in molecular structure %READC-ERR: atom 19 ILE 2HD1 not found in molecular structure %READC-ERR: atom 19 ILE 3HD1 not found in molecular structure %READC-ERR: atom 20 ALA QB not found in molecular structure %READC-ERR: atom 20 ALA 1HB not found in molecular structure %READC-ERR: atom 20 ALA 2HB not found in molecular structure %READC-ERR: atom 20 ALA 3HB not found in molecular structure %READC-ERR: atom 21 CYS 2HB not found in molecular structure %READC-ERR: atom 21 CYS 3HB not found in molecular structure %READC-ERR: atom 21 CYS QB not found in molecular structure %READC-ERR: atom 22 HIS 2HB not found in molecular structure %READC-ERR: atom 22 HIS 3HB not found in molecular structure %READC-ERR: atom 22 HIS QB not found in molecular structure %READC-ERR: atom 23 THR QG2 not found in molecular structure %READC-ERR: atom 23 THR 1HG2 not found in molecular structure %READC-ERR: atom 23 THR 2HG2 not found in molecular structure %READC-ERR: atom 23 THR 3HG2 not found in molecular structure %READC-ERR: atom 24 VAL QG1 not found in molecular structure %READC-ERR: atom 24 VAL QG2 not found in molecular structure %READC-ERR: atom 24 VAL 1HG1 not found in molecular structure %READC-ERR: atom 24 VAL 2HG1 not found in molecular structure %READC-ERR: atom 24 VAL 3HG1 not found in molecular structure %READC-ERR: atom 24 VAL 1HG2 not found in molecular structure %READC-ERR: atom 24 VAL 2HG2 not found in molecular structure %READC-ERR: atom 24 VAL 3HG2 not found in molecular structure %READC-ERR: atom 24 VAL QQG not found in molecular structure %READC-ERR: atom 25 GLU 2HB not found in molecular structure %READC-ERR: atom 25 GLU 3HB not found in molecular structure %READC-ERR: atom 25 GLU QB not found in molecular structure %READC-ERR: atom 25 GLU 2HG not found in molecular structure %READC-ERR: atom 25 GLU 3HG not found in molecular structure %READC-ERR: atom 25 GLU QG not found in molecular structure %READC-ERR: atom 26 THR QG2 not found in molecular structure %READC-ERR: atom 26 THR 1HG2 not found in molecular structure %READC-ERR: atom 26 THR 2HG2 not found in molecular structure %READC-ERR: atom 26 THR 3HG2 not found in molecular structure %READC-ERR: atom 27 TRP 2HB not found in molecular structure %READC-ERR: atom 27 TRP 3HB not found in molecular structure %READC-ERR: atom 27 TRP QB not found in molecular structure %READC-ERR: atom 28 ASN 2HB not found in molecular structure %READC-ERR: atom 28 ASN 3HB not found in molecular structure %READC-ERR: atom 28 ASN QB not found in molecular structure %READC-ERR: atom 28 ASN 1HD2 not found in molecular structure %READC-ERR: atom 28 ASN 2HD2 not found in molecular structure %READC-ERR: atom 28 ASN QD2 not found in molecular structure %READC-ERR: atom 29 GLU 2HB not found in molecular structure %READC-ERR: atom 29 GLU 3HB not found in molecular structure %READC-ERR: atom 29 GLU QB not found in molecular structure %READC-ERR: atom 29 GLU 2HG not found in molecular structure %READC-ERR: atom 29 GLU 3HG not found in molecular structure %READC-ERR: atom 29 GLU QG not found in molecular structure %READC-ERR: atom 30 GLN 2HB not found in molecular structure %READC-ERR: atom 30 GLN 3HB not found in molecular structure %READC-ERR: atom 30 GLN QB not found in molecular structure %READC-ERR: atom 30 GLN 2HG not found in molecular structure %READC-ERR: atom 30 GLN 3HG not found in molecular structure %READC-ERR: atom 30 GLN QG not found in molecular structure %READC-ERR: atom 30 GLN 1HE2 not found in molecular structure %READC-ERR: atom 30 GLN 2HE2 not found in molecular structure %READC-ERR: atom 30 GLN QE2 not found in molecular structure %READC-ERR: atom 31 LEU 2HB not found in molecular structure %READC-ERR: atom 31 LEU 3HB not found in molecular structure %READC-ERR: atom 31 LEU QB not found in molecular structure %READC-ERR: atom 31 LEU QD1 not found in molecular structure %READC-ERR: atom 31 LEU QD2 not found in molecular structure %READC-ERR: atom 31 LEU 1HD1 not found in molecular structure %READC-ERR: atom 31 LEU 2HD1 not found in molecular structure %READC-ERR: atom 31 LEU 3HD1 not found in molecular structure %READC-ERR: atom 31 LEU 1HD2 not found in molecular structure %READC-ERR: atom 31 LEU 2HD2 not found in molecular structure %READC-ERR: atom 31 LEU 3HD2 not found in molecular structure %READC-ERR: atom 31 LEU QQD not found in molecular structure %READC-ERR: atom 32 GLN 2HB not found in molecular structure %READC-ERR: atom 32 GLN 3HB not found in molecular structure %READC-ERR: atom 32 GLN QB not found in molecular structure %READC-ERR: atom 32 GLN 2HG not found in molecular structure %READC-ERR: atom 32 GLN 3HG not found in molecular structure %READC-ERR: atom 32 GLN QG not found in molecular structure %READC-ERR: atom 32 GLN 1HE2 not found in molecular structure %READC-ERR: atom 32 GLN 2HE2 not found in molecular structure %READC-ERR: atom 32 GLN QE2 not found in molecular structure %READC-ERR: atom 33 LYS 2HB not found in molecular structure %READC-ERR: atom 33 LYS 3HB not found in molecular structure %READC-ERR: atom 33 LYS QB not found in molecular structure %READC-ERR: atom 33 LYS 2HG not found in molecular structure %READC-ERR: atom 33 LYS 3HG not found in molecular structure %READC-ERR: atom 33 LYS QG not found in molecular structure %READC-ERR: atom 33 LYS 2HD not found in molecular structure %READC-ERR: atom 33 LYS 3HD not found in molecular structure %READC-ERR: atom 33 LYS QD not found in molecular structure %READC-ERR: atom 33 LYS 2HE not found in molecular structure %READC-ERR: atom 33 LYS 3HE not found in molecular structure %READC-ERR: atom 33 LYS QE not found in molecular structure %READC-ERR: atom 33 LYS 1HZ not found in molecular structure %READC-ERR: atom 33 LYS 2HZ not found in molecular structure %READC-ERR: atom 33 LYS 3HZ not found in molecular structure %READC-ERR: atom 33 LYS QZ not found in molecular structure %READC-ERR: atom 34 ALA QB not found in molecular structure %READC-ERR: atom 34 ALA 1HB not found in molecular structure %READC-ERR: atom 34 ALA 2HB not found in molecular structure %READC-ERR: atom 34 ALA 3HB not found in molecular structure %READC-ERR: atom 35 ASN 2HB not found in molecular structure %READC-ERR: atom 35 ASN 3HB not found in molecular structure %READC-ERR: atom 35 ASN QB not found in molecular structure %READC-ERR: atom 35 ASN 1HD2 not found in molecular structure %READC-ERR: atom 35 ASN 2HD2 not found in molecular structure %READC-ERR: atom 35 ASN QD2 not found in molecular structure %READC-ERR: atom 36 GLU 2HB not found in molecular structure %READC-ERR: atom 36 GLU 3HB not found in molecular structure %READC-ERR: atom 36 GLU QB not found in molecular structure %READC-ERR: atom 36 GLU 2HG not found in molecular structure %READC-ERR: atom 36 GLU 3HG not found in molecular structure %READC-ERR: atom 36 GLU QG not found in molecular structure %READC-ERR: atom 37 SER 2HB not found in molecular structure %READC-ERR: atom 37 SER 3HB not found in molecular structure %READC-ERR: atom 37 SER QB not found in molecular structure %READC-ERR: atom 38 LYS 2HB not found in molecular structure %READC-ERR: atom 38 LYS 3HB not found in molecular structure %READC-ERR: atom 38 LYS QB not found in molecular structure %READC-ERR: atom 38 LYS 2HG not found in molecular structure %READC-ERR: atom 38 LYS 3HG not found in molecular structure %READC-ERR: atom 38 LYS QG not found in molecular structure %READC-ERR: atom 38 LYS 2HD not found in molecular structure %READC-ERR: atom 38 LYS 3HD not found in molecular structure %READC-ERR: atom 38 LYS QD not found in molecular structure %READC-ERR: atom 38 LYS 2HE not found in molecular structure %READC-ERR: atom 38 LYS 3HE not found in molecular structure %READC-ERR: atom 38 LYS QE not found in molecular structure %READC-ERR: atom 38 LYS 1HZ not found in molecular structure %READC-ERR: atom 38 LYS 2HZ not found in molecular structure %READC-ERR: atom 38 LYS 3HZ not found in molecular structure %READC-ERR: atom 38 LYS QZ not found in molecular structure %READC-ERR: atom 39 THR QG2 not found in molecular structure %READC-ERR: atom 39 THR 1HG2 not found in molecular structure %READC-ERR: atom 39 THR 2HG2 not found in molecular structure %READC-ERR: atom 39 THR 3HG2 not found in molecular structure %READC-ERR: atom 40 LEU 2HB not found in molecular structure %READC-ERR: atom 40 LEU 3HB not found in molecular structure %READC-ERR: atom 40 LEU QB not found in molecular structure %READC-ERR: atom 40 LEU QD1 not found in molecular structure %READC-ERR: atom 40 LEU QD2 not found in molecular structure %READC-ERR: atom 40 LEU 1HD1 not found in molecular structure %READC-ERR: atom 40 LEU 2HD1 not found in molecular structure %READC-ERR: atom 40 LEU 3HD1 not found in molecular structure %READC-ERR: atom 40 LEU 1HD2 not found in molecular structure %READC-ERR: atom 40 LEU 2HD2 not found in molecular structure %READC-ERR: atom 40 LEU 3HD2 not found in molecular structure %READC-ERR: atom 40 LEU QQD not found in molecular structure %READC-ERR: atom 41 VAL QG1 not found in molecular structure %READC-ERR: atom 41 VAL QG2 not found in molecular structure %READC-ERR: atom 41 VAL 1HG1 not found in molecular structure %READC-ERR: atom 41 VAL 2HG1 not found in molecular structure %READC-ERR: atom 41 VAL 3HG1 not found in molecular structure %READC-ERR: atom 41 VAL 1HG2 not found in molecular structure %READC-ERR: atom 41 VAL 2HG2 not found in molecular structure %READC-ERR: atom 41 VAL 3HG2 not found in molecular structure %READC-ERR: atom 41 VAL QQG not found in molecular structure %READC-ERR: atom 42 VAL QG1 not found in molecular structure %READC-ERR: atom 42 VAL QG2 not found in molecular structure %READC-ERR: atom 42 VAL 1HG1 not found in molecular structure %READC-ERR: atom 42 VAL 2HG1 not found in molecular structure %READC-ERR: atom 42 VAL 3HG1 not found in molecular structure %READC-ERR: atom 42 VAL 1HG2 not found in molecular structure %READC-ERR: atom 42 VAL 2HG2 not found in molecular structure %READC-ERR: atom 42 VAL 3HG2 not found in molecular structure %READC-ERR: atom 42 VAL QQG not found in molecular structure %READC-ERR: atom 43 VAL QG1 not found in molecular structure %READC-ERR: atom 43 VAL QG2 not found in molecular structure %READC-ERR: atom 43 VAL 1HG1 not found in molecular structure %READC-ERR: atom 43 VAL 2HG1 not found in molecular structure %READC-ERR: atom 43 VAL 3HG1 not found in molecular structure %READC-ERR: atom 43 VAL 1HG2 not found in molecular structure %READC-ERR: atom 43 VAL 2HG2 not found in molecular structure %READC-ERR: atom 43 VAL 3HG2 not found in molecular structure %READC-ERR: atom 43 VAL QQG not found in molecular structure %READC-ERR: atom 44 ASP 2HB not found in molecular structure %READC-ERR: atom 44 ASP 3HB not found in molecular structure %READC-ERR: atom 44 ASP QB not found in molecular structure %READC-ERR: atom 45 PHE 2HB not found in molecular structure %READC-ERR: atom 45 PHE 3HB not found in molecular structure %READC-ERR: atom 45 PHE QB not found in molecular structure %READC-ERR: atom 45 PHE QD not found in molecular structure %READC-ERR: atom 45 PHE QE not found in molecular structure %READC-ERR: atom 45 PHE QR not found in molecular structure %READC-ERR: atom 46 THR QG2 not found in molecular structure %READC-ERR: atom 46 THR 1HG2 not found in molecular structure %READC-ERR: atom 46 THR 2HG2 not found in molecular structure %READC-ERR: atom 46 THR 3HG2 not found in molecular structure %READC-ERR: atom 47 ALA QB not found in molecular structure %READC-ERR: atom 47 ALA 1HB not found in molecular structure %READC-ERR: atom 47 ALA 2HB not found in molecular structure %READC-ERR: atom 47 ALA 3HB not found in molecular structure %READC-ERR: atom 48 SER 2HB not found in molecular structure %READC-ERR: atom 48 SER 3HB not found in molecular structure %READC-ERR: atom 48 SER QB not found in molecular structure %READC-ERR: atom 49 TRP 2HB not found in molecular structure %READC-ERR: atom 49 TRP 3HB not found in molecular structure %READC-ERR: atom 49 TRP QB not found in molecular structure %READC-ERR: atom 50 CYS 2HB not found in molecular structure %READC-ERR: atom 50 CYS 3HB not found in molecular structure %READC-ERR: atom 50 CYS QB not found in molecular structure %READC-ERR: atom 51 GLY 1HA not found in molecular structure %READC-ERR: atom 51 GLY 2HA not found in molecular structure %READC-ERR: atom 51 GLY QA not found in molecular structure %READC-ERR: atom 52 PRO 2HB not found in molecular structure %READC-ERR: atom 52 PRO 3HB not found in molecular structure %READC-ERR: atom 52 PRO QB not found in molecular structure %READC-ERR: atom 52 PRO 2HG not found in molecular structure %READC-ERR: atom 52 PRO 3HG not found in molecular structure %READC-ERR: atom 52 PRO QG not found in molecular structure %READC-ERR: atom 52 PRO 2HD not found in molecular structure %READC-ERR: atom 52 PRO 3HD not found in molecular structure %READC-ERR: atom 52 PRO QD not found in molecular structure %READC-ERR: atom 53 CYS 2HB not found in molecular structure %READC-ERR: atom 53 CYS 3HB not found in molecular structure %READC-ERR: atom 53 CYS QB not found in molecular structure %READC-ERR: atom 54 ARG 2HB not found in molecular structure %READC-ERR: atom 54 ARG 3HB not found in molecular structure %READC-ERR: atom 54 ARG QB not found in molecular structure %READC-ERR: atom 54 ARG 2HG not found in molecular structure %READC-ERR: atom 54 ARG 3HG not found in molecular structure %READC-ERR: atom 54 ARG QG not found in molecular structure %READC-ERR: atom 54 ARG 2HD not found in molecular structure %READC-ERR: atom 54 ARG 3HD not found in molecular structure %READC-ERR: atom 54 ARG QD not found in molecular structure %READC-ERR: atom 54 ARG 1HH1 not found in molecular structure %READC-ERR: atom 54 ARG 2HH1 not found in molecular structure %READC-ERR: atom 54 ARG QH1 not found in molecular structure %READC-ERR: atom 54 ARG 1HH2 not found in molecular structure %READC-ERR: atom 54 ARG 2HH2 not found in molecular structure %READC-ERR: atom 54 ARG QH2 not found in molecular structure %READC-ERR: atom 55 PHE 2HB not found in molecular structure %READC-ERR: atom 55 PHE 3HB not found in molecular structure %READC-ERR: atom 55 PHE QB not found in molecular structure %READC-ERR: atom 55 PHE QD not found in molecular structure %READC-ERR: atom 55 PHE QE not found in molecular structure %READC-ERR: atom 55 PHE QR not found in molecular structure %READC-ERR: atom 56 ILE QG2 not found in molecular structure %READC-ERR: atom 56 ILE 1HG2 not found in molecular structure %READC-ERR: atom 56 ILE 2HG2 not found in molecular structure %READC-ERR: atom 56 ILE 3HG2 not found in molecular structure %READC-ERR: atom 56 ILE 2HG1 not found in molecular structure %READC-ERR: atom 56 ILE 3HG1 not found in molecular structure %READC-ERR: atom 56 ILE QG1 not found in molecular structure %READC-ERR: atom 56 ILE QD1 not found in molecular structure %READC-ERR: atom 56 ILE 1HD1 not found in molecular structure %READC-ERR: atom 56 ILE 2HD1 not found in molecular structure %READC-ERR: atom 56 ILE 3HD1 not found in molecular structure %READC-ERR: atom 57 ALA QB not found in molecular structure %READC-ERR: atom 57 ALA 1HB not found in molecular structure %READC-ERR: atom 57 ALA 2HB not found in molecular structure %READC-ERR: atom 57 ALA 3HB not found in molecular structure %READC-ERR: atom 58 PRO 2HB not found in molecular structure %READC-ERR: atom 58 PRO 3HB not found in molecular structure %READC-ERR: atom 58 PRO QB not found in molecular structure %READC-ERR: atom 58 PRO 2HG not found in molecular structure %READC-ERR: atom 58 PRO 3HG not found in molecular structure %READC-ERR: atom 58 PRO QG not found in molecular structure %READC-ERR: atom 58 PRO 2HD not found in molecular structure %READC-ERR: atom 58 PRO 3HD not found in molecular structure %READC-ERR: atom 58 PRO QD not found in molecular structure %READC-ERR: atom 59 PHE 2HB not found in molecular structure %READC-ERR: atom 59 PHE 3HB not found in molecular structure %READC-ERR: atom 59 PHE QB not found in molecular structure %READC-ERR: atom 59 PHE QD not found in molecular structure %READC-ERR: atom 59 PHE QE not found in molecular structure %READC-ERR: atom 59 PHE QR not found in molecular structure %READC-ERR: atom 60 PHE 2HB not found in molecular structure %READC-ERR: atom 60 PHE 3HB not found in molecular structure %READC-ERR: atom 60 PHE QB not found in molecular structure %READC-ERR: atom 60 PHE QD not found in molecular structure %READC-ERR: atom 60 PHE QE not found in molecular structure %READC-ERR: atom 60 PHE QR not found in molecular structure %READC-ERR: atom 61 ALA QB not found in molecular structure %READC-ERR: atom 61 ALA 1HB not found in molecular structure %READC-ERR: atom 61 ALA 2HB not found in molecular structure %READC-ERR: atom 61 ALA 3HB not found in molecular structure %READC-ERR: atom 62 ASP 2HB not found in molecular structure %READC-ERR: atom 62 ASP 3HB not found in molecular structure %READC-ERR: atom 62 ASP QB not found in molecular structure %READC-ERR: atom 63 LEU 2HB not found in molecular structure %READC-ERR: atom 63 LEU 3HB not found in molecular structure %READC-ERR: atom 63 LEU QB not found in molecular structure %READC-ERR: atom 63 LEU QD1 not found in molecular structure %READC-ERR: atom 63 LEU QD2 not found in molecular structure %READC-ERR: atom 63 LEU 1HD1 not found in molecular structure %READC-ERR: atom 63 LEU 2HD1 not found in molecular structure %READC-ERR: atom 63 LEU 3HD1 not found in molecular structure %READC-ERR: atom 63 LEU 1HD2 not found in molecular structure %READC-ERR: atom 63 LEU 2HD2 not found in molecular structure %READC-ERR: atom 63 LEU 3HD2 not found in molecular structure %READC-ERR: atom 63 LEU QQD not found in molecular structure %READC-ERR: atom 64 ALA QB not found in molecular structure %READC-ERR: atom 64 ALA 1HB not found in molecular structure %READC-ERR: atom 64 ALA 2HB not found in molecular structure %READC-ERR: atom 64 ALA 3HB not found in molecular structure %READC-ERR: atom 65 LYS 2HB not found in molecular structure %READC-ERR: atom 65 LYS 3HB not found in molecular structure %READC-ERR: atom 65 LYS QB not found in molecular structure %READC-ERR: atom 65 LYS 2HG not found in molecular structure %READC-ERR: atom 65 LYS 3HG not found in molecular structure %READC-ERR: atom 65 LYS QG not found in molecular structure %READC-ERR: atom 65 LYS 2HD not found in molecular structure %READC-ERR: atom 65 LYS 3HD not found in molecular structure %READC-ERR: atom 65 LYS QD not found in molecular structure %READC-ERR: atom 65 LYS 2HE not found in molecular structure %READC-ERR: atom 65 LYS 3HE not found in molecular structure %READC-ERR: atom 65 LYS QE not found in molecular structure %READC-ERR: atom 65 LYS 1HZ not found in molecular structure %READC-ERR: atom 65 LYS 2HZ not found in molecular structure %READC-ERR: atom 65 LYS 3HZ not found in molecular structure %READC-ERR: atom 65 LYS QZ not found in molecular structure %READC-ERR: atom 66 LYS 2HB not found in molecular structure %READC-ERR: atom 66 LYS 3HB not found in molecular structure %READC-ERR: atom 66 LYS QB not found in molecular structure %READC-ERR: atom 66 LYS 2HG not found in molecular structure %READC-ERR: atom 66 LYS 3HG not found in molecular structure %READC-ERR: atom 66 LYS QG not found in molecular structure %READC-ERR: atom 66 LYS 2HD not found in molecular structure %READC-ERR: atom 66 LYS 3HD not found in molecular structure %READC-ERR: atom 66 LYS QD not found in molecular structure %READC-ERR: atom 66 LYS 2HE not found in molecular structure %READC-ERR: atom 66 LYS 3HE not found in molecular structure %READC-ERR: atom 66 LYS QE not found in molecular structure %READC-ERR: atom 66 LYS 1HZ not found in molecular structure %READC-ERR: atom 66 LYS 2HZ not found in molecular structure %READC-ERR: atom 66 LYS 3HZ not found in molecular structure %READC-ERR: atom 66 LYS QZ not found in molecular structure %READC-ERR: atom 67 LEU 2HB not found in molecular structure %READC-ERR: atom 67 LEU 3HB not found in molecular structure %READC-ERR: atom 67 LEU QB not found in molecular structure %READC-ERR: atom 67 LEU QD1 not found in molecular structure %READC-ERR: atom 67 LEU QD2 not found in molecular structure %READC-ERR: atom 67 LEU 1HD1 not found in molecular structure %READC-ERR: atom 67 LEU 2HD1 not found in molecular structure %READC-ERR: atom 67 LEU 3HD1 not found in molecular structure %READC-ERR: atom 67 LEU 1HD2 not found in molecular structure %READC-ERR: atom 67 LEU 2HD2 not found in molecular structure %READC-ERR: atom 67 LEU 3HD2 not found in molecular structure %READC-ERR: atom 67 LEU QQD not found in molecular structure %READC-ERR: atom 68 PRO 2HB not found in molecular structure %READC-ERR: atom 68 PRO 3HB not found in molecular structure %READC-ERR: atom 68 PRO QB not found in molecular structure %READC-ERR: atom 68 PRO 2HG not found in molecular structure %READC-ERR: atom 68 PRO 3HG not found in molecular structure %READC-ERR: atom 68 PRO QG not found in molecular structure %READC-ERR: atom 68 PRO 2HD not found in molecular structure %READC-ERR: atom 68 PRO 3HD not found in molecular structure %READC-ERR: atom 68 PRO QD not found in molecular structure %READC-ERR: atom 69 ASN 2HB not found in molecular structure %READC-ERR: atom 69 ASN 3HB not found in molecular structure %READC-ERR: atom 69 ASN QB not found in molecular structure %READC-ERR: atom 69 ASN 1HD2 not found in molecular structure %READC-ERR: atom 69 ASN 2HD2 not found in molecular structure %READC-ERR: atom 69 ASN QD2 not found in molecular structure %READC-ERR: atom 70 VAL QG1 not found in molecular structure %READC-ERR: atom 70 VAL QG2 not found in molecular structure %READC-ERR: atom 70 VAL 1HG1 not found in molecular structure %READC-ERR: atom 70 VAL 2HG1 not found in molecular structure %READC-ERR: atom 70 VAL 3HG1 not found in molecular structure %READC-ERR: atom 70 VAL 1HG2 not found in molecular structure %READC-ERR: atom 70 VAL 2HG2 not found in molecular structure %READC-ERR: atom 70 VAL 3HG2 not found in molecular structure %READC-ERR: atom 70 VAL QQG not found in molecular structure %READC-ERR: atom 71 LEU 2HB not found in molecular structure %READC-ERR: atom 71 LEU 3HB not found in molecular structure %READC-ERR: atom 71 LEU QB not found in molecular structure %READC-ERR: atom 71 LEU QD1 not found in molecular structure %READC-ERR: atom 71 LEU QD2 not found in molecular structure %READC-ERR: atom 71 LEU 1HD1 not found in molecular structure %READC-ERR: atom 71 LEU 2HD1 not found in molecular structure %READC-ERR: atom 71 LEU 3HD1 not found in molecular structure %READC-ERR: atom 71 LEU 1HD2 not found in molecular structure %READC-ERR: atom 71 LEU 2HD2 not found in molecular structure %READC-ERR: atom 71 LEU 3HD2 not found in molecular structure %READC-ERR: atom 71 LEU QQD not found in molecular structure %READC-ERR: atom 72 PHE 2HB not found in molecular structure %READC-ERR: atom 72 PHE 3HB not found in molecular structure %READC-ERR: atom 72 PHE QB not found in molecular structure %READC-ERR: atom 72 PHE QD not found in molecular structure %READC-ERR: atom 72 PHE QE not found in molecular structure %READC-ERR: atom 72 PHE QR not found in molecular structure %READC-ERR: atom 73 LEU 2HB not found in molecular structure %READC-ERR: atom 73 LEU 3HB not found in molecular structure %READC-ERR: atom 73 LEU QB not found in molecular structure %READC-ERR: atom 73 LEU QD1 not found in molecular structure %READC-ERR: atom 73 LEU QD2 not found in molecular structure %READC-ERR: atom 73 LEU 1HD1 not found in molecular structure %READC-ERR: atom 73 LEU 2HD1 not found in molecular structure %READC-ERR: atom 73 LEU 3HD1 not found in molecular structure %READC-ERR: atom 73 LEU 1HD2 not found in molecular structure %READC-ERR: atom 73 LEU 2HD2 not found in molecular structure %READC-ERR: atom 73 LEU 3HD2 not found in molecular structure %READC-ERR: atom 73 LEU QQD not found in molecular structure %READC-ERR: atom 74 LYS 2HB not found in molecular structure %READC-ERR: atom 74 LYS 3HB not found in molecular structure %READC-ERR: atom 74 LYS QB not found in molecular structure %READC-ERR: atom 74 LYS 2HG not found in molecular structure %READC-ERR: atom 74 LYS 3HG not found in molecular structure %READC-ERR: atom 74 LYS QG not found in molecular structure %READC-ERR: atom 74 LYS 2HD not found in molecular structure %READC-ERR: atom 74 LYS 3HD not found in molecular structure %READC-ERR: atom 74 LYS QD not found in molecular structure %READC-ERR: atom 74 LYS 2HE not found in molecular structure %READC-ERR: atom 74 LYS 3HE not found in molecular structure %READC-ERR: atom 74 LYS QE not found in molecular structure %READC-ERR: atom 74 LYS 1HZ not found in molecular structure %READC-ERR: atom 74 LYS 2HZ not found in molecular structure %READC-ERR: atom 74 LYS 3HZ not found in molecular structure %READC-ERR: atom 74 LYS QZ not found in molecular structure %READC-ERR: atom 75 VAL QG1 not found in molecular structure %READC-ERR: atom 75 VAL QG2 not found in molecular structure %READC-ERR: atom 75 VAL 1HG1 not found in molecular structure %READC-ERR: atom 75 VAL 2HG1 not found in molecular structure %READC-ERR: atom 75 VAL 3HG1 not found in molecular structure %READC-ERR: atom 75 VAL 1HG2 not found in molecular structure %READC-ERR: atom 75 VAL 2HG2 not found in molecular structure %READC-ERR: atom 75 VAL 3HG2 not found in molecular structure %READC-ERR: atom 75 VAL QQG not found in molecular structure %READC-ERR: atom 76 ASP 2HB not found in molecular structure %READC-ERR: atom 76 ASP 3HB not found in molecular structure %READC-ERR: atom 76 ASP QB not found in molecular structure %READC-ERR: atom 77 THR QG2 not found in molecular structure %READC-ERR: atom 77 THR 1HG2 not found in molecular structure %READC-ERR: atom 77 THR 2HG2 not found in molecular structure %READC-ERR: atom 77 THR 3HG2 not found in molecular structure %READC-ERR: atom 78 ASP 2HB not found in molecular structure %READC-ERR: atom 78 ASP 3HB not found in molecular structure %READC-ERR: atom 78 ASP QB not found in molecular structure %READC-ERR: atom 79 GLU 2HB not found in molecular structure %READC-ERR: atom 79 GLU 3HB not found in molecular structure %READC-ERR: atom 79 GLU QB not found in molecular structure %READC-ERR: atom 79 GLU 2HG not found in molecular structure %READC-ERR: atom 79 GLU 3HG not found in molecular structure %READC-ERR: atom 79 GLU QG not found in molecular structure %READC-ERR: atom 80 LEU 2HB not found in molecular structure %READC-ERR: atom 80 LEU 3HB not found in molecular structure %READC-ERR: atom 80 LEU QB not found in molecular structure %READC-ERR: atom 80 LEU QD1 not found in molecular structure %READC-ERR: atom 80 LEU QD2 not found in molecular structure %READC-ERR: atom 80 LEU 1HD1 not found in molecular structure %READC-ERR: atom 80 LEU 2HD1 not found in molecular structure %READC-ERR: atom 80 LEU 3HD1 not found in molecular structure %READC-ERR: atom 80 LEU 1HD2 not found in molecular structure %READC-ERR: atom 80 LEU 2HD2 not found in molecular structure %READC-ERR: atom 80 LEU 3HD2 not found in molecular structure %READC-ERR: atom 80 LEU QQD not found in molecular structure %READC-ERR: atom 81 LYS 2HB not found in molecular structure %READC-ERR: atom 81 LYS 3HB not found in molecular structure %READC-ERR: atom 81 LYS QB not found in molecular structure %READC-ERR: atom 81 LYS 2HG not found in molecular structure %READC-ERR: atom 81 LYS 3HG not found in molecular structure %READC-ERR: atom 81 LYS QG not found in molecular structure %READC-ERR: atom 81 LYS 2HD not found in molecular structure %READC-ERR: atom 81 LYS 3HD not found in molecular structure %READC-ERR: atom 81 LYS QD not found in molecular structure %READC-ERR: atom 81 LYS 2HE not found in molecular structure %READC-ERR: atom 81 LYS 3HE not found in molecular structure %READC-ERR: atom 81 LYS QE not found in molecular structure %READC-ERR: atom 81 LYS 1HZ not found in molecular structure %READC-ERR: atom 81 LYS 2HZ not found in molecular structure %READC-ERR: atom 81 LYS 3HZ not found in molecular structure %READC-ERR: atom 81 LYS QZ not found in molecular structure %READC-ERR: atom 82 SER 2HB not found in molecular structure %READC-ERR: atom 82 SER 3HB not found in molecular structure %READC-ERR: atom 82 SER QB not found in molecular structure %READC-ERR: atom 83 VAL QG1 not found in molecular structure %READC-ERR: atom 83 VAL QG2 not found in molecular structure %READC-ERR: atom 83 VAL 1HG1 not found in molecular structure %READC-ERR: atom 83 VAL 2HG1 not found in molecular structure %READC-ERR: atom 83 VAL 3HG1 not found in molecular structure %READC-ERR: atom 83 VAL 1HG2 not found in molecular structure %READC-ERR: atom 83 VAL 2HG2 not found in molecular structure %READC-ERR: atom 83 VAL 3HG2 not found in molecular structure %READC-ERR: atom 83 VAL QQG not found in molecular structure %READC-ERR: atom 84 ALA QB not found in molecular structure %READC-ERR: atom 84 ALA 1HB not found in molecular structure %READC-ERR: atom 84 ALA 2HB not found in molecular structure %READC-ERR: atom 84 ALA 3HB not found in molecular structure %READC-ERR: atom 85 SER 2HB not found in molecular structure %READC-ERR: atom 85 SER 3HB not found in molecular structure %READC-ERR: atom 85 SER QB not found in molecular structure %READC-ERR: atom 86 ASP 2HB not found in molecular structure %READC-ERR: atom 86 ASP 3HB not found in molecular structure %READC-ERR: atom 86 ASP QB not found in molecular structure %READC-ERR: atom 87 TRP 2HB not found in molecular structure %READC-ERR: atom 87 TRP 3HB not found in molecular structure %READC-ERR: atom 87 TRP QB not found in molecular structure %READC-ERR: atom 88 ALA QB not found in molecular structure %READC-ERR: atom 88 ALA 1HB not found in molecular structure %READC-ERR: atom 88 ALA 2HB not found in molecular structure %READC-ERR: atom 88 ALA 3HB not found in molecular structure %READC-ERR: atom 89 ILE QG2 not found in molecular structure %READC-ERR: atom 89 ILE 1HG2 not found in molecular structure %READC-ERR: atom 89 ILE 2HG2 not found in molecular structure %READC-ERR: atom 89 ILE 3HG2 not found in molecular structure %READC-ERR: atom 89 ILE 2HG1 not found in molecular structure %READC-ERR: atom 89 ILE 3HG1 not found in molecular structure %READC-ERR: atom 89 ILE QG1 not found in molecular structure %READC-ERR: atom 89 ILE QD1 not found in molecular structure %READC-ERR: atom 89 ILE 1HD1 not found in molecular structure %READC-ERR: atom 89 ILE 2HD1 not found in molecular structure %READC-ERR: atom 89 ILE 3HD1 not found in molecular structure %READC-ERR: atom 90 GLN 2HB not found in molecular structure %READC-ERR: atom 90 GLN 3HB not found in molecular structure %READC-ERR: atom 90 GLN QB not found in molecular structure %READC-ERR: atom 90 GLN 2HG not found in molecular structure %READC-ERR: atom 90 GLN 3HG not found in molecular structure %READC-ERR: atom 90 GLN QG not found in molecular structure %READC-ERR: atom 90 GLN 1HE2 not found in molecular structure %READC-ERR: atom 90 GLN 2HE2 not found in molecular structure %READC-ERR: atom 90 GLN QE2 not found in molecular structure %READC-ERR: atom 91 ALA QB not found in molecular structure %READC-ERR: atom 91 ALA 1HB not found in molecular structure %READC-ERR: atom 91 ALA 2HB not found in molecular structure %READC-ERR: atom 91 ALA 3HB not found in molecular structure %READC-ERR: atom 92 MET 2HB not found in molecular structure %READC-ERR: atom 92 MET 3HB not found in molecular structure %READC-ERR: atom 92 MET QB not found in molecular structure %READC-ERR: atom 92 MET 2HG not found in molecular structure %READC-ERR: atom 92 MET 3HG not found in molecular structure %READC-ERR: atom 92 MET QG not found in molecular structure %READC-ERR: atom 92 MET QE not found in molecular structure %READC-ERR: atom 92 MET 1HE not found in molecular structure %READC-ERR: atom 92 MET 2HE not found in molecular structure %READC-ERR: atom 92 MET 3HE not found in molecular structure %READC-ERR: atom 93 PRO 2HB not found in molecular structure %READC-ERR: atom 93 PRO 3HB not found in molecular structure %READC-ERR: atom 93 PRO QB not found in molecular structure %READC-ERR: atom 93 PRO 2HG not found in molecular structure %READC-ERR: atom 93 PRO 3HG not found in molecular structure %READC-ERR: atom 93 PRO QG not found in molecular structure %READC-ERR: atom 93 PRO 2HD not found in molecular structure %READC-ERR: atom 93 PRO 3HD not found in molecular structure %READC-ERR: atom 93 PRO QD not found in molecular structure %READC-ERR: atom 94 THR QG2 not found in molecular structure %READC-ERR: atom 94 THR 1HG2 not found in molecular structure %READC-ERR: atom 94 THR 2HG2 not found in molecular structure %READC-ERR: atom 94 THR 3HG2 not found in molecular structure %READC-ERR: atom 95 PHE 2HB not found in molecular structure %READC-ERR: atom 95 PHE 3HB not found in molecular structure %READC-ERR: atom 95 PHE QB not found in molecular structure %READC-ERR: atom 95 PHE QD not found in molecular structure %READC-ERR: atom 95 PHE QE not found in molecular structure %READC-ERR: atom 95 PHE QR not found in molecular structure %READC-ERR: atom 96 MET 2HB not found in molecular structure %READC-ERR: atom 96 MET 3HB not found in molecular structure %READC-ERR: atom 96 MET QB not found in molecular structure %READC-ERR: atom 96 MET 2HG not found in molecular structure %READC-ERR: atom 96 MET 3HG not found in molecular structure %READC-ERR: atom 96 MET QG not found in molecular structure %READC-ERR: atom 96 MET QE not found in molecular structure %READC-ERR: atom 96 MET 1HE not found in molecular structure %READC-ERR: atom 96 MET 2HE not found in molecular structure %READC-ERR: atom 96 MET 3HE not found in molecular structure %READC-ERR: atom 97 PHE 2HB not found in molecular structure %READC-ERR: atom 97 PHE 3HB not found in molecular structure %READC-ERR: atom 97 PHE QB not found in molecular structure %READC-ERR: atom 97 PHE QD not found in molecular structure %READC-ERR: atom 97 PHE QE not found in molecular structure %READC-ERR: atom 97 PHE QR not found in molecular structure %READC-ERR: atom 98 LEU 2HB not found in molecular structure %READC-ERR: atom 98 LEU 3HB not found in molecular structure %READC-ERR: atom 98 LEU QB not found in molecular structure %READC-ERR: atom 98 LEU QD1 not found in molecular structure %READC-ERR: atom 98 LEU QD2 not found in molecular structure %READC-ERR: atom 98 LEU 1HD1 not found in molecular structure %READC-ERR: atom 98 LEU 2HD1 not found in molecular structure %READC-ERR: atom 98 LEU 3HD1 not found in molecular structure %READC-ERR: atom 98 LEU 1HD2 not found in molecular structure %READC-ERR: atom 98 LEU 2HD2 not found in molecular structure %READC-ERR: atom 98 LEU 3HD2 not found in molecular structure %READC-ERR: atom 98 LEU QQD not found in molecular structure %READC-ERR: atom 99 LYS 2HB not found in molecular structure %READC-ERR: atom 99 LYS 3HB not found in molecular structure %READC-ERR: atom 99 LYS QB not found in molecular structure %READC-ERR: atom 99 LYS 2HG not found in molecular structure %READC-ERR: atom 99 LYS 3HG not found in molecular structure %READC-ERR: atom 99 LYS QG not found in molecular structure %READC-ERR: atom 99 LYS 2HD not found in molecular structure %READC-ERR: atom 99 LYS 3HD not found in molecular structure %READC-ERR: atom 99 LYS QD not found in molecular structure %READC-ERR: atom 99 LYS 2HE not found in molecular structure %READC-ERR: atom 99 LYS 3HE not found in molecular structure %READC-ERR: atom 99 LYS QE not found in molecular structure %READC-ERR: atom 99 LYS 1HZ not found in molecular structure %READC-ERR: atom 99 LYS 2HZ not found in molecular structure %READC-ERR: atom 99 LYS 3HZ not found in molecular structure %READC-ERR: atom 99 LYS QZ not found in molecular structure %READC-ERR: atom 100 GLU 2HB not found in molecular structure %READC-ERR: atom 100 GLU 3HB not found in molecular structure %READC-ERR: atom 100 GLU QB not found in molecular structure %READC-ERR: atom 100 GLU 2HG not found in molecular structure %READC-ERR: atom 100 GLU 3HG not found in molecular structure %READC-ERR: atom 100 GLU QG not found in molecular structure %READC-ERR: atom 101 GLY 1HA not found in molecular structure %READC-ERR: atom 101 GLY 2HA not found in molecular structure %READC-ERR: atom 101 GLY QA not found in molecular structure %READC-ERR: atom 102 LYS 2HB not found in molecular structure %READC-ERR: atom 102 LYS 3HB not found in molecular structure %READC-ERR: atom 102 LYS QB not found in molecular structure %READC-ERR: atom 102 LYS 2HG not found in molecular structure %READC-ERR: atom 102 LYS 3HG not found in molecular structure %READC-ERR: atom 102 LYS QG not found in molecular structure %READC-ERR: atom 102 LYS 2HD not found in molecular structure %READC-ERR: atom 102 LYS 3HD not found in molecular structure %READC-ERR: atom 102 LYS QD not found in molecular structure %READC-ERR: atom 102 LYS 2HE not found in molecular structure %READC-ERR: atom 102 LYS 3HE not found in molecular structure %READC-ERR: atom 102 LYS QE not found in molecular structure %READC-ERR: atom 102 LYS 1HZ not found in molecular structure %READC-ERR: atom 102 LYS 2HZ not found in molecular structure %READC-ERR: atom 102 LYS 3HZ not found in molecular structure %READC-ERR: atom 102 LYS QZ not found in molecular structure %READC-ERR: atom 103 ILE QG2 not found in molecular structure %READC-ERR: atom 103 ILE 1HG2 not found in molecular structure %READC-ERR: atom 103 ILE 2HG2 not found in molecular structure %READC-ERR: atom 103 ILE 3HG2 not found in molecular structure %READC-ERR: atom 103 ILE 2HG1 not found in molecular structure %READC-ERR: atom 103 ILE 3HG1 not found in molecular structure %READC-ERR: atom 103 ILE QG1 not found in molecular structure %READC-ERR: atom 103 ILE QD1 not found in molecular structure %READC-ERR: atom 103 ILE 1HD1 not found in molecular structure %READC-ERR: atom 103 ILE 2HD1 not found in molecular structure %READC-ERR: atom 103 ILE 3HD1 not found in molecular structure %READC-ERR: atom 104 LEU 2HB not found in molecular structure %READC-ERR: atom 104 LEU 3HB not found in molecular structure %READC-ERR: atom 104 LEU QB not found in molecular structure %READC-ERR: atom 104 LEU QD1 not found in molecular structure %READC-ERR: atom 104 LEU QD2 not found in molecular structure %READC-ERR: atom 104 LEU 1HD1 not found in molecular structure %READC-ERR: atom 104 LEU 2HD1 not found in molecular structure %READC-ERR: atom 104 LEU 3HD1 not found in molecular structure %READC-ERR: atom 104 LEU 1HD2 not found in molecular structure %READC-ERR: atom 104 LEU 2HD2 not found in molecular structure %READC-ERR: atom 104 LEU 3HD2 not found in molecular structure %READC-ERR: atom 104 LEU QQD not found in molecular structure %READC-ERR: atom 105 ASP 2HB not found in molecular structure %READC-ERR: atom 105 ASP 3HB not found in molecular structure %READC-ERR: atom 105 ASP QB not found in molecular structure %READC-ERR: atom 106 LYS 2HB not found in molecular structure %READC-ERR: atom 106 LYS 3HB not found in molecular structure %READC-ERR: atom 106 LYS QB not found in molecular structure %READC-ERR: atom 106 LYS 2HG not found in molecular structure %READC-ERR: atom 106 LYS 3HG not found in molecular structure %READC-ERR: atom 106 LYS QG not found in molecular structure %READC-ERR: atom 106 LYS 2HD not found in molecular structure %READC-ERR: atom 106 LYS 3HD not found in molecular structure %READC-ERR: atom 106 LYS QD not found in molecular structure %READC-ERR: atom 106 LYS 2HE not found in molecular structure %READC-ERR: atom 106 LYS 3HE not found in molecular structure %READC-ERR: atom 106 LYS QE not found in molecular structure %READC-ERR: atom 106 LYS 1HZ not found in molecular structure %READC-ERR: atom 106 LYS 2HZ not found in molecular structure %READC-ERR: atom 106 LYS 3HZ not found in molecular structure %READC-ERR: atom 106 LYS QZ not found in molecular structure %READC-ERR: atom 107 VAL QG1 not found in molecular structure %READC-ERR: atom 107 VAL QG2 not found in molecular structure %READC-ERR: atom 107 VAL 1HG1 not found in molecular structure %READC-ERR: atom 107 VAL 2HG1 not found in molecular structure %READC-ERR: atom 107 VAL 3HG1 not found in molecular structure %READC-ERR: atom 107 VAL 1HG2 not found in molecular structure %READC-ERR: atom 107 VAL 2HG2 not found in molecular structure %READC-ERR: atom 107 VAL 3HG2 not found in molecular structure %READC-ERR: atom 107 VAL QQG not found in molecular structure %READC-ERR: atom 108 VAL QG1 not found in molecular structure %READC-ERR: atom 108 VAL QG2 not found in molecular structure %READC-ERR: atom 108 VAL 1HG1 not found in molecular structure %READC-ERR: atom 108 VAL 2HG1 not found in molecular structure %READC-ERR: atom 108 VAL 3HG1 not found in molecular structure %READC-ERR: atom 108 VAL 1HG2 not found in molecular structure %READC-ERR: atom 108 VAL 2HG2 not found in molecular structure %READC-ERR: atom 108 VAL 3HG2 not found in molecular structure %READC-ERR: atom 108 VAL QQG not found in molecular structure %READC-ERR: atom 109 GLY 1HA not found in molecular structure %READC-ERR: atom 109 GLY 2HA not found in molecular structure %READC-ERR: atom 109 GLY QA not found in molecular structure %READC-ERR: atom 110 ALA QB not found in molecular structure %READC-ERR: atom 110 ALA 1HB not found in molecular structure %READC-ERR: atom 110 ALA 2HB not found in molecular structure %READC-ERR: atom 110 ALA 3HB not found in molecular structure %READC-ERR: atom 111 LYS 2HB not found in molecular structure %READC-ERR: atom 111 LYS 3HB not found in molecular structure %READC-ERR: atom 111 LYS QB not found in molecular structure %READC-ERR: atom 111 LYS 2HG not found in molecular structure %READC-ERR: atom 111 LYS 3HG not found in molecular structure %READC-ERR: atom 111 LYS QG not found in molecular structure %READC-ERR: atom 111 LYS 2HD not found in molecular structure %READC-ERR: atom 111 LYS 3HD not found in molecular structure %READC-ERR: atom 111 LYS QD not found in molecular structure %READC-ERR: atom 111 LYS 2HE not found in molecular structure %READC-ERR: atom 111 LYS 3HE not found in molecular structure %READC-ERR: atom 111 LYS QE not found in molecular structure %READC-ERR: atom 111 LYS 1HZ not found in molecular structure %READC-ERR: atom 111 LYS 2HZ not found in molecular structure %READC-ERR: atom 111 LYS 3HZ not found in molecular structure %READC-ERR: atom 111 LYS QZ not found in molecular structure %READC-ERR: atom 112 LYS 2HB not found in molecular structure %READC-ERR: atom 112 LYS 3HB not found in molecular structure %READC-ERR: atom 112 LYS QB not found in molecular structure %READC-ERR: atom 112 LYS 2HG not found in molecular structure %READC-ERR: atom 112 LYS 3HG not found in molecular structure %READC-ERR: atom 112 LYS QG not found in molecular structure %READC-ERR: atom 112 LYS 2HD not found in molecular structure %READC-ERR: atom 112 LYS 3HD not found in molecular structure %READC-ERR: atom 112 LYS QD not found in molecular structure %READC-ERR: atom 112 LYS 2HE not found in molecular structure %READC-ERR: atom 112 LYS 3HE not found in molecular structure %READC-ERR: atom 112 LYS QE not found in molecular structure %READC-ERR: atom 112 LYS 1HZ not found in molecular structure %READC-ERR: atom 112 LYS 2HZ not found in molecular structure %READC-ERR: atom 112 LYS 3HZ not found in molecular structure %READC-ERR: atom 112 LYS QZ not found in molecular structure %READC-ERR: atom 113 ASP 2HB not found in molecular structure %READC-ERR: atom 113 ASP 3HB not found in molecular structure %READC-ERR: atom 113 ASP QB not found in molecular structure %READC-ERR: atom 114 GLU 2HB not found in molecular structure %READC-ERR: atom 114 GLU 3HB not found in molecular structure %READC-ERR: atom 114 GLU QB not found in molecular structure %READC-ERR: atom 114 GLU 2HG not found in molecular structure %READC-ERR: atom 114 GLU 3HG not found in molecular structure %READC-ERR: atom 114 GLU QG not found in molecular structure %READC-ERR: atom 115 LEU 2HB not found in molecular structure %READC-ERR: atom 115 LEU 3HB not found in molecular structure %READC-ERR: atom 115 LEU QB not found in molecular structure %READC-ERR: atom 115 LEU QD1 not found in molecular structure %READC-ERR: atom 115 LEU QD2 not found in molecular structure %READC-ERR: atom 115 LEU 1HD1 not found in molecular structure %READC-ERR: atom 115 LEU 2HD1 not found in molecular structure %READC-ERR: atom 115 LEU 3HD1 not found in molecular structure %READC-ERR: atom 115 LEU 1HD2 not found in molecular structure %READC-ERR: atom 115 LEU 2HD2 not found in molecular structure %READC-ERR: atom 115 LEU 3HD2 not found in molecular structure %READC-ERR: atom 115 LEU QQD not found in molecular structure %READC-ERR: atom 116 GLN 2HB not found in molecular structure %READC-ERR: atom 116 GLN 3HB not found in molecular structure %READC-ERR: atom 116 GLN QB not found in molecular structure %READC-ERR: atom 116 GLN 2HG not found in molecular structure %READC-ERR: atom 116 GLN 3HG not found in molecular structure %READC-ERR: atom 116 GLN QG not found in molecular structure %READC-ERR: atom 116 GLN 1HE2 not found in molecular structure %READC-ERR: atom 116 GLN 2HE2 not found in molecular structure %READC-ERR: atom 116 GLN QE2 not found in molecular structure %READC-ERR: atom 117 SER 2HB not found in molecular structure %READC-ERR: atom 117 SER 3HB not found in molecular structure %READC-ERR: atom 117 SER QB not found in molecular structure %READC-ERR: atom 118 THR QG2 not found in molecular structure %READC-ERR: atom 118 THR 1HG2 not found in molecular structure %READC-ERR: atom 118 THR 2HG2 not found in molecular structure %READC-ERR: atom 118 THR 3HG2 not found in molecular structure %READC-ERR: atom 119 ILE QG2 not found in molecular structure %READC-ERR: atom 119 ILE 1HG2 not found in molecular structure %READC-ERR: atom 119 ILE 2HG2 not found in molecular structure %READC-ERR: atom 119 ILE 3HG2 not found in molecular structure %READC-ERR: atom 119 ILE 2HG1 not found in molecular structure %READC-ERR: atom 119 ILE 3HG1 not found in molecular structure %READC-ERR: atom 119 ILE QG1 not found in molecular structure %READC-ERR: atom 119 ILE QD1 not found in molecular structure %READC-ERR: atom 119 ILE 1HD1 not found in molecular structure %READC-ERR: atom 119 ILE 2HD1 not found in molecular structure %READC-ERR: atom 119 ILE 3HD1 not found in molecular structure %READC-ERR: atom 120 ALA QB not found in molecular structure %READC-ERR: atom 120 ALA 1HB not found in molecular structure %READC-ERR: atom 120 ALA 2HB not found in molecular structure %READC-ERR: atom 120 ALA 3HB not found in molecular structure %READC-ERR: atom 121 LYS 2HB not found in molecular structure %READC-ERR: atom 121 LYS 3HB not found in molecular structure %READC-ERR: atom 121 LYS QB not found in molecular structure %READC-ERR: atom 121 LYS 2HG not found in molecular structure %READC-ERR: atom 121 LYS 3HG not found in molecular structure %READC-ERR: atom 121 LYS QG not found in molecular structure %READC-ERR: atom 121 LYS 2HD not found in molecular structure %READC-ERR: atom 121 LYS 3HD not found in molecular structure %READC-ERR: atom 121 LYS QD not found in molecular structure %READC-ERR: atom 121 LYS 2HE not found in molecular structure %READC-ERR: atom 121 LYS 3HE not found in molecular structure %READC-ERR: atom 121 LYS QE not found in molecular structure %READC-ERR: atom 121 LYS 1HZ not found in molecular structure %READC-ERR: atom 121 LYS 2HZ not found in molecular structure %READC-ERR: atom 121 LYS 3HZ not found in molecular structure %READC-ERR: atom 121 LYS QZ not found in molecular structure %READC-ERR: atom 122 HIS 2HB not found in molecular structure %READC-ERR: atom 122 HIS 3HB not found in molecular structure %READC-ERR: atom 122 HIS QB not found in molecular structure %READC-ERR: atom 123 LEU 2HB not found in molecular structure %READC-ERR: atom 123 LEU 3HB not found in molecular structure %READC-ERR: atom 123 LEU QB not found in molecular structure %READC-ERR: atom 123 LEU QD1 not found in molecular structure %READC-ERR: atom 123 LEU QD2 not found in molecular structure %READC-ERR: atom 123 LEU 1HD1 not found in molecular structure %READC-ERR: atom 123 LEU 2HD1 not found in molecular structure %READC-ERR: atom 123 LEU 3HD1 not found in molecular structure %READC-ERR: atom 123 LEU 1HD2 not found in molecular structure %READC-ERR: atom 123 LEU 2HD2 not found in molecular structure %READC-ERR: atom 123 LEU 3HD2 not found in molecular structure %READC-ERR: atom 123 LEU QQD not found in molecular structure %READC-ERR: atom 124 ALA QB not found in molecular structure %READC-ERR: atom 124 ALA 1HB not found in molecular structure %READC-ERR: atom 124 ALA 2HB not found in molecular structure %READC-ERR: atom 124 ALA 3HB not found in molecular structure %READC-ERR: atom 124 ALA O not found in molecular structure COOR>END CNSsolve>parameter @TOPPAR:parallhdg5.3.pro end PARRDR>! JFD adds FES complex parameters from Milo Westler's calculations PARRDR>! and standard topology. PARRDR> PARRDR>remark file protein-allhdg-ucl.param version UCL date 07-JUL-01 PARRDR>remark for file protein-allhdg-ucl.top version UCL date 14-MAR-00 PARRDR>remark for file protein-allhdg-dih-ucl.top version UCL date 07-JUL-01 PARRDR>remark Geometric energy function parameters for distance geometry and PARRDR>remark simulated annealing. PARRDR>remark Original author: Michael Nilges, EMBL Heidelberg PARRDR>remark Modifications: Mark A. Williams, UCL London PARRDR> PARRDR>set echo off message off end SHOW: sum over selected elements = 2.000000 CNSsolve> CNSsolve> if ( $log_level = verbose ) then CNSsolve> set message=normal echo=on end CNSsolve> else CNSsolve> set message=off echo=off end CNSsolve> end if CNSsolve> CNSsolve> CNSsolve> identity (store1) (none) SELRPN: 0 atoms have been selected out of 1960 CNSsolve> CNSsolve> identity (store1) (&atom_build) SELRPN: 619 atoms have been selected out of 1960 CNSsolve> identity (store1) (store1 or hydrogen) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> CNSsolve> show sum(1) (store1) SELRPN: 983 atoms have been selected out of 1960 SHOW: sum over selected elements = 983.000000 CNSsolve> evaluate ($tobuild=$result) EVALUATE: symbol $TOBUILD set to 983.000 (real) CNSsolve> CNSsolve> !evaluate ($tobuild=0) CNSsolve> CNSsolve> if ( $tobuild > 0 ) then NEXTCD: condition evaluated as true CNSsolve> CNSsolve> fix selection=(not(store1)) end SELRPN: 977 atoms have been selected out of 1960 CNSsolve> CNSsolve> show sum(1) (store1) SELRPN: 983 atoms have been selected out of 1960 SHOW: sum over selected elements = 983.000000 CNSsolve> evaluate ($moving=$result) EVALUATE: symbol $MOVING set to 983.000 (real) CNSsolve> CNSsolve> if ( $moving > 0 ) then NEXTCD: condition evaluated as true CNSsolve> for $id in id (tag and byres(store1)) loop avco SELRPN: 124 atoms have been selected out of 1960 FOR ID LOOP: symbol ID set to 1.00000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 1.283444 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 1.28344 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = -0.047667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.476667E-01 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = -1.417667 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -1.41767 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 20.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = 5.510800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 5.51080 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = -0.047600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.476000E-01 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = -0.497600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.497600 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 27.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 9.361800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 9.36180 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = -1.485200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.48520 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 1.466600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.46660 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 45.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 11.146267 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 11.1463 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 3.700267 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 3.70027 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 2.455133 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 2.45513 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 63.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 14.268133 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 14.2681 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 0.996733 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.996733 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 5.672400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 5.67240 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 81.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 12.128867 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 12.1289 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 4.395067 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 4.39507 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 8.908533 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 8.90853 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 99.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 16.098600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 16.0986 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 5.701333 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 5.70133 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 12.486867 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 12.4869 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 117.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 17.434400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 17.4344 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 3.220133 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 3.22013 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 16.495067 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 16.4951 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 135.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 13.934091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 13.9341 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 6.501000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 6.50100 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 18.419545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 18.4195 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 154.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 15.611364 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 15.6114 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 5.817636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 5.81764 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 22.404000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 22.4040 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 169.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 15.937000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 15.9370 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 1.708000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.70800 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 24.332700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 24.3327 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 186.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 14.816571 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 14.8166 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 1.862143 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.86214 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 28.300714 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 28.3007 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 196.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 15.250333 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 15.2503 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = -0.706000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.706000 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 31.434000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 31.4340 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 207.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 12.309545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 12.3095 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 1.547364 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.54736 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 34.740091 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 34.7401 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 222.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 9.125091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 9.12509 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -1.904909 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.90491 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 33.316273 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 33.3163 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 237.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = 7.598200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 7.59820 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = -4.058800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.05880 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = 36.084600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 36.0846 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 244.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 9.733364 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 9.73336 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -2.924182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.92418 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 38.665909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 38.6659 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 261.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 6.994800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 6.99480 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = -2.145200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.14520 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 42.482700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 42.4827 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 277.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 9.319091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 9.31909 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 1.378909 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.37891 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 43.978636 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 43.9786 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 296.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 8.946000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 8.94600 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 0.074571 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.745714E-01 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 47.947429 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 47.9474 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 306.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 9.067556 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 9.06756 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 3.005778 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 3.00578 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 50.480778 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 50.4808 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 317.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 11.562867 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 11.5629 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 0.835933 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.835933 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 53.318333 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 53.3183 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 335.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 10.200091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 10.2001 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 5.908000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 5.90800 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 55.099818 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 55.0998 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 349.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 6.361400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 6.36140 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 8.047700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 8.04770 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 55.782400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 55.7824 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 365.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 9.043455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 9.04345 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 11.549545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 11.5495 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 55.681727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 55.6817 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 380.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 10.957455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 10.9575 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 8.970818 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 8.97082 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 51.925636 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 51.9256 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 394.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1960 SHOW: average of selected elements = 4.474136 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 4.47414 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1960 SHOW: average of selected elements = 7.752273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 7.75227 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1960 SHOW: average of selected elements = 49.775091 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 49.7751 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 418.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 5.572800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 5.57280 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 12.391900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 12.3919 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 50.729400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 50.7294 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 432.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 10.492545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 10.4925 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 13.137000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 13.1370 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 50.036636 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 50.0366 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 447.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 9.570818 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 9.57082 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 9.784364 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 9.78436 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 45.741455 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 45.7415 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 464.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 4.808727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 4.80873 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 11.301727 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 11.3017 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 46.120727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 46.1207 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 483.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 6.901091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 6.90109 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 16.359909 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 16.3599 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 46.263727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 46.2637 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 500.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 10.407455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 10.4075 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 13.447364 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 13.4474 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 42.556909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 42.5569 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 522.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 6.413000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 6.41300 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 12.438857 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 12.4389 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 41.174571 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 41.1746 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 532.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 3.411900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 3.41190 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 15.271300 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 15.2713 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 41.846400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 41.8464 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 546.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 7.165273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 7.16527 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 18.301273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 18.3013 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 41.347818 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 41.3478 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 561.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 7.508111 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 7.50811 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 15.100889 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 15.1009 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 37.473778 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 37.4738 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 572.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 2.851455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 2.85145 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 16.326636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 16.3266 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 36.127000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 36.1270 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 594.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 4.617091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 4.61709 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 11.500091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 11.5001 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 37.572727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 37.5727 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 608.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 0.794000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 0.794000 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 8.076545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 8.07655 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 37.489818 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 37.4898 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 627.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 1.032500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 1.03250 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 7.700300 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 7.70030 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 41.518600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 41.5186 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 643.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = -0.146600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -0.146600 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 3.547800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 3.54780 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 41.679100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 41.6791 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 659.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = -1.363200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -1.36320 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 3.511700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 3.51170 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 45.911800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 45.9118 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 675.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = -0.892100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -0.892100 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = -1.364500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.36450 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 46.070100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 46.0701 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 687.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = -1.651667 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -1.65167 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 0.610111 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.610111 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 50.650500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 50.6505 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 707.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -0.904818 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -0.904818 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -5.598182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.59818 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 50.167455 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 50.1675 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 721.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = -0.351286 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -0.351286 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = -8.033857 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -8.03386 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 52.824143 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 52.8241 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 731.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 2.862333 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 2.86233 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = -10.792222 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.7922 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 53.018778 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 53.0188 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 742.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1960 SHOW: average of selected elements = -1.074909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -1.07491 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1960 SHOW: average of selected elements = -9.848000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.84800 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1960 SHOW: average of selected elements = 56.569500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 56.5695 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 766.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = -2.438625 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -2.43863 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = -12.147625 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -12.1476 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 52.954375 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 52.9544 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 776.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = -3.879800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -3.87980 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = -14.452200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.4522 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = 50.684600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 50.6846 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 783.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = -5.964250 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -5.96425 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = -13.706625 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -13.7066 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 48.366250 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 48.3663 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 797.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = -4.395250 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -4.39525 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = -10.499375 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.4994 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 48.574750 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 48.5748 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 807.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1960 SHOW: average of selected elements = -0.251643 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -0.251643 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1960 SHOW: average of selected elements = -13.812214 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -13.8122 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1960 SHOW: average of selected elements = 47.657929 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 47.6579 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 831.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = -3.895889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -3.89589 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = -14.925500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.9255 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 43.073778 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 43.0738 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 851.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -3.006545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -3.00655 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -9.271727 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.27173 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 43.308091 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 43.3081 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 870.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 1.130857 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 1.13086 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = -9.702143 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.70214 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 43.614714 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 43.6147 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 880.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 1.596375 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 1.59638 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = -11.339500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -11.3395 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 40.540750 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 40.5408 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 894.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = -3.025944 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -3.02594 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = -9.064556 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.06456 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 37.706278 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 37.7063 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 914.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 0.566778 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 0.566778 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = -3.998944 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.99894 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 41.065056 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 41.0651 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 934.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 3.845143 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 3.84514 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = -7.083143 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.08314 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 38.631429 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 38.6314 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 944.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 2.494700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 2.49470 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = -8.563300 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -8.56330 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 34.874000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 34.8740 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 956.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -0.216636 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -0.216636 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -4.850727 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.85073 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 35.178000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 35.1780 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 975.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 3.912286 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 3.91229 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = -3.130857 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.13086 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 35.497143 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 35.4971 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 985.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 6.082545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 6.08255 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -5.567818 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.56782 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 31.982727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 31.9827 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1007.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 0.787909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 0.787909 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -4.037091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.03709 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 30.364636 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 30.3646 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1029.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 1.387000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 1.38700 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -0.301182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.301182 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 32.891727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 32.8917 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1048.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 4.651875 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 4.65188 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 2.122250 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 2.12225 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 30.667250 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 30.6673 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1062.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 4.664300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 4.66430 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 6.276000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 6.27600 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 31.939800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 31.9398 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1076.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 3.113900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 3.11390 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 3.524800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 3.52480 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 35.126300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 35.1263 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1092.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 5.439273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 5.43927 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 4.972091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 4.97209 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 38.791091 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 38.7911 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1111.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 3.889667 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 3.88967 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 0.896278 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.896278 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 39.216833 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 39.2168 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1131.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 4.762182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 4.76218 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 2.919545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 2.91955 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 45.101455 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 45.1015 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1150.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 3.794182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 3.79418 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -1.737455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.73745 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 47.181909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 47.1819 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1172.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 2.922700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 2.92270 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 0.402600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.402600 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 51.368200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 51.3682 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1188.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 4.013000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 4.01300 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = -3.130600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.13060 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 54.140800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 54.1408 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1200.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 0.134636 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 0.134636 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -2.150182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.15018 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 56.363636 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 56.3636 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1214.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 2.417800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 2.41780 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = -5.201000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.20100 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 58.875900 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 58.8759 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1226.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 5.609091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 5.60909 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -2.564000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.56400 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 59.316182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 59.3162 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1241.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 4.028545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 4.02855 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 1.964818 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.96482 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 57.891364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 57.8914 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1260.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -0.383182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -0.383182 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -0.043909 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.439091E-01 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 61.062273 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 61.0623 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1282.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 0.210889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 0.210889 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 5.086333 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 5.08633 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 60.949333 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 60.9493 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1293.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 0.422100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 0.422100 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 4.982000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 4.98200 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 56.653600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 56.6536 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1309.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = -2.890286 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -2.89029 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 3.174571 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 3.17457 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 56.658571 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 56.6586 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1319.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = -4.612667 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -4.61267 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 4.921778 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 4.92178 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 59.923556 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 59.9236 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1330.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = -3.094400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -3.09440 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 8.613700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 8.61370 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 57.819600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 57.8196 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1342.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1960 SHOW: average of selected elements = -3.573045 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -3.57305 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1960 SHOW: average of selected elements = 7.933000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 7.93300 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1960 SHOW: average of selected elements = 52.203955 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 52.2040 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1366.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = -7.860286 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -7.86029 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 5.493857 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 5.49386 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 56.267714 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 56.2677 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1376.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -6.495545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -6.49555 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 2.266818 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 2.26682 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 54.563727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 54.5637 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1395.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -9.173273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -9.17327 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 0.368091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.368091 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 57.870545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 57.8705 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1412.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = -9.931714 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -9.93171 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = -2.134429 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.13443 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 54.090000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 54.0900 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1422.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = -6.905900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -6.90590 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = -4.192000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.19200 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 52.923500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 52.9235 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1439.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = -6.640625 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -6.64063 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = -5.179750 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.17975 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 49.405750 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 49.4058 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1453.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -6.752273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -6.75227 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -0.705182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.705182 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 49.196182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 49.1962 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1467.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = -5.936333 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -5.93633 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = -2.339944 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.33994 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 44.580722 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 44.5807 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1487.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = -6.058000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -6.05800 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 4.394900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 4.39490 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 44.634500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 44.6345 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1504.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = -6.196889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -6.19689 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 2.942389 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 2.94239 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 39.885333 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 39.8853 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1524.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -3.887636 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -3.88764 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 8.291182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 8.29118 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 41.356000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 41.3560 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1543.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -3.419545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -3.41955 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 11.477182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 11.4772 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 36.416909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 36.4169 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1565.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -0.424455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -0.424455 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 13.857636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 13.8576 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 36.986182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 36.9862 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1580.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = -1.132800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -1.13280 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = 12.689400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 12.6894 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = 41.519000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 41.5190 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1587.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -4.821909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -4.82191 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 14.533273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 14.5333 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 40.659273 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 40.6593 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1609.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -7.241909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -7.24191 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 11.330636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 11.3306 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 43.286455 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 43.2865 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1628.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -8.318545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -8.31855 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 8.536545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 8.53655 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 38.927636 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 38.9276 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1647.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = -9.850200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -9.85020 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 6.161200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 6.16120 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 40.130500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 40.1305 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1659.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -10.673909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -10.6739 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 4.704545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 4.70455 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 45.469909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 45.4699 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1681.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = -10.935900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -10.9359 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 0.706600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.706600 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 44.456400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 44.4564 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1697.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = -12.054400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -12.0544 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = -1.143000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.14300 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 48.123700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 48.1237 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1713.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = -10.050200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -10.0502 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = -4.157200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.15720 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = 47.536000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 47.5360 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1720.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = -9.184714 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -9.18471 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = -7.284571 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.28457 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 45.673857 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 45.6739 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1730.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -12.096364 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -12.0964 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -6.728545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -6.72855 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 42.311364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 42.3114 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1752.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -8.962182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -8.96218 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -10.072818 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.0728 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 38.948364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 38.9484 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1774.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = -13.064600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -13.0646 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = -7.879100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.87910 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 36.930000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 36.9300 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1786.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -12.836545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -12.8365 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -3.558273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.55827 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 39.562545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 39.5625 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1801.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -7.768727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -7.76873 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -3.918000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.91800 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 38.386545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 38.3865 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1820.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -8.532182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -8.53218 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -5.571636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.57164 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 34.062545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 34.0625 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1837.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = -12.258889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -12.2589 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = -2.419889 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.41989 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 34.476556 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 34.4766 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1848.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -9.432545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -9.43255 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 0.370545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.370545 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 36.234818 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 36.2348 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1862.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -6.726455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -6.72645 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -1.027182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.02718 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 33.040000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 33.0400 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1881.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = -9.689286 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -9.68929 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 0.375000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.375000 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 30.528000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 30.5280 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1891.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -11.101273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -11.1013 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 4.046364 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 4.04636 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 33.127273 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 33.1273 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1913.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = -5.739533 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -5.73953 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 4.960733 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 4.96073 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 32.807667 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 32.8077 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1931.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = -6.949091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -6.94909 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 2.104000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 2.10400 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 27.552000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 27.5520 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1950.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 1960 SHOW: average of selected elements = -7.418000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -7.41800 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 1960 SHOW: average of selected elements = 5.515167 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 5.51517 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 1960 SHOW: average of selected elements = 25.503333 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 25.5033 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) CNSsolve> evaluate ($ave_x=$result) CNSsolve> show ave(y) (byres(id $id) and known) CNSsolve> evaluate ($ave_y=$result) CNSsolve> show ave(z) (byres(id $id) and known) CNSsolve> evaluate ($ave_z=$result) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) CNSsolve> do (y=$ave_y) (byres(id $id) and store1) CNSsolve> do (z=$ave_z) (byres(id $id) and store1) CNSsolve> CNSsolve> end loop avco CNSsolve> CNSsolve> do (x=x+random(2.0)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> do (y=y+random(2.0)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> do (z=z+random(2.0)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> CNSsolve> {- start parameter for the side chain building -} CNSsolve> parameter PARRDR> nbonds NBDSET> rcon=20. nbxmod=-2 repel=0.9 wmin=0.1 tolerance=1. NBDSET> rexp=2 irexp=2 inhibit=0.25 NBDSET> end PARRDR> end CNSsolve> CNSsolve> {- Friction coefficient, in 1/ps. -} CNSsolve> do (fbeta=100) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> CNSsolve> evaluate ($bath=300.0) EVALUATE: symbol $BATH set to 300.000 (real) CNSsolve> evaluate ($nstep=500) EVALUATE: symbol $NSTEP set to 500.000 (real) CNSsolve> evaluate ($timestep=0.0005) EVALUATE: symbol $TIMESTEP set to 0.500000E-03 (real) CNSsolve> CNSsolve> do (refy=mass) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> CNSsolve> do (mass=20) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> CNSsolve> igroup interaction SELRPN> (store1) (store1 or known) SELRPN: 983 atoms have been selected out of 1960 SELRPN: 1960 atoms have been selected out of 1960 IGROup> end CNSsolve> CNSsolve> {- turn on initial energy terms -} CNSsolve> flags exclude * include bond angle vdw end CNSsolve> CNSsolve> minimize powell nstep=50 nprint=10 end POWELL: number of degrees of freedom= 2949 NBONDS: generating intra-molecular exclusion list with mode=-2 MAKINB: mode -2 found 983 exclusions and 0 interactions(1-4) %atoms " -1 -MET -HE3 " and " -1 -MET -HT3 " only 0.09 A apart %atoms " -7 -HIS -HB1 " and " -7 -HIS -HE1 " only 0.08 A apart %atoms " -21 -CYS -HN " and " -21 -CYS -HB1 " only 0.07 A apart %atoms " -24 -VAL -HG22" and " -24 -VAL -HG23" only 0.08 A apart %atoms " -27 -TRP -HE1 " and " -27 -TRP -HZ2 " only 0.10 A apart %atoms " -31 -LEU -HB2 " and " -31 -LEU -HD23" only 0.06 A apart %atoms " -33 -LYS -HB2 " and " -33 -LYS -HZ1 " only 0.10 A apart %atoms " -42 -VAL -HN " and " -42 -VAL -HB " only 0.06 A apart %atoms " -52 -PRO -HB1 " and " -52 -PRO -HG2 " only 0.10 A apart %atoms " -53 -CYS -HA " and " -53 -CYS -HB1 " only 0.08 A apart %atoms " -54 -ARG -HD2 " and " -54 -ARG -HH22" only 0.10 A apart %atoms " -60 -PHE -HN " and " -60 -PHE -HB1 " only 0.09 A apart %atoms " -66 -LYS -HG2 " and " -66 -LYS -HD1 " only 0.10 A apart %atoms " -71 -LEU -HG " and " -71 -LEU -HD13" only 0.06 A apart %atoms " -75 -VAL -HA " and " -75 -VAL -HG22" only 0.08 A apart %atoms " -80 -LEU -HA " and " -80 -LEU -HB1 " only 0.07 A apart %atoms " -98 -LEU -CB " and " -98 -LEU -HD12" only 0.04 A apart %atoms " -99 -LYS -HD1 " and " -99 -LYS -HZ3 " only 0.09 A apart %atoms " -121 -LYS -HG1 " and " -121 -LYS -HG2 " only 0.09 A apart NBONDS: found 121291 intra-atom interactions NBONDS: found 19 nonbonded violations %atoms " -5 -HIS -HN " and " -5 -HIS -HB1 " only 0.08 A apart %atoms " -8 -HIS -HD1 " and " -8 -HIS -HE2 " only 0.09 A apart %atoms " -79 -GLU -HN " and " -79 -GLU -HA " only 0.06 A apart %atoms " -98 -LEU -HN " and " -98 -LEU -HB1 " only 0.05 A apart %atoms " -116 -GLN -HA " and " -116 -GLN -HB1 " only 0.09 A apart NBONDS: found 119964 intra-atom interactions NBONDS: found 5 nonbonded violations NBONDS: found 113424 intra-atom interactions NBONDS: found 109449 intra-atom interactions NBONDS: found 110908 intra-atom interactions NBONDS: found 111395 intra-atom interactions --------------- cycle= 10 ------ stepsize= 0.0000 ----------------------- | Etotal =506472.166 grad(E)=597.292 E(BOND)=76375.887 E(ANGL)=239079.026 | | E(VDW )=191017.253 | ------------------------------------------------------------------------------- NBONDS: found 112133 intra-atom interactions NBONDS: found 112187 intra-atom interactions NBONDS: found 111904 intra-atom interactions --------------- cycle= 20 ------ stepsize= 0.0000 ----------------------- | Etotal =176368.638 grad(E)=332.949 E(BOND)=28311.424 E(ANGL)=58837.169 | | E(VDW )=89220.045 | ------------------------------------------------------------------------------- NBONDS: found 111924 intra-atom interactions NBONDS: found 111884 intra-atom interactions --------------- cycle= 30 ------ stepsize= 0.0002 ----------------------- | Etotal =149259.363 grad(E)=307.730 E(BOND)=23568.311 E(ANGL)=44634.719 | | E(VDW )=81056.332 | ------------------------------------------------------------------------------- NBONDS: found 111977 intra-atom interactions NBONDS: found 111977 intra-atom interactions --------------- cycle= 40 ------ stepsize= -0.0004 ----------------------- | Etotal =147168.614 grad(E)=307.089 E(BOND)=24181.054 E(ANGL)=43756.131 | | E(VDW )=79231.429 | ------------------------------------------------------------------------------- --------------- cycle= 50 ------ stepsize= -0.0001 ----------------------- | Etotal =146954.795 grad(E)=306.822 E(BOND)=24049.048 E(ANGL)=43717.097 | | E(VDW )=79188.650 | ------------------------------------------------------------------------------- POWELL: STEP number limit. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> CNSsolve> flags exclude vdw include impr end CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=50 Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=560659.848 E(kin)=907.693 temperature=309.781 | | Etotal =559752.155 grad(E)=553.904 E(BOND)=24049.048 E(ANGL)=43717.097 | | E(IMPR)=491986.010 | ------------------------------------------------------------------------------- -------------------- final step= 50 at 0.02500 ps --------------------- | E(kin)+E(total)=372579.955 E(kin)=55099.361 temperature=18804.516 | | Etotal =317480.595 grad(E)=349.715 E(BOND)=42074.337 E(ANGL)=111846.434 | | E(IMPR)=163559.823 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 0.52042 1.55886 40.75552 velocity [A/ps] : 0.33347 0.44780 -0.29121 ang. mom. [amu A/ps] : -83330.28808-241140.22135 4974.25673 kin. ener. [Kcal/mol] : 9.31622 CNSsolve> CNSsolve> flags include vdw end CNSsolve> CNSsolve> minimize powell nstep=50 nprint=10 end POWELL: number of degrees of freedom= 2949 NBONDS: found 111766 intra-atom interactions NBONDS: found 111508 intra-atom interactions NBONDS: found 111619 intra-atom interactions NBONDS: found 111851 intra-atom interactions NBONDS: found 111727 intra-atom interactions --------------- cycle= 10 ------ stepsize= 0.0002 ----------------------- | Etotal =296896.700 grad(E)=365.561 E(BOND)=41731.087 E(ANGL)=76266.735 | | E(IMPR)=129103.260 E(VDW )=49795.618 | ------------------------------------------------------------------------------- NBONDS: found 112061 intra-atom interactions NBONDS: found 112147 intra-atom interactions NBONDS: found 112041 intra-atom interactions NBONDS: found 112031 intra-atom interactions --------------- cycle= 20 ------ stepsize= 0.0001 ----------------------- | Etotal =205302.030 grad(E)=259.554 E(BOND)=23408.431 E(ANGL)=36165.816 | | E(IMPR)=94859.867 E(VDW )=50867.916 | ------------------------------------------------------------------------------- NBONDS: found 112016 intra-atom interactions NBONDS: found 112138 intra-atom interactions NBONDS: found 112152 intra-atom interactions --------------- cycle= 30 ------ stepsize= 0.0001 ----------------------- | Etotal =181414.130 grad(E)=261.721 E(BOND)=23566.814 E(ANGL)=33219.083 | | E(IMPR)=74564.213 E(VDW )=50064.020 | ------------------------------------------------------------------------------- NBONDS: found 112095 intra-atom interactions NBONDS: found 112085 intra-atom interactions --------------- cycle= 40 ------ stepsize= 0.0001 ----------------------- | Etotal =147761.602 grad(E)=259.295 E(BOND)=21396.706 E(ANGL)=22636.972 | | E(IMPR)=54737.700 E(VDW )=48990.225 | ------------------------------------------------------------------------------- NBONDS: found 112084 intra-atom interactions NBONDS: found 112097 intra-atom interactions NBONDS: found 112081 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0002 ----------------------- | Etotal =135963.056 grad(E)=258.836 E(BOND)=22339.008 E(ANGL)=19411.965 | | E(IMPR)=46676.266 E(VDW )=47535.817 | ------------------------------------------------------------------------------- POWELL: STEP number limit. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=50 Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=136824.185 E(kin)=861.129 temperature=293.889 | | Etotal =135963.056 grad(E)=258.836 E(BOND)=22339.008 E(ANGL)=19411.965 | | E(IMPR)=46676.266 E(VDW )=47535.817 | ------------------------------------------------------------------------------- NBONDS: found 112081 intra-atom interactions NBONDS: found 112054 intra-atom interactions -------------------- final step= 50 at 0.02500 ps --------------------- | E(kin)+E(total)=132033.915 E(kin)=3002.546 temperature=1024.720 | | Etotal =129031.369 grad(E)=255.873 E(BOND)=22010.697 E(ANGL)=16990.985 | | E(IMPR)=43187.504 E(VDW )=46842.183 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 0.52738 1.55159 40.77264 velocity [A/ps] : 0.50137 0.06157 -0.06354 ang. mom. [amu A/ps] : 25970.40929 113295.10374 -37118.26693 kin. ener. [Kcal/mol] : 6.08972 CNSsolve> CNSsolve> parameter PARRDR> nbonds NBDSET> rcon=2. nbxmod=-3 repel=0.75 NBDSET> end PARRDR> end CNSsolve> CNSsolve> minimize powell nstep=100 nprint=25 end POWELL: number of degrees of freedom= 2949 NBONDS: generating intra-molecular exclusion list with mode=-3 MAKINB: mode -3 found 3235 exclusions and 0 interactions(1-4) NBONDS: found 109789 intra-atom interactions NBONDS: found 110467 intra-atom interactions NBONDS: found 110467 intra-atom interactions NBONDS: found 110427 intra-atom interactions --------------- cycle= 25 ------ stepsize= 0.0000 ----------------------- | Etotal =47024.273 grad(E)=60.472 E(BOND)=2336.077 E(ANGL)=12984.629 | | E(IMPR)=31701.134 E(VDW )=2.433 | ------------------------------------------------------------------------------- --------------- cycle= 50 ------ stepsize= 0.0000 ----------------------- | Etotal =47011.378 grad(E)=60.384 E(BOND)=2331.847 E(ANGL)=12984.845 | | E(IMPR)=31692.264 E(VDW )=2.422 | ------------------------------------------------------------------------------- --------------- cycle= 75 ------ stepsize= 0.0000 ----------------------- | Etotal =47011.365 grad(E)=60.384 E(BOND)=2331.843 E(ANGL)=12984.846 | | E(IMPR)=31692.255 E(VDW )=2.422 | ------------------------------------------------------------------------------- POWELL: Line search terminated POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=$nstep Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=47878.041 E(kin)=866.676 temperature=295.783 | | Etotal =47011.365 grad(E)=60.384 E(BOND)=2331.843 E(ANGL)=12984.846 | | E(IMPR)=31692.255 E(VDW )=2.422 | ------------------------------------------------------------------------------- NBONDS: found 110447 intra-atom interactions NBONDS: found 110469 intra-atom interactions NBONDS: found 110432 intra-atom interactions NBONDS: found 110394 intra-atom interactions NBONDS: found 110428 intra-atom interactions NBONDS: found 110479 intra-atom interactions NBONDS: found 110489 intra-atom interactions NBONDS: found 110439 intra-atom interactions NBONDS: found 110400 intra-atom interactions NBONDS: found 110528 intra-atom interactions NBONDS: found 110578 intra-atom interactions NBONDS: found 110496 intra-atom interactions NBONDS: found 110443 intra-atom interactions NBONDS: found 110482 intra-atom interactions NBONDS: found 110511 intra-atom interactions NBONDS: found 110486 intra-atom interactions NBONDS: found 110468 intra-atom interactions NBONDS: found 110473 intra-atom interactions NBONDS: found 110505 intra-atom interactions NBONDS: found 110481 intra-atom interactions NBONDS: found 110460 intra-atom interactions NBONDS: found 110450 intra-atom interactions NBONDS: found 110461 intra-atom interactions NBONDS: found 110487 intra-atom interactions NBONDS: found 110473 intra-atom interactions NBONDS: found 110449 intra-atom interactions NBONDS: found 110445 intra-atom interactions NBONDS: found 110443 intra-atom interactions -------------------- final step= 500 at 0.25000 ps --------------------- | E(kin)+E(total)=2838.164 E(kin)=983.420 temperature=335.625 | | Etotal =1854.744 grad(E)=53.981 E(BOND)=140.644 E(ANGL)=594.187 | | E(IMPR)=1118.304 E(VDW )=1.609 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 0.53102 1.55471 40.76705 velocity [A/ps] : 0.04639 -0.17200 0.15683 ang. mom. [amu A/ps] : -54247.97918 -15897.20378 -50258.11857 kin. ener. [Kcal/mol] : 1.32344 CNSsolve> CNSsolve> {- turn on all energy terms -} CNSsolve> flags include dihe ? end EFLAGS: the following energy flags are set EFLAGS: BOND ANGL DIHE IMPR VDW CNSsolve> CNSsolve> {- set repel to ~vdw radii -} CNSsolve> parameter PARRDR> nbonds NBDSET> repel=0.89 NBDSET> end PARRDR> end CNSsolve> CNSsolve> minimize powell nstep=500 nprint=50 end POWELL: number of degrees of freedom= 2949 NBONDS: generating intra-molecular exclusion list with mode=-3 MAKINB: mode -3 found 3235 exclusions and 0 interactions(1-4) NBONDS: found 110445 intra-atom interactions NBONDS: found 110457 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0000 ----------------------- | Etotal =2478.705 grad(E)=211.255 E(BOND)=10.820 E(ANGL)=319.294 | | E(DIHE)=83.123 E(IMPR)=1974.353 E(VDW )=91.115 | ------------------------------------------------------------------------------- POWELL: Line search terminated POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> flags exclude * include bond angl impr dihe vdw end CNSsolve> CNSsolve> {- return masses to something sensible -} CNSsolve> do (mass=refy) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=$nstep Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=1411.440 E(kin)=884.125 temperature=301.737 | | Etotal =527.316 grad(E)=20.843 E(BOND)=10.820 E(ANGL)=319.371 | | E(DIHE)=83.123 E(IMPR)=22.887 E(VDW )=91.115 | ------------------------------------------------------------------------------- NBONDS: found 110471 intra-atom interactions NBONDS: found 110462 intra-atom interactions NBONDS: found 110458 intra-atom interactions NBONDS: found 110497 intra-atom interactions NBONDS: found 110452 intra-atom interactions NBONDS: found 110419 intra-atom interactions NBONDS: found 110463 intra-atom interactions NBONDS: found 110489 intra-atom interactions NBONDS: found 110510 intra-atom interactions NBONDS: found 110483 intra-atom interactions NBONDS: found 110480 intra-atom interactions NBONDS: found 110475 intra-atom interactions NBONDS: found 110462 intra-atom interactions NBONDS: found 110487 intra-atom interactions NBONDS: found 110453 intra-atom interactions NBONDS: found 110464 intra-atom interactions NBONDS: found 110446 intra-atom interactions NBONDS: found 110467 intra-atom interactions NBONDS: found 110422 intra-atom interactions NBONDS: found 110465 intra-atom interactions NBONDS: found 110485 intra-atom interactions NBONDS: found 110494 intra-atom interactions NBONDS: found 110484 intra-atom interactions NBONDS: found 110470 intra-atom interactions NBONDS: found 110423 intra-atom interactions NBONDS: found 110431 intra-atom interactions NBONDS: found 110449 intra-atom interactions NBONDS: found 110488 intra-atom interactions NBONDS: found 110476 intra-atom interactions NBONDS: found 110464 intra-atom interactions NBONDS: found 110460 intra-atom interactions NBONDS: found 110476 intra-atom interactions NBONDS: found 110496 intra-atom interactions NBONDS: found 110492 intra-atom interactions NBONDS: found 110479 intra-atom interactions NBONDS: found 110476 intra-atom interactions NBONDS: found 110447 intra-atom interactions NBONDS: found 110439 intra-atom interactions NBONDS: found 110481 intra-atom interactions NBONDS: found 110516 intra-atom interactions NBONDS: found 110526 intra-atom interactions NBONDS: found 110480 intra-atom interactions NBONDS: found 110490 intra-atom interactions NBONDS: found 110533 intra-atom interactions NBONDS: found 110511 intra-atom interactions NBONDS: found 110481 intra-atom interactions NBONDS: found 110463 intra-atom interactions NBONDS: found 110485 intra-atom interactions NBONDS: found 110492 intra-atom interactions NBONDS: found 110478 intra-atom interactions NBONDS: found 110501 intra-atom interactions NBONDS: found 110505 intra-atom interactions NBONDS: found 110481 intra-atom interactions NBONDS: found 110439 intra-atom interactions NBONDS: found 110422 intra-atom interactions NBONDS: found 110448 intra-atom interactions NBONDS: found 110495 intra-atom interactions NBONDS: found 110512 intra-atom interactions NBONDS: found 110529 intra-atom interactions NBONDS: found 110540 intra-atom interactions NBONDS: found 110535 intra-atom interactions NBONDS: found 110527 intra-atom interactions NBONDS: found 110453 intra-atom interactions NBONDS: found 110423 intra-atom interactions NBONDS: found 110408 intra-atom interactions NBONDS: found 110415 intra-atom interactions NBONDS: found 110462 intra-atom interactions NBONDS: found 110497 intra-atom interactions NBONDS: found 110505 intra-atom interactions NBONDS: found 110504 intra-atom interactions NBONDS: found 110468 intra-atom interactions NBONDS: found 110474 intra-atom interactions NBONDS: found 110452 intra-atom interactions NBONDS: found 110422 intra-atom interactions NBONDS: found 110400 intra-atom interactions NBONDS: found 110449 intra-atom interactions NBONDS: found 110480 intra-atom interactions NBONDS: found 110476 intra-atom interactions NBONDS: found 110442 intra-atom interactions NBONDS: found 110439 intra-atom interactions NBONDS: found 110448 intra-atom interactions NBONDS: found 110452 intra-atom interactions NBONDS: found 110475 intra-atom interactions NBONDS: found 110511 intra-atom interactions NBONDS: found 110501 intra-atom interactions NBONDS: found 110491 intra-atom interactions NBONDS: found 110508 intra-atom interactions NBONDS: found 110510 intra-atom interactions NBONDS: found 110509 intra-atom interactions NBONDS: found 110487 intra-atom interactions NBONDS: found 110484 intra-atom interactions NBONDS: found 110470 intra-atom interactions NBONDS: found 110448 intra-atom interactions NBONDS: found 110439 intra-atom interactions NBONDS: found 110437 intra-atom interactions NBONDS: found 110448 intra-atom interactions NBONDS: found 110470 intra-atom interactions NBONDS: found 110491 intra-atom interactions NBONDS: found 110511 intra-atom interactions NBONDS: found 110521 intra-atom interactions NBONDS: found 110508 intra-atom interactions NBONDS: found 110492 intra-atom interactions NBONDS: found 110490 intra-atom interactions NBONDS: found 110487 intra-atom interactions NBONDS: found 110484 intra-atom interactions NBONDS: found 110472 intra-atom interactions NBONDS: found 110481 intra-atom interactions NBONDS: found 110491 intra-atom interactions NBONDS: found 110497 intra-atom interactions NBONDS: found 110513 intra-atom interactions NBONDS: found 110519 intra-atom interactions NBONDS: found 110523 intra-atom interactions NBONDS: found 110525 intra-atom interactions NBONDS: found 110525 intra-atom interactions NBONDS: found 110514 intra-atom interactions NBONDS: found 110505 intra-atom interactions NBONDS: found 110490 intra-atom interactions NBONDS: found 110499 intra-atom interactions NBONDS: found 110518 intra-atom interactions NBONDS: found 110532 intra-atom interactions NBONDS: found 110533 intra-atom interactions NBONDS: found 110538 intra-atom interactions NBONDS: found 110529 intra-atom interactions NBONDS: found 110525 intra-atom interactions NBONDS: found 110519 intra-atom interactions NBONDS: found 110501 intra-atom interactions NBONDS: found 110487 intra-atom interactions NBONDS: found 110455 intra-atom interactions NBONDS: found 110467 intra-atom interactions NBONDS: found 110477 intra-atom interactions NBONDS: found 110485 intra-atom interactions NBONDS: found 110503 intra-atom interactions NBONDS: found 110521 intra-atom interactions NBONDS: found 110512 intra-atom interactions NBONDS: found 110503 intra-atom interactions NBONDS: found 110499 intra-atom interactions NBONDS: found 110486 intra-atom interactions NBONDS: found 110457 intra-atom interactions NBONDS: found 110441 intra-atom interactions NBONDS: found 110418 intra-atom interactions NBONDS: found 110434 intra-atom interactions NBONDS: found 110469 intra-atom interactions NBONDS: found 110488 intra-atom interactions NBONDS: found 110498 intra-atom interactions NBONDS: found 110510 intra-atom interactions NBONDS: found 110512 intra-atom interactions NBONDS: found 110529 intra-atom interactions NBONDS: found 110521 intra-atom interactions NBONDS: found 110492 intra-atom interactions NBONDS: found 110476 intra-atom interactions NBONDS: found 110456 intra-atom interactions NBONDS: found 110439 intra-atom interactions NBONDS: found 110453 intra-atom interactions NBONDS: found 110475 intra-atom interactions NBONDS: found 110491 intra-atom interactions NBONDS: found 110499 intra-atom interactions NBONDS: found 110510 intra-atom interactions NBONDS: found 110513 intra-atom interactions NBONDS: found 110523 intra-atom interactions NBONDS: found 110506 intra-atom interactions NBONDS: found 110481 intra-atom interactions NBONDS: found 110455 intra-atom interactions NBONDS: found 110449 intra-atom interactions NBONDS: found 110440 intra-atom interactions NBONDS: found 110450 intra-atom interactions NBONDS: found 110478 intra-atom interactions NBONDS: found 110498 intra-atom interactions NBONDS: found 110510 intra-atom interactions NBONDS: found 110523 intra-atom interactions NBONDS: found 110527 intra-atom interactions NBONDS: found 110536 intra-atom interactions NBONDS: found 110519 intra-atom interactions NBONDS: found 110490 intra-atom interactions NBONDS: found 110476 intra-atom interactions NBONDS: found 110460 intra-atom interactions NBONDS: found 110446 intra-atom interactions NBONDS: found 110455 intra-atom interactions NBONDS: found 110482 intra-atom interactions NBONDS: found 110498 intra-atom interactions NBONDS: found 110513 intra-atom interactions NBONDS: found 110533 intra-atom interactions NBONDS: found 110523 intra-atom interactions NBONDS: found 110523 intra-atom interactions NBONDS: found 110505 intra-atom interactions NBONDS: found 110483 intra-atom interactions NBONDS: found 110457 intra-atom interactions NBONDS: found 110446 intra-atom interactions NBONDS: found 110451 intra-atom interactions NBONDS: found 110470 intra-atom interactions NBONDS: found 110486 intra-atom interactions NBONDS: found 110508 intra-atom interactions NBONDS: found 110515 intra-atom interactions NBONDS: found 110517 intra-atom interactions NBONDS: found 110523 intra-atom interactions NBONDS: found 110516 intra-atom interactions NBONDS: found 110491 intra-atom interactions NBONDS: found 110463 intra-atom interactions NBONDS: found 110448 intra-atom interactions NBONDS: found 110434 intra-atom interactions NBONDS: found 110453 intra-atom interactions NBONDS: found 110472 intra-atom interactions NBONDS: found 110487 intra-atom interactions NBONDS: found 110494 intra-atom interactions NBONDS: found 110486 intra-atom interactions NBONDS: found 110494 intra-atom interactions NBONDS: found 110485 intra-atom interactions NBONDS: found 110467 intra-atom interactions NBONDS: found 110443 intra-atom interactions NBONDS: found 110428 intra-atom interactions NBONDS: found 110439 intra-atom interactions NBONDS: found 110461 intra-atom interactions NBONDS: found 110476 intra-atom interactions NBONDS: found 110487 intra-atom interactions NBONDS: found 110490 intra-atom interactions NBONDS: found 110500 intra-atom interactions NBONDS: found 110486 intra-atom interactions NBONDS: found 110473 intra-atom interactions NBONDS: found 110444 intra-atom interactions NBONDS: found 110431 intra-atom interactions NBONDS: found 110426 intra-atom interactions NBONDS: found 110443 intra-atom interactions NBONDS: found 110454 intra-atom interactions NBONDS: found 110466 intra-atom interactions NBONDS: found 110462 intra-atom interactions NBONDS: found 110467 intra-atom interactions NBONDS: found 110481 intra-atom interactions NBONDS: found 110481 intra-atom interactions NBONDS: found 110480 intra-atom interactions NBONDS: found 110474 intra-atom interactions NBONDS: found 110456 intra-atom interactions NBONDS: found 110441 intra-atom interactions NBONDS: found 110448 intra-atom interactions NBONDS: found 110456 intra-atom interactions NBONDS: found 110461 intra-atom interactions NBONDS: found 110469 intra-atom interactions NBONDS: found 110463 intra-atom interactions NBONDS: found 110450 intra-atom interactions NBONDS: found 110467 intra-atom interactions NBONDS: found 110475 intra-atom interactions NBONDS: found 110483 intra-atom interactions NBONDS: found 110491 intra-atom interactions NBONDS: found 110474 intra-atom interactions NBONDS: found 110473 intra-atom interactions NBONDS: found 110469 intra-atom interactions NBONDS: found 110458 intra-atom interactions NBONDS: found 110440 intra-atom interactions NBONDS: found 110440 intra-atom interactions NBONDS: found 110465 intra-atom interactions NBONDS: found 110483 intra-atom interactions NBONDS: found 110508 intra-atom interactions NBONDS: found 110502 intra-atom interactions NBONDS: found 110474 intra-atom interactions NBONDS: found 110442 intra-atom interactions NBONDS: found 110462 intra-atom interactions NBONDS: found 110465 intra-atom interactions NBONDS: found 110454 intra-atom interactions NBONDS: found 110462 intra-atom interactions NBONDS: found 110485 intra-atom interactions NBONDS: found 110493 intra-atom interactions NBONDS: found 110495 intra-atom interactions NBONDS: found 110500 intra-atom interactions -------------------- final step= 500 at 0.25000 ps --------------------- | E(kin)+E(total)=4218.089 E(kin)=2003.646 temperature=683.812 | | Etotal =2214.443 grad(E)=60.735 E(BOND)=798.353 E(ANGL)=546.121 | | E(DIHE)=14.112 E(IMPR)=733.957 E(VDW )=121.900 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 0.24925 1.71012 40.35321 velocity [A/ps] : -0.00065 1.24847 0.14693 ang. mom. [amu A/ps] : -13389.63594 1186.61388 1645.91949 kin. ener. [Kcal/mol] : 1.92783 CNSsolve> CNSsolve> {- some final minimisation -} CNSsolve> minimize powell POWELL> nstep=500 POWELL> drop=40.0 POWELL> nprint=50 POWELL> end POWELL: number of degrees of freedom= 2949 NBONDS: found 110463 intra-atom interactions NBONDS: found 110487 intra-atom interactions NBONDS: found 110480 intra-atom interactions NBONDS: found 110478 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0000 ----------------------- | Etotal =462.645 grad(E)=20.006 E(BOND)=84.983 E(ANGL)=260.277 | | E(DIHE)=14.105 E(IMPR)=18.727 E(VDW )=84.553 | ------------------------------------------------------------------------------- POWELL: Line search terminated POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> print thres=0.02 bonds (atom-i |atom-j ) dist. equil. delta energy const. ( 54 NE | 54 HE ) 1.268 0.980 0.288 83.065 1000.000 Number of violations greater 0.020: 1 RMS deviation= 0.009 CNSsolve> print thres=5. angles (atom-i |atom-j |atom-k ) angle equil. delta energy const. ( 54 CD | 54 NE | 54 HE ) 95.966 118.099 -22.133 74.612 500.000 ( 54 HE | 54 NE | 54 CZ ) 139.294 119.249 20.045 61.197 500.000 Number of violations greater 5.000: 2 RMS deviation= 0.871 CNSsolve> CNSsolve> end if CNSsolve> CNSsolve> fix selection=( none ) end SELRPN: 0 atoms have been selected out of 1960 CNSsolve> CNSsolve> end if CNSsolve> CNSsolve> set echo=false end SELRPN: 0 atoms have been selected out of 1960 SHOW: zero atoms selected NEXTCD: condition evaluated as true SELRPN: 0 atoms have been selected out of 1960 CNSsolve> CNSsolve> if (&set_bfactor=true) then NEXTCD: condition evaluated as false CNSsolve> do (b=&bfactor) ( all ) CNSsolve> else CNSsolve> show ave(b) (known and not(store1)) SELRPN: 977 atoms have been selected out of 1960 SHOW: average of selected elements = 0.000000 CNSsolve> do (b=$result) (store1 and (attr b < 0.01)) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> end if CNSsolve> CNSsolve> if (&set_occupancy=true) then NEXTCD: condition evaluated as false CNSsolve> do (q=&occupancy) ( all ) CNSsolve> end if CNSsolve> CNSsolve> set echo=false end SELRPN: 983 atoms have been selected out of 1960 SHOW: sum over selected elements = 983.000000 NEXTCD: condition evaluated as false CNSsolve> CNSsolve> set remarks=reset end CNSsolve> CNSsolve> buffer message BUFFER> to=remarks BUFFER> dump BUFFER> end CNSsolve> CNSsolve> write coordinates output=&coordinate_outfile end ASSFIL: file 1xxx_19_cns.pdb opened. CNSsolve> CNSsolve>stop HEAP: maximum use = 1246520 current use = 0 bytes HEAP: maximum overhead = 936 current overhead = 64 bytes ============================================================ Maximum dynamic memory allocation: 1246520 bytes Maximum dynamic memory overhead: 936 bytes Program started at: 09:31:20 on 11-Sep-04 Program stopped at: 09:31:47 on 11-Sep-04 CPU time used: 26.6100 seconds ============================================================