============================================================ | | | Crystallography & NMR System (CNS) | | CNSsolve | | | ============================================================ Version: 1.1 Status: Developmental version ============================================================ Written by: A.T.Brunger, P.D.Adams, G.M.Clore, W.L.DeLano, P.Gros, R.W.Grosse-Kunstleve, J.-S.Jiang, J.Kuszewski, M.Nilges, N.S.Pannu, R.J.Read, L.M.Rice, T.Simonson, G.L.Warren. Copyright (c) 1997-1999 Yale University ============================================================ Running on machine: cesg-master.biochem.wisc.edu (Linux,32-bit) Program started by: volkman Program started at: 09:28:48 on 11-Sep-04 ============================================================ FFT3C: Using FFTPACK4.1 CNSsolve>define( DEFINE>{* selection of atoms other than hydrogens for which coordinates DEFINE> will be generated *} DEFINE>{* to generate coordinates for all unknown atoms use: (not(known)) *} DEFINE>{===>} atom_build=(not(known)); DEFINE>{============================= output files ================================} DEFINE> DEFINE>{* input coordinate file *} DEFINE>{===>} coordinate_infile="1xxx_13.pdb"; DEFINE> DEFINE>{* output coordinate file *} DEFINE>{===>} coordinate_outfile="1xxx_13_cns.pdb"; DEFINE>) CNSsolve> CNSsolve> checkversion 1.1 Program version= 1.1 File version= 1.1 CNSsolve> CNSsolve> evaluate ($log_level=verbose) Assuming literal string "VERBOSE" EVALUATE: symbol $LOG_LEVEL set to "VERBOSE" (string) CNSsolve> evaluate ($par_nonbonded="PROLSQ") EVALUATE: symbol $PAR_NONBONDED set to "PROLSQ" (string) CNSsolve> CNSsolve> !@generateProtonsJFD.inp CNSsolve> CNSsolve>{===========================================================================} CNSsolve>{ things below this line do not need to be changed } CNSsolve>{===========================================================================} CNSsolve> CNSsolve>remarks changed Tue Sep 2 09:48:07 CDT 2003 CNSsolve>remarks by jfd to include a fes residue CNSsolve> CNSsolve>!@generate_tmoc.inp CNSsolve> CNSsolve>topology reset end CNSsolve>structure reset end Status of internal molecular topology database: -> NATOM= 0(MAXA= 40000) NBOND= 0(MAXB= 40000) -> NTHETA= 0(MAXT= 80000) NGRP= 0(MAXGRP= 40000) -> NPHI= 0(MAXP= 80000) NIMPHI= 0(MAXIMP= 40000) -> NNB= 0(MAXNB= 40000) CNSsolve> CNSsolve>topology RTFRDR>{===>} @TOPPAR:topallhdg5.3.pro ASSFIL: file /u/volkman/waterrefine/toppar/topallhdg5.3.pro opened. RTFRDR>remark file topallhdg.pro version 5.3 date 23-Sept-02 RTFRDR>remark for file parallhdg.pro version 5.3 date 13-Feb-02 or later RTFRDR>remark Geometric energy function parameters for distance geometry and RTFRDR>remark simulated annealing. RTFRDR>remark Author: Michael Nilges, EMBL Heidelberg; Institut Pasteur, Paris RTFRDR>remark This file contains modifications from M. Williams, UCL London RTFRDR>remark Last modification 16-Sept-02 RTFRDR> RTFRDR>set echo off message off end RTFRDR>end CNSsolve> CNSsolve>! no chain id. CNSsolve>segment name=" " SEGMENT> chain CHAIN> @TOPPAR:topallhdg5.3.pep CHAIN>REMARKS TOPH19.pep -MACRO for protein sequence CHAIN>SET ECHO=FALSE END CHAIN> sequence SEQUENCE> @1xxx.seq SEQUENCE>MET SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =CYS SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =TRP SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =TRP SEQUence-element (terminate with END) =CYS SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =CYS SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =TRP SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) = end SEGMNT: 124 residues were inserted into segment " " CHAIN> end SEGMENT>end Status of internal molecular topology database: -> NATOM= 1962(MAXA= 40000) NBOND= 1986(MAXB= 40000) -> NTHETA= 3608(MAXT= 80000) NGRP= 126(MAXGRP= 40000) -> NPHI= 3136(MAXP= 80000) NIMPHI= 1032(MAXIMP= 40000) -> NNB= 738(MAXNB= 40000) CNSsolve> CNSsolve>! removes the hydrogen on the cys-en CNSsolve>! and changes the atom type from SH1E to S. CNSsolve>patch DISU reference=1=( resid 50 ) PATCH> reference=2=( resid 53 ) PATCH> end Status of internal molecular topology database: -> NATOM= 1960(MAXA= 40000) NBOND= 1985(MAXB= 40000) -> NTHETA= 3608(MAXT= 80000) NGRP= 128(MAXGRP= 40000) -> NPHI= 3142(MAXP= 80000) NIMPHI= 1032(MAXIMP= 40000) -> NNB= 738(MAXNB= 40000) CNSsolve> CNSsolve>! turn peptide from trans to cis CNSsolve>patch CISP reference=nil=( resid 92 ) end Status of internal molecular topology database: -> NATOM= 1960(MAXA= 40000) NBOND= 1985(MAXB= 40000) -> NTHETA= 3608(MAXT= 80000) NGRP= 128(MAXGRP= 40000) -> NPHI= 3142(MAXP= 80000) NIMPHI= 1032(MAXIMP= 40000) -> NNB= 738(MAXNB= 40000) CNSsolve> CNSsolve>coor @&coordinate_infile COOR>HEADER Structures from CYANA 09-09-2004 COOR>REMARK model 13 COOR>ATOM 2701 N MET A 1 1.325 0.000 0.000 1.00 0.00 %READC-ERR: atom 1 MET HN not found in molecular structure %READC-ERR: atom 1 MET 2HB not found in molecular structure %READC-ERR: atom 1 MET 3HB not found in molecular structure %READC-ERR: atom 1 MET QB not found in molecular structure %READC-ERR: atom 1 MET 2HG not found in molecular structure %READC-ERR: atom 1 MET 3HG not found in molecular structure %READC-ERR: atom 1 MET QG not found in molecular structure %READC-ERR: atom 1 MET QE not found in molecular structure %READC-ERR: atom 1 MET 1HE not found in molecular structure %READC-ERR: atom 1 MET 2HE not found in molecular structure %READC-ERR: atom 1 MET 3HE not found in molecular structure %READC-ERR: atom 2 GLY 1HA not found in molecular structure %READC-ERR: atom 2 GLY 2HA not found in molecular structure %READC-ERR: atom 2 GLY QA not found in molecular structure %READC-ERR: atom 3 HIS 2HB not found in molecular structure %READC-ERR: atom 3 HIS 3HB not found in molecular structure %READC-ERR: atom 3 HIS QB not found in molecular structure %READC-ERR: atom 4 HIS 2HB not found in molecular structure %READC-ERR: atom 4 HIS 3HB not found in molecular structure %READC-ERR: atom 4 HIS QB not found in molecular structure %READC-ERR: atom 5 HIS 2HB not found in molecular structure %READC-ERR: atom 5 HIS 3HB not found in molecular structure %READC-ERR: atom 5 HIS QB not found in molecular structure %READC-ERR: atom 6 HIS 2HB not found in molecular structure %READC-ERR: atom 6 HIS 3HB not found in molecular structure %READC-ERR: atom 6 HIS QB not found in molecular structure %READC-ERR: atom 7 HIS 2HB not found in molecular structure %READC-ERR: atom 7 HIS 3HB not found in molecular structure %READC-ERR: atom 7 HIS QB not found in molecular structure %READC-ERR: atom 8 HIS 2HB not found in molecular structure %READC-ERR: atom 8 HIS 3HB not found in molecular structure %READC-ERR: atom 8 HIS QB not found in molecular structure %READC-ERR: atom 9 LEU 2HB not found in molecular structure %READC-ERR: atom 9 LEU 3HB not found in molecular structure %READC-ERR: atom 9 LEU QB not found in molecular structure %READC-ERR: atom 9 LEU QD1 not found in molecular structure %READC-ERR: atom 9 LEU QD2 not found in molecular structure %READC-ERR: atom 9 LEU 1HD1 not found in molecular structure %READC-ERR: atom 9 LEU 2HD1 not found in molecular structure %READC-ERR: atom 9 LEU 3HD1 not found in molecular structure %READC-ERR: atom 9 LEU 1HD2 not found in molecular structure %READC-ERR: atom 9 LEU 2HD2 not found in molecular structure %READC-ERR: atom 9 LEU 3HD2 not found in molecular structure %READC-ERR: atom 9 LEU QQD not found in molecular structure %READC-ERR: atom 10 GLU 2HB not found in molecular structure %READC-ERR: atom 10 GLU 3HB not found in molecular structure %READC-ERR: atom 10 GLU QB not found in molecular structure %READC-ERR: atom 10 GLU 2HG not found in molecular structure %READC-ERR: atom 10 GLU 3HG not found in molecular structure %READC-ERR: atom 10 GLU QG not found in molecular structure %READC-ERR: atom 11 MET 2HB not found in molecular structure %READC-ERR: atom 11 MET 3HB not found in molecular structure %READC-ERR: atom 11 MET QB not found in molecular structure %READC-ERR: atom 11 MET 2HG not found in molecular structure %READC-ERR: atom 11 MET 3HG not found in molecular structure %READC-ERR: atom 11 MET QG not found in molecular structure %READC-ERR: atom 11 MET QE not found in molecular structure %READC-ERR: atom 11 MET 1HE not found in molecular structure %READC-ERR: atom 11 MET 2HE not found in molecular structure %READC-ERR: atom 11 MET 3HE not found in molecular structure %READC-ERR: atom 12 ALA QB not found in molecular structure %READC-ERR: atom 12 ALA 1HB not found in molecular structure %READC-ERR: atom 12 ALA 2HB not found in molecular structure %READC-ERR: atom 12 ALA 3HB not found in molecular structure %READC-ERR: atom 13 SER 2HB not found in molecular structure %READC-ERR: atom 13 SER 3HB not found in molecular structure %READC-ERR: atom 13 SER QB not found in molecular structure %READC-ERR: atom 14 GLU 2HB not found in molecular structure %READC-ERR: atom 14 GLU 3HB not found in molecular structure %READC-ERR: atom 14 GLU QB not found in molecular structure %READC-ERR: atom 14 GLU 2HG not found in molecular structure %READC-ERR: atom 14 GLU 3HG not found in molecular structure %READC-ERR: atom 14 GLU QG not found in molecular structure %READC-ERR: atom 15 GLU 2HB not found in molecular structure %READC-ERR: atom 15 GLU 3HB not found in molecular structure %READC-ERR: atom 15 GLU QB not found in molecular structure %READC-ERR: atom 15 GLU 2HG not found in molecular structure %READC-ERR: atom 15 GLU 3HG not found in molecular structure %READC-ERR: atom 15 GLU QG not found in molecular structure %READC-ERR: atom 16 GLY 1HA not found in molecular structure %READC-ERR: atom 16 GLY 2HA not found in molecular structure %READC-ERR: atom 16 GLY QA not found in molecular structure %READC-ERR: atom 17 GLN 2HB not found in molecular structure %READC-ERR: atom 17 GLN 3HB not found in molecular structure %READC-ERR: atom 17 GLN QB not found in molecular structure %READC-ERR: atom 17 GLN 2HG not found in molecular structure %READC-ERR: atom 17 GLN 3HG not found in molecular structure %READC-ERR: atom 17 GLN QG not found in molecular structure %READC-ERR: atom 17 GLN 1HE2 not found in molecular structure %READC-ERR: atom 17 GLN 2HE2 not found in molecular structure %READC-ERR: atom 17 GLN QE2 not found in molecular structure %READC-ERR: atom 18 VAL QG1 not found in molecular structure %READC-ERR: atom 18 VAL QG2 not found in molecular structure %READC-ERR: atom 18 VAL 1HG1 not found in molecular structure %READC-ERR: atom 18 VAL 2HG1 not found in molecular structure %READC-ERR: atom 18 VAL 3HG1 not found in molecular structure %READC-ERR: atom 18 VAL 1HG2 not found in molecular structure %READC-ERR: atom 18 VAL 2HG2 not found in molecular structure %READC-ERR: atom 18 VAL 3HG2 not found in molecular structure %READC-ERR: atom 18 VAL QQG not found in molecular structure %READC-ERR: atom 19 ILE QG2 not found in molecular structure %READC-ERR: atom 19 ILE 1HG2 not found in molecular structure %READC-ERR: atom 19 ILE 2HG2 not found in molecular structure %READC-ERR: atom 19 ILE 3HG2 not found in molecular structure %READC-ERR: atom 19 ILE 2HG1 not found in molecular structure %READC-ERR: atom 19 ILE 3HG1 not found in molecular structure %READC-ERR: atom 19 ILE QG1 not found in molecular structure %READC-ERR: atom 19 ILE QD1 not found in molecular structure %READC-ERR: atom 19 ILE 1HD1 not found in molecular structure %READC-ERR: atom 19 ILE 2HD1 not found in molecular structure %READC-ERR: atom 19 ILE 3HD1 not found in molecular structure %READC-ERR: atom 20 ALA QB not found in molecular structure %READC-ERR: atom 20 ALA 1HB not found in molecular structure %READC-ERR: atom 20 ALA 2HB not found in molecular structure %READC-ERR: atom 20 ALA 3HB not found in molecular structure %READC-ERR: atom 21 CYS 2HB not found in molecular structure %READC-ERR: atom 21 CYS 3HB not found in molecular structure %READC-ERR: atom 21 CYS QB not found in molecular structure %READC-ERR: atom 22 HIS 2HB not found in molecular structure %READC-ERR: atom 22 HIS 3HB not found in molecular structure %READC-ERR: atom 22 HIS QB not found in molecular structure %READC-ERR: atom 23 THR QG2 not found in molecular structure %READC-ERR: atom 23 THR 1HG2 not found in molecular structure %READC-ERR: atom 23 THR 2HG2 not found in molecular structure %READC-ERR: atom 23 THR 3HG2 not found in molecular structure %READC-ERR: atom 24 VAL QG1 not found in molecular structure %READC-ERR: atom 24 VAL QG2 not found in molecular structure %READC-ERR: atom 24 VAL 1HG1 not found in molecular structure %READC-ERR: atom 24 VAL 2HG1 not found in molecular structure %READC-ERR: atom 24 VAL 3HG1 not found in molecular structure %READC-ERR: atom 24 VAL 1HG2 not found in molecular structure %READC-ERR: atom 24 VAL 2HG2 not found in molecular structure %READC-ERR: atom 24 VAL 3HG2 not found in molecular structure %READC-ERR: atom 24 VAL QQG not found in molecular structure %READC-ERR: atom 25 GLU 2HB not found in molecular structure %READC-ERR: atom 25 GLU 3HB not found in molecular structure %READC-ERR: atom 25 GLU QB not found in molecular structure %READC-ERR: atom 25 GLU 2HG not found in molecular structure %READC-ERR: atom 25 GLU 3HG not found in molecular structure %READC-ERR: atom 25 GLU QG not found in molecular structure %READC-ERR: atom 26 THR QG2 not found in molecular structure %READC-ERR: atom 26 THR 1HG2 not found in molecular structure %READC-ERR: atom 26 THR 2HG2 not found in molecular structure %READC-ERR: atom 26 THR 3HG2 not found in molecular structure %READC-ERR: atom 27 TRP 2HB not found in molecular structure %READC-ERR: atom 27 TRP 3HB not found in molecular structure %READC-ERR: atom 27 TRP QB not found in molecular structure %READC-ERR: atom 28 ASN 2HB not found in molecular structure %READC-ERR: atom 28 ASN 3HB not found in molecular structure %READC-ERR: atom 28 ASN QB not found in molecular structure %READC-ERR: atom 28 ASN 1HD2 not found in molecular structure %READC-ERR: atom 28 ASN 2HD2 not found in molecular structure %READC-ERR: atom 28 ASN QD2 not found in molecular structure %READC-ERR: atom 29 GLU 2HB not found in molecular structure %READC-ERR: atom 29 GLU 3HB not found in molecular structure %READC-ERR: atom 29 GLU QB not found in molecular structure %READC-ERR: atom 29 GLU 2HG not found in molecular structure %READC-ERR: atom 29 GLU 3HG not found in molecular structure %READC-ERR: atom 29 GLU QG not found in molecular structure %READC-ERR: atom 30 GLN 2HB not found in molecular structure %READC-ERR: atom 30 GLN 3HB not found in molecular structure %READC-ERR: atom 30 GLN QB not found in molecular structure %READC-ERR: atom 30 GLN 2HG not found in molecular structure %READC-ERR: atom 30 GLN 3HG not found in molecular structure %READC-ERR: atom 30 GLN QG not found in molecular structure %READC-ERR: atom 30 GLN 1HE2 not found in molecular structure %READC-ERR: atom 30 GLN 2HE2 not found in molecular structure %READC-ERR: atom 30 GLN QE2 not found in molecular structure %READC-ERR: atom 31 LEU 2HB not found in molecular structure %READC-ERR: atom 31 LEU 3HB not found in molecular structure %READC-ERR: atom 31 LEU QB not found in molecular structure %READC-ERR: atom 31 LEU QD1 not found in molecular structure %READC-ERR: atom 31 LEU QD2 not found in molecular structure %READC-ERR: atom 31 LEU 1HD1 not found in molecular structure %READC-ERR: atom 31 LEU 2HD1 not found in molecular structure %READC-ERR: atom 31 LEU 3HD1 not found in molecular structure %READC-ERR: atom 31 LEU 1HD2 not found in molecular structure %READC-ERR: atom 31 LEU 2HD2 not found in molecular structure %READC-ERR: atom 31 LEU 3HD2 not found in molecular structure %READC-ERR: atom 31 LEU QQD not found in molecular structure %READC-ERR: atom 32 GLN 2HB not found in molecular structure %READC-ERR: atom 32 GLN 3HB not found in molecular structure %READC-ERR: atom 32 GLN QB not found in molecular structure %READC-ERR: atom 32 GLN 2HG not found in molecular structure %READC-ERR: atom 32 GLN 3HG not found in molecular structure %READC-ERR: atom 32 GLN QG not found in molecular structure %READC-ERR: atom 32 GLN 1HE2 not found in molecular structure %READC-ERR: atom 32 GLN 2HE2 not found in molecular structure %READC-ERR: atom 32 GLN QE2 not found in molecular structure %READC-ERR: atom 33 LYS 2HB not found in molecular structure %READC-ERR: atom 33 LYS 3HB not found in molecular structure %READC-ERR: atom 33 LYS QB not found in molecular structure %READC-ERR: atom 33 LYS 2HG not found in molecular structure %READC-ERR: atom 33 LYS 3HG not found in molecular structure %READC-ERR: atom 33 LYS QG not found in molecular structure %READC-ERR: atom 33 LYS 2HD not found in molecular structure %READC-ERR: atom 33 LYS 3HD not found in molecular structure %READC-ERR: atom 33 LYS QD not found in molecular structure %READC-ERR: atom 33 LYS 2HE not found in molecular structure %READC-ERR: atom 33 LYS 3HE not found in molecular structure %READC-ERR: atom 33 LYS QE not found in molecular structure %READC-ERR: atom 33 LYS 1HZ not found in molecular structure %READC-ERR: atom 33 LYS 2HZ not found in molecular structure %READC-ERR: atom 33 LYS 3HZ not found in molecular structure %READC-ERR: atom 33 LYS QZ not found in molecular structure %READC-ERR: atom 34 ALA QB not found in molecular structure %READC-ERR: atom 34 ALA 1HB not found in molecular structure %READC-ERR: atom 34 ALA 2HB not found in molecular structure %READC-ERR: atom 34 ALA 3HB not found in molecular structure %READC-ERR: atom 35 ASN 2HB not found in molecular structure %READC-ERR: atom 35 ASN 3HB not found in molecular structure %READC-ERR: atom 35 ASN QB not found in molecular structure %READC-ERR: atom 35 ASN 1HD2 not found in molecular structure %READC-ERR: atom 35 ASN 2HD2 not found in molecular structure %READC-ERR: atom 35 ASN QD2 not found in molecular structure %READC-ERR: atom 36 GLU 2HB not found in molecular structure %READC-ERR: atom 36 GLU 3HB not found in molecular structure %READC-ERR: atom 36 GLU QB not found in molecular structure %READC-ERR: atom 36 GLU 2HG not found in molecular structure %READC-ERR: atom 36 GLU 3HG not found in molecular structure %READC-ERR: atom 36 GLU QG not found in molecular structure %READC-ERR: atom 37 SER 2HB not found in molecular structure %READC-ERR: atom 37 SER 3HB not found in molecular structure %READC-ERR: atom 37 SER QB not found in molecular structure %READC-ERR: atom 38 LYS 2HB not found in molecular structure %READC-ERR: atom 38 LYS 3HB not found in molecular structure %READC-ERR: atom 38 LYS QB not found in molecular structure %READC-ERR: atom 38 LYS 2HG not found in molecular structure %READC-ERR: atom 38 LYS 3HG not found in molecular structure %READC-ERR: atom 38 LYS QG not found in molecular structure %READC-ERR: atom 38 LYS 2HD not found in molecular structure %READC-ERR: atom 38 LYS 3HD not found in molecular structure %READC-ERR: atom 38 LYS QD not found in molecular structure %READC-ERR: atom 38 LYS 2HE not found in molecular structure %READC-ERR: atom 38 LYS 3HE not found in molecular structure %READC-ERR: atom 38 LYS QE not found in molecular structure %READC-ERR: atom 38 LYS 1HZ not found in molecular structure %READC-ERR: atom 38 LYS 2HZ not found in molecular structure %READC-ERR: atom 38 LYS 3HZ not found in molecular structure %READC-ERR: atom 38 LYS QZ not found in molecular structure %READC-ERR: atom 39 THR QG2 not found in molecular structure %READC-ERR: atom 39 THR 1HG2 not found in molecular structure %READC-ERR: atom 39 THR 2HG2 not found in molecular structure %READC-ERR: atom 39 THR 3HG2 not found in molecular structure %READC-ERR: atom 40 LEU 2HB not found in molecular structure %READC-ERR: atom 40 LEU 3HB not found in molecular structure %READC-ERR: atom 40 LEU QB not found in molecular structure %READC-ERR: atom 40 LEU QD1 not found in molecular structure %READC-ERR: atom 40 LEU QD2 not found in molecular structure %READC-ERR: atom 40 LEU 1HD1 not found in molecular structure %READC-ERR: atom 40 LEU 2HD1 not found in molecular structure %READC-ERR: atom 40 LEU 3HD1 not found in molecular structure %READC-ERR: atom 40 LEU 1HD2 not found in molecular structure %READC-ERR: atom 40 LEU 2HD2 not found in molecular structure %READC-ERR: atom 40 LEU 3HD2 not found in molecular structure %READC-ERR: atom 40 LEU QQD not found in molecular structure %READC-ERR: atom 41 VAL QG1 not found in molecular structure %READC-ERR: atom 41 VAL QG2 not found in molecular structure %READC-ERR: atom 41 VAL 1HG1 not found in molecular structure %READC-ERR: atom 41 VAL 2HG1 not found in molecular structure %READC-ERR: atom 41 VAL 3HG1 not found in molecular structure %READC-ERR: atom 41 VAL 1HG2 not found in molecular structure %READC-ERR: atom 41 VAL 2HG2 not found in molecular structure %READC-ERR: atom 41 VAL 3HG2 not found in molecular structure %READC-ERR: atom 41 VAL QQG not found in molecular structure %READC-ERR: atom 42 VAL QG1 not found in molecular structure %READC-ERR: atom 42 VAL QG2 not found in molecular structure %READC-ERR: atom 42 VAL 1HG1 not found in molecular structure %READC-ERR: atom 42 VAL 2HG1 not found in molecular structure %READC-ERR: atom 42 VAL 3HG1 not found in molecular structure %READC-ERR: atom 42 VAL 1HG2 not found in molecular structure %READC-ERR: atom 42 VAL 2HG2 not found in molecular structure %READC-ERR: atom 42 VAL 3HG2 not found in molecular structure %READC-ERR: atom 42 VAL QQG not found in molecular structure %READC-ERR: atom 43 VAL QG1 not found in molecular structure %READC-ERR: atom 43 VAL QG2 not found in molecular structure %READC-ERR: atom 43 VAL 1HG1 not found in molecular structure %READC-ERR: atom 43 VAL 2HG1 not found in molecular structure %READC-ERR: atom 43 VAL 3HG1 not found in molecular structure %READC-ERR: atom 43 VAL 1HG2 not found in molecular structure %READC-ERR: atom 43 VAL 2HG2 not found in molecular structure %READC-ERR: atom 43 VAL 3HG2 not found in molecular structure %READC-ERR: atom 43 VAL QQG not found in molecular structure %READC-ERR: atom 44 ASP 2HB not found in molecular structure %READC-ERR: atom 44 ASP 3HB not found in molecular structure %READC-ERR: atom 44 ASP QB not found in molecular structure %READC-ERR: atom 45 PHE 2HB not found in molecular structure %READC-ERR: atom 45 PHE 3HB not found in molecular structure %READC-ERR: atom 45 PHE QB not found in molecular structure %READC-ERR: atom 45 PHE QD not found in molecular structure %READC-ERR: atom 45 PHE QE not found in molecular structure %READC-ERR: atom 45 PHE QR not found in molecular structure %READC-ERR: atom 46 THR QG2 not found in molecular structure %READC-ERR: atom 46 THR 1HG2 not found in molecular structure %READC-ERR: atom 46 THR 2HG2 not found in molecular structure %READC-ERR: atom 46 THR 3HG2 not found in molecular structure %READC-ERR: atom 47 ALA QB not found in molecular structure %READC-ERR: atom 47 ALA 1HB not found in molecular structure %READC-ERR: atom 47 ALA 2HB not found in molecular structure %READC-ERR: atom 47 ALA 3HB not found in molecular structure %READC-ERR: atom 48 SER 2HB not found in molecular structure %READC-ERR: atom 48 SER 3HB not found in molecular structure %READC-ERR: atom 48 SER QB not found in molecular structure %READC-ERR: atom 49 TRP 2HB not found in molecular structure %READC-ERR: atom 49 TRP 3HB not found in molecular structure %READC-ERR: atom 49 TRP QB not found in molecular structure %READC-ERR: atom 50 CYS 2HB not found in molecular structure %READC-ERR: atom 50 CYS 3HB not found in molecular structure %READC-ERR: atom 50 CYS QB not found in molecular structure %READC-ERR: atom 51 GLY 1HA not found in molecular structure %READC-ERR: atom 51 GLY 2HA not found in molecular structure %READC-ERR: atom 51 GLY QA not found in molecular structure %READC-ERR: atom 52 PRO 2HB not found in molecular structure %READC-ERR: atom 52 PRO 3HB not found in molecular structure %READC-ERR: atom 52 PRO QB not found in molecular structure %READC-ERR: atom 52 PRO 2HG not found in molecular structure %READC-ERR: atom 52 PRO 3HG not found in molecular structure %READC-ERR: atom 52 PRO QG not found in molecular structure %READC-ERR: atom 52 PRO 2HD not found in molecular structure %READC-ERR: atom 52 PRO 3HD not found in molecular structure %READC-ERR: atom 52 PRO QD not found in molecular structure %READC-ERR: atom 53 CYS 2HB not found in molecular structure %READC-ERR: atom 53 CYS 3HB not found in molecular structure %READC-ERR: atom 53 CYS QB not found in molecular structure %READC-ERR: atom 54 ARG 2HB not found in molecular structure %READC-ERR: atom 54 ARG 3HB not found in molecular structure %READC-ERR: atom 54 ARG QB not found in molecular structure %READC-ERR: atom 54 ARG 2HG not found in molecular structure %READC-ERR: atom 54 ARG 3HG not found in molecular structure %READC-ERR: atom 54 ARG QG not found in molecular structure %READC-ERR: atom 54 ARG 2HD not found in molecular structure %READC-ERR: atom 54 ARG 3HD not found in molecular structure %READC-ERR: atom 54 ARG QD not found in molecular structure %READC-ERR: atom 54 ARG 1HH1 not found in molecular structure %READC-ERR: atom 54 ARG 2HH1 not found in molecular structure %READC-ERR: atom 54 ARG QH1 not found in molecular structure %READC-ERR: atom 54 ARG 1HH2 not found in molecular structure %READC-ERR: atom 54 ARG 2HH2 not found in molecular structure %READC-ERR: atom 54 ARG QH2 not found in molecular structure %READC-ERR: atom 55 PHE 2HB not found in molecular structure %READC-ERR: atom 55 PHE 3HB not found in molecular structure %READC-ERR: atom 55 PHE QB not found in molecular structure %READC-ERR: atom 55 PHE QD not found in molecular structure %READC-ERR: atom 55 PHE QE not found in molecular structure %READC-ERR: atom 55 PHE QR not found in molecular structure %READC-ERR: atom 56 ILE QG2 not found in molecular structure %READC-ERR: atom 56 ILE 1HG2 not found in molecular structure %READC-ERR: atom 56 ILE 2HG2 not found in molecular structure %READC-ERR: atom 56 ILE 3HG2 not found in molecular structure %READC-ERR: atom 56 ILE 2HG1 not found in molecular structure %READC-ERR: atom 56 ILE 3HG1 not found in molecular structure %READC-ERR: atom 56 ILE QG1 not found in molecular structure %READC-ERR: atom 56 ILE QD1 not found in molecular structure %READC-ERR: atom 56 ILE 1HD1 not found in molecular structure %READC-ERR: atom 56 ILE 2HD1 not found in molecular structure %READC-ERR: atom 56 ILE 3HD1 not found in molecular structure %READC-ERR: atom 57 ALA QB not found in molecular structure %READC-ERR: atom 57 ALA 1HB not found in molecular structure %READC-ERR: atom 57 ALA 2HB not found in molecular structure %READC-ERR: atom 57 ALA 3HB not found in molecular structure %READC-ERR: atom 58 PRO 2HB not found in molecular structure %READC-ERR: atom 58 PRO 3HB not found in molecular structure %READC-ERR: atom 58 PRO QB not found in molecular structure %READC-ERR: atom 58 PRO 2HG not found in molecular structure %READC-ERR: atom 58 PRO 3HG not found in molecular structure %READC-ERR: atom 58 PRO QG not found in molecular structure %READC-ERR: atom 58 PRO 2HD not found in molecular structure %READC-ERR: atom 58 PRO 3HD not found in molecular structure %READC-ERR: atom 58 PRO QD not found in molecular structure %READC-ERR: atom 59 PHE 2HB not found in molecular structure %READC-ERR: atom 59 PHE 3HB not found in molecular structure %READC-ERR: atom 59 PHE QB not found in molecular structure %READC-ERR: atom 59 PHE QD not found in molecular structure %READC-ERR: atom 59 PHE QE not found in molecular structure %READC-ERR: atom 59 PHE QR not found in molecular structure %READC-ERR: atom 60 PHE 2HB not found in molecular structure %READC-ERR: atom 60 PHE 3HB not found in molecular structure %READC-ERR: atom 60 PHE QB not found in molecular structure %READC-ERR: atom 60 PHE QD not found in molecular structure %READC-ERR: atom 60 PHE QE not found in molecular structure %READC-ERR: atom 60 PHE QR not found in molecular structure %READC-ERR: atom 61 ALA QB not found in molecular structure %READC-ERR: atom 61 ALA 1HB not found in molecular structure %READC-ERR: atom 61 ALA 2HB not found in molecular structure %READC-ERR: atom 61 ALA 3HB not found in molecular structure %READC-ERR: atom 62 ASP 2HB not found in molecular structure %READC-ERR: atom 62 ASP 3HB not found in molecular structure %READC-ERR: atom 62 ASP QB not found in molecular structure %READC-ERR: atom 63 LEU 2HB not found in molecular structure %READC-ERR: atom 63 LEU 3HB not found in molecular structure %READC-ERR: atom 63 LEU QB not found in molecular structure %READC-ERR: atom 63 LEU QD1 not found in molecular structure %READC-ERR: atom 63 LEU QD2 not found in molecular structure %READC-ERR: atom 63 LEU 1HD1 not found in molecular structure %READC-ERR: atom 63 LEU 2HD1 not found in molecular structure %READC-ERR: atom 63 LEU 3HD1 not found in molecular structure %READC-ERR: atom 63 LEU 1HD2 not found in molecular structure %READC-ERR: atom 63 LEU 2HD2 not found in molecular structure %READC-ERR: atom 63 LEU 3HD2 not found in molecular structure %READC-ERR: atom 63 LEU QQD not found in molecular structure %READC-ERR: atom 64 ALA QB not found in molecular structure %READC-ERR: atom 64 ALA 1HB not found in molecular structure %READC-ERR: atom 64 ALA 2HB not found in molecular structure %READC-ERR: atom 64 ALA 3HB not found in molecular structure %READC-ERR: atom 65 LYS 2HB not found in molecular structure %READC-ERR: atom 65 LYS 3HB not found in molecular structure %READC-ERR: atom 65 LYS QB not found in molecular structure %READC-ERR: atom 65 LYS 2HG not found in molecular structure %READC-ERR: atom 65 LYS 3HG not found in molecular structure %READC-ERR: atom 65 LYS QG not found in molecular structure %READC-ERR: atom 65 LYS 2HD not found in molecular structure %READC-ERR: atom 65 LYS 3HD not found in molecular structure %READC-ERR: atom 65 LYS QD not found in molecular structure %READC-ERR: atom 65 LYS 2HE not found in molecular structure %READC-ERR: atom 65 LYS 3HE not found in molecular structure %READC-ERR: atom 65 LYS QE not found in molecular structure %READC-ERR: atom 65 LYS 1HZ not found in molecular structure %READC-ERR: atom 65 LYS 2HZ not found in molecular structure %READC-ERR: atom 65 LYS 3HZ not found in molecular structure %READC-ERR: atom 65 LYS QZ not found in molecular structure %READC-ERR: atom 66 LYS 2HB not found in molecular structure %READC-ERR: atom 66 LYS 3HB not found in molecular structure %READC-ERR: atom 66 LYS QB not found in molecular structure %READC-ERR: atom 66 LYS 2HG not found in molecular structure %READC-ERR: atom 66 LYS 3HG not found in molecular structure %READC-ERR: atom 66 LYS QG not found in molecular structure %READC-ERR: atom 66 LYS 2HD not found in molecular structure %READC-ERR: atom 66 LYS 3HD not found in molecular structure %READC-ERR: atom 66 LYS QD not found in molecular structure %READC-ERR: atom 66 LYS 2HE not found in molecular structure %READC-ERR: atom 66 LYS 3HE not found in molecular structure %READC-ERR: atom 66 LYS QE not found in molecular structure %READC-ERR: atom 66 LYS 1HZ not found in molecular structure %READC-ERR: atom 66 LYS 2HZ not found in molecular structure %READC-ERR: atom 66 LYS 3HZ not found in molecular structure %READC-ERR: atom 66 LYS QZ not found in molecular structure %READC-ERR: atom 67 LEU 2HB not found in molecular structure %READC-ERR: atom 67 LEU 3HB not found in molecular structure %READC-ERR: atom 67 LEU QB not found in molecular structure %READC-ERR: atom 67 LEU QD1 not found in molecular structure %READC-ERR: atom 67 LEU QD2 not found in molecular structure %READC-ERR: atom 67 LEU 1HD1 not found in molecular structure %READC-ERR: atom 67 LEU 2HD1 not found in molecular structure %READC-ERR: atom 67 LEU 3HD1 not found in molecular structure %READC-ERR: atom 67 LEU 1HD2 not found in molecular structure %READC-ERR: atom 67 LEU 2HD2 not found in molecular structure %READC-ERR: atom 67 LEU 3HD2 not found in molecular structure %READC-ERR: atom 67 LEU QQD not found in molecular structure %READC-ERR: atom 68 PRO 2HB not found in molecular structure %READC-ERR: atom 68 PRO 3HB not found in molecular structure %READC-ERR: atom 68 PRO QB not found in molecular structure %READC-ERR: atom 68 PRO 2HG not found in molecular structure %READC-ERR: atom 68 PRO 3HG not found in molecular structure %READC-ERR: atom 68 PRO QG not found in molecular structure %READC-ERR: atom 68 PRO 2HD not found in molecular structure %READC-ERR: atom 68 PRO 3HD not found in molecular structure %READC-ERR: atom 68 PRO QD not found in molecular structure %READC-ERR: atom 69 ASN 2HB not found in molecular structure %READC-ERR: atom 69 ASN 3HB not found in molecular structure %READC-ERR: atom 69 ASN QB not found in molecular structure %READC-ERR: atom 69 ASN 1HD2 not found in molecular structure %READC-ERR: atom 69 ASN 2HD2 not found in molecular structure %READC-ERR: atom 69 ASN QD2 not found in molecular structure %READC-ERR: atom 70 VAL QG1 not found in molecular structure %READC-ERR: atom 70 VAL QG2 not found in molecular structure %READC-ERR: atom 70 VAL 1HG1 not found in molecular structure %READC-ERR: atom 70 VAL 2HG1 not found in molecular structure %READC-ERR: atom 70 VAL 3HG1 not found in molecular structure %READC-ERR: atom 70 VAL 1HG2 not found in molecular structure %READC-ERR: atom 70 VAL 2HG2 not found in molecular structure %READC-ERR: atom 70 VAL 3HG2 not found in molecular structure %READC-ERR: atom 70 VAL QQG not found in molecular structure %READC-ERR: atom 71 LEU 2HB not found in molecular structure %READC-ERR: atom 71 LEU 3HB not found in molecular structure %READC-ERR: atom 71 LEU QB not found in molecular structure %READC-ERR: atom 71 LEU QD1 not found in molecular structure %READC-ERR: atom 71 LEU QD2 not found in molecular structure %READC-ERR: atom 71 LEU 1HD1 not found in molecular structure %READC-ERR: atom 71 LEU 2HD1 not found in molecular structure %READC-ERR: atom 71 LEU 3HD1 not found in molecular structure %READC-ERR: atom 71 LEU 1HD2 not found in molecular structure %READC-ERR: atom 71 LEU 2HD2 not found in molecular structure %READC-ERR: atom 71 LEU 3HD2 not found in molecular structure %READC-ERR: atom 71 LEU QQD not found in molecular structure %READC-ERR: atom 72 PHE 2HB not found in molecular structure %READC-ERR: atom 72 PHE 3HB not found in molecular structure %READC-ERR: atom 72 PHE QB not found in molecular structure %READC-ERR: atom 72 PHE QD not found in molecular structure %READC-ERR: atom 72 PHE QE not found in molecular structure %READC-ERR: atom 72 PHE QR not found in molecular structure %READC-ERR: atom 73 LEU 2HB not found in molecular structure %READC-ERR: atom 73 LEU 3HB not found in molecular structure %READC-ERR: atom 73 LEU QB not found in molecular structure %READC-ERR: atom 73 LEU QD1 not found in molecular structure %READC-ERR: atom 73 LEU QD2 not found in molecular structure %READC-ERR: atom 73 LEU 1HD1 not found in molecular structure %READC-ERR: atom 73 LEU 2HD1 not found in molecular structure %READC-ERR: atom 73 LEU 3HD1 not found in molecular structure %READC-ERR: atom 73 LEU 1HD2 not found in molecular structure %READC-ERR: atom 73 LEU 2HD2 not found in molecular structure %READC-ERR: atom 73 LEU 3HD2 not found in molecular structure %READC-ERR: atom 73 LEU QQD not found in molecular structure %READC-ERR: atom 74 LYS 2HB not found in molecular structure %READC-ERR: atom 74 LYS 3HB not found in molecular structure %READC-ERR: atom 74 LYS QB not found in molecular structure %READC-ERR: atom 74 LYS 2HG not found in molecular structure %READC-ERR: atom 74 LYS 3HG not found in molecular structure %READC-ERR: atom 74 LYS QG not found in molecular structure %READC-ERR: atom 74 LYS 2HD not found in molecular structure %READC-ERR: atom 74 LYS 3HD not found in molecular structure %READC-ERR: atom 74 LYS QD not found in molecular structure %READC-ERR: atom 74 LYS 2HE not found in molecular structure %READC-ERR: atom 74 LYS 3HE not found in molecular structure %READC-ERR: atom 74 LYS QE not found in molecular structure %READC-ERR: atom 74 LYS 1HZ not found in molecular structure %READC-ERR: atom 74 LYS 2HZ not found in molecular structure %READC-ERR: atom 74 LYS 3HZ not found in molecular structure %READC-ERR: atom 74 LYS QZ not found in molecular structure %READC-ERR: atom 75 VAL QG1 not found in molecular structure %READC-ERR: atom 75 VAL QG2 not found in molecular structure %READC-ERR: atom 75 VAL 1HG1 not found in molecular structure %READC-ERR: atom 75 VAL 2HG1 not found in molecular structure %READC-ERR: atom 75 VAL 3HG1 not found in molecular structure %READC-ERR: atom 75 VAL 1HG2 not found in molecular structure %READC-ERR: atom 75 VAL 2HG2 not found in molecular structure %READC-ERR: atom 75 VAL 3HG2 not found in molecular structure %READC-ERR: atom 75 VAL QQG not found in molecular structure %READC-ERR: atom 76 ASP 2HB not found in molecular structure %READC-ERR: atom 76 ASP 3HB not found in molecular structure %READC-ERR: atom 76 ASP QB not found in molecular structure %READC-ERR: atom 77 THR QG2 not found in molecular structure %READC-ERR: atom 77 THR 1HG2 not found in molecular structure %READC-ERR: atom 77 THR 2HG2 not found in molecular structure %READC-ERR: atom 77 THR 3HG2 not found in molecular structure %READC-ERR: atom 78 ASP 2HB not found in molecular structure %READC-ERR: atom 78 ASP 3HB not found in molecular structure %READC-ERR: atom 78 ASP QB not found in molecular structure %READC-ERR: atom 79 GLU 2HB not found in molecular structure %READC-ERR: atom 79 GLU 3HB not found in molecular structure %READC-ERR: atom 79 GLU QB not found in molecular structure %READC-ERR: atom 79 GLU 2HG not found in molecular structure %READC-ERR: atom 79 GLU 3HG not found in molecular structure %READC-ERR: atom 79 GLU QG not found in molecular structure %READC-ERR: atom 80 LEU 2HB not found in molecular structure %READC-ERR: atom 80 LEU 3HB not found in molecular structure %READC-ERR: atom 80 LEU QB not found in molecular structure %READC-ERR: atom 80 LEU QD1 not found in molecular structure %READC-ERR: atom 80 LEU QD2 not found in molecular structure %READC-ERR: atom 80 LEU 1HD1 not found in molecular structure %READC-ERR: atom 80 LEU 2HD1 not found in molecular structure %READC-ERR: atom 80 LEU 3HD1 not found in molecular structure %READC-ERR: atom 80 LEU 1HD2 not found in molecular structure %READC-ERR: atom 80 LEU 2HD2 not found in molecular structure %READC-ERR: atom 80 LEU 3HD2 not found in molecular structure %READC-ERR: atom 80 LEU QQD not found in molecular structure %READC-ERR: atom 81 LYS 2HB not found in molecular structure %READC-ERR: atom 81 LYS 3HB not found in molecular structure %READC-ERR: atom 81 LYS QB not found in molecular structure %READC-ERR: atom 81 LYS 2HG not found in molecular structure %READC-ERR: atom 81 LYS 3HG not found in molecular structure %READC-ERR: atom 81 LYS QG not found in molecular structure %READC-ERR: atom 81 LYS 2HD not found in molecular structure %READC-ERR: atom 81 LYS 3HD not found in molecular structure %READC-ERR: atom 81 LYS QD not found in molecular structure %READC-ERR: atom 81 LYS 2HE not found in molecular structure %READC-ERR: atom 81 LYS 3HE not found in molecular structure %READC-ERR: atom 81 LYS QE not found in molecular structure %READC-ERR: atom 81 LYS 1HZ not found in molecular structure %READC-ERR: atom 81 LYS 2HZ not found in molecular structure %READC-ERR: atom 81 LYS 3HZ not found in molecular structure %READC-ERR: atom 81 LYS QZ not found in molecular structure %READC-ERR: atom 82 SER 2HB not found in molecular structure %READC-ERR: atom 82 SER 3HB not found in molecular structure %READC-ERR: atom 82 SER QB not found in molecular structure %READC-ERR: atom 83 VAL QG1 not found in molecular structure %READC-ERR: atom 83 VAL QG2 not found in molecular structure %READC-ERR: atom 83 VAL 1HG1 not found in molecular structure %READC-ERR: atom 83 VAL 2HG1 not found in molecular structure %READC-ERR: atom 83 VAL 3HG1 not found in molecular structure %READC-ERR: atom 83 VAL 1HG2 not found in molecular structure %READC-ERR: atom 83 VAL 2HG2 not found in molecular structure %READC-ERR: atom 83 VAL 3HG2 not found in molecular structure %READC-ERR: atom 83 VAL QQG not found in molecular structure %READC-ERR: atom 84 ALA QB not found in molecular structure %READC-ERR: atom 84 ALA 1HB not found in molecular structure %READC-ERR: atom 84 ALA 2HB not found in molecular structure %READC-ERR: atom 84 ALA 3HB not found in molecular structure %READC-ERR: atom 85 SER 2HB not found in molecular structure %READC-ERR: atom 85 SER 3HB not found in molecular structure %READC-ERR: atom 85 SER QB not found in molecular structure %READC-ERR: atom 86 ASP 2HB not found in molecular structure %READC-ERR: atom 86 ASP 3HB not found in molecular structure %READC-ERR: atom 86 ASP QB not found in molecular structure %READC-ERR: atom 87 TRP 2HB not found in molecular structure %READC-ERR: atom 87 TRP 3HB not found in molecular structure %READC-ERR: atom 87 TRP QB not found in molecular structure %READC-ERR: atom 88 ALA QB not found in molecular structure %READC-ERR: atom 88 ALA 1HB not found in molecular structure %READC-ERR: atom 88 ALA 2HB not found in molecular structure %READC-ERR: atom 88 ALA 3HB not found in molecular structure %READC-ERR: atom 89 ILE QG2 not found in molecular structure %READC-ERR: atom 89 ILE 1HG2 not found in molecular structure %READC-ERR: atom 89 ILE 2HG2 not found in molecular structure %READC-ERR: atom 89 ILE 3HG2 not found in molecular structure %READC-ERR: atom 89 ILE 2HG1 not found in molecular structure %READC-ERR: atom 89 ILE 3HG1 not found in molecular structure %READC-ERR: atom 89 ILE QG1 not found in molecular structure %READC-ERR: atom 89 ILE QD1 not found in molecular structure %READC-ERR: atom 89 ILE 1HD1 not found in molecular structure %READC-ERR: atom 89 ILE 2HD1 not found in molecular structure %READC-ERR: atom 89 ILE 3HD1 not found in molecular structure %READC-ERR: atom 90 GLN 2HB not found in molecular structure %READC-ERR: atom 90 GLN 3HB not found in molecular structure %READC-ERR: atom 90 GLN QB not found in molecular structure %READC-ERR: atom 90 GLN 2HG not found in molecular structure %READC-ERR: atom 90 GLN 3HG not found in molecular structure %READC-ERR: atom 90 GLN QG not found in molecular structure %READC-ERR: atom 90 GLN 1HE2 not found in molecular structure %READC-ERR: atom 90 GLN 2HE2 not found in molecular structure %READC-ERR: atom 90 GLN QE2 not found in molecular structure %READC-ERR: atom 91 ALA QB not found in molecular structure %READC-ERR: atom 91 ALA 1HB not found in molecular structure %READC-ERR: atom 91 ALA 2HB not found in molecular structure %READC-ERR: atom 91 ALA 3HB not found in molecular structure %READC-ERR: atom 92 MET 2HB not found in molecular structure %READC-ERR: atom 92 MET 3HB not found in molecular structure %READC-ERR: atom 92 MET QB not found in molecular structure %READC-ERR: atom 92 MET 2HG not found in molecular structure %READC-ERR: atom 92 MET 3HG not found in molecular structure %READC-ERR: atom 92 MET QG not found in molecular structure %READC-ERR: atom 92 MET QE not found in molecular structure %READC-ERR: atom 92 MET 1HE not found in molecular structure %READC-ERR: atom 92 MET 2HE not found in molecular structure %READC-ERR: atom 92 MET 3HE not found in molecular structure %READC-ERR: atom 93 PRO 2HB not found in molecular structure %READC-ERR: atom 93 PRO 3HB not found in molecular structure %READC-ERR: atom 93 PRO QB not found in molecular structure %READC-ERR: atom 93 PRO 2HG not found in molecular structure %READC-ERR: atom 93 PRO 3HG not found in molecular structure %READC-ERR: atom 93 PRO QG not found in molecular structure %READC-ERR: atom 93 PRO 2HD not found in molecular structure %READC-ERR: atom 93 PRO 3HD not found in molecular structure %READC-ERR: atom 93 PRO QD not found in molecular structure %READC-ERR: atom 94 THR QG2 not found in molecular structure %READC-ERR: atom 94 THR 1HG2 not found in molecular structure %READC-ERR: atom 94 THR 2HG2 not found in molecular structure %READC-ERR: atom 94 THR 3HG2 not found in molecular structure %READC-ERR: atom 95 PHE 2HB not found in molecular structure %READC-ERR: atom 95 PHE 3HB not found in molecular structure %READC-ERR: atom 95 PHE QB not found in molecular structure %READC-ERR: atom 95 PHE QD not found in molecular structure %READC-ERR: atom 95 PHE QE not found in molecular structure %READC-ERR: atom 95 PHE QR not found in molecular structure %READC-ERR: atom 96 MET 2HB not found in molecular structure %READC-ERR: atom 96 MET 3HB not found in molecular structure %READC-ERR: atom 96 MET QB not found in molecular structure %READC-ERR: atom 96 MET 2HG not found in molecular structure %READC-ERR: atom 96 MET 3HG not found in molecular structure %READC-ERR: atom 96 MET QG not found in molecular structure %READC-ERR: atom 96 MET QE not found in molecular structure %READC-ERR: atom 96 MET 1HE not found in molecular structure %READC-ERR: atom 96 MET 2HE not found in molecular structure %READC-ERR: atom 96 MET 3HE not found in molecular structure %READC-ERR: atom 97 PHE 2HB not found in molecular structure %READC-ERR: atom 97 PHE 3HB not found in molecular structure %READC-ERR: atom 97 PHE QB not found in molecular structure %READC-ERR: atom 97 PHE QD not found in molecular structure %READC-ERR: atom 97 PHE QE not found in molecular structure %READC-ERR: atom 97 PHE QR not found in molecular structure %READC-ERR: atom 98 LEU 2HB not found in molecular structure %READC-ERR: atom 98 LEU 3HB not found in molecular structure %READC-ERR: atom 98 LEU QB not found in molecular structure %READC-ERR: atom 98 LEU QD1 not found in molecular structure %READC-ERR: atom 98 LEU QD2 not found in molecular structure %READC-ERR: atom 98 LEU 1HD1 not found in molecular structure %READC-ERR: atom 98 LEU 2HD1 not found in molecular structure %READC-ERR: atom 98 LEU 3HD1 not found in molecular structure %READC-ERR: atom 98 LEU 1HD2 not found in molecular structure %READC-ERR: atom 98 LEU 2HD2 not found in molecular structure %READC-ERR: atom 98 LEU 3HD2 not found in molecular structure %READC-ERR: atom 98 LEU QQD not found in molecular structure %READC-ERR: atom 99 LYS 2HB not found in molecular structure %READC-ERR: atom 99 LYS 3HB not found in molecular structure %READC-ERR: atom 99 LYS QB not found in molecular structure %READC-ERR: atom 99 LYS 2HG not found in molecular structure %READC-ERR: atom 99 LYS 3HG not found in molecular structure %READC-ERR: atom 99 LYS QG not found in molecular structure %READC-ERR: atom 99 LYS 2HD not found in molecular structure %READC-ERR: atom 99 LYS 3HD not found in molecular structure %READC-ERR: atom 99 LYS QD not found in molecular structure %READC-ERR: atom 99 LYS 2HE not found in molecular structure %READC-ERR: atom 99 LYS 3HE not found in molecular structure %READC-ERR: atom 99 LYS QE not found in molecular structure %READC-ERR: atom 99 LYS 1HZ not found in molecular structure %READC-ERR: atom 99 LYS 2HZ not found in molecular structure %READC-ERR: atom 99 LYS 3HZ not found in molecular structure %READC-ERR: atom 99 LYS QZ not found in molecular structure %READC-ERR: atom 100 GLU 2HB not found in molecular structure %READC-ERR: atom 100 GLU 3HB not found in molecular structure %READC-ERR: atom 100 GLU QB not found in molecular structure %READC-ERR: atom 100 GLU 2HG not found in molecular structure %READC-ERR: atom 100 GLU 3HG not found in molecular structure %READC-ERR: atom 100 GLU QG not found in molecular structure %READC-ERR: atom 101 GLY 1HA not found in molecular structure %READC-ERR: atom 101 GLY 2HA not found in molecular structure %READC-ERR: atom 101 GLY QA not found in molecular structure %READC-ERR: atom 102 LYS 2HB not found in molecular structure %READC-ERR: atom 102 LYS 3HB not found in molecular structure %READC-ERR: atom 102 LYS QB not found in molecular structure %READC-ERR: atom 102 LYS 2HG not found in molecular structure %READC-ERR: atom 102 LYS 3HG not found in molecular structure %READC-ERR: atom 102 LYS QG not found in molecular structure %READC-ERR: atom 102 LYS 2HD not found in molecular structure %READC-ERR: atom 102 LYS 3HD not found in molecular structure %READC-ERR: atom 102 LYS QD not found in molecular structure %READC-ERR: atom 102 LYS 2HE not found in molecular structure %READC-ERR: atom 102 LYS 3HE not found in molecular structure %READC-ERR: atom 102 LYS QE not found in molecular structure %READC-ERR: atom 102 LYS 1HZ not found in molecular structure %READC-ERR: atom 102 LYS 2HZ not found in molecular structure %READC-ERR: atom 102 LYS 3HZ not found in molecular structure %READC-ERR: atom 102 LYS QZ not found in molecular structure %READC-ERR: atom 103 ILE QG2 not found in molecular structure %READC-ERR: atom 103 ILE 1HG2 not found in molecular structure %READC-ERR: atom 103 ILE 2HG2 not found in molecular structure %READC-ERR: atom 103 ILE 3HG2 not found in molecular structure %READC-ERR: atom 103 ILE 2HG1 not found in molecular structure %READC-ERR: atom 103 ILE 3HG1 not found in molecular structure %READC-ERR: atom 103 ILE QG1 not found in molecular structure %READC-ERR: atom 103 ILE QD1 not found in molecular structure %READC-ERR: atom 103 ILE 1HD1 not found in molecular structure %READC-ERR: atom 103 ILE 2HD1 not found in molecular structure %READC-ERR: atom 103 ILE 3HD1 not found in molecular structure %READC-ERR: atom 104 LEU 2HB not found in molecular structure %READC-ERR: atom 104 LEU 3HB not found in molecular structure %READC-ERR: atom 104 LEU QB not found in molecular structure %READC-ERR: atom 104 LEU QD1 not found in molecular structure %READC-ERR: atom 104 LEU QD2 not found in molecular structure %READC-ERR: atom 104 LEU 1HD1 not found in molecular structure %READC-ERR: atom 104 LEU 2HD1 not found in molecular structure %READC-ERR: atom 104 LEU 3HD1 not found in molecular structure %READC-ERR: atom 104 LEU 1HD2 not found in molecular structure %READC-ERR: atom 104 LEU 2HD2 not found in molecular structure %READC-ERR: atom 104 LEU 3HD2 not found in molecular structure %READC-ERR: atom 104 LEU QQD not found in molecular structure %READC-ERR: atom 105 ASP 2HB not found in molecular structure %READC-ERR: atom 105 ASP 3HB not found in molecular structure %READC-ERR: atom 105 ASP QB not found in molecular structure %READC-ERR: atom 106 LYS 2HB not found in molecular structure %READC-ERR: atom 106 LYS 3HB not found in molecular structure %READC-ERR: atom 106 LYS QB not found in molecular structure %READC-ERR: atom 106 LYS 2HG not found in molecular structure %READC-ERR: atom 106 LYS 3HG not found in molecular structure %READC-ERR: atom 106 LYS QG not found in molecular structure %READC-ERR: atom 106 LYS 2HD not found in molecular structure %READC-ERR: atom 106 LYS 3HD not found in molecular structure %READC-ERR: atom 106 LYS QD not found in molecular structure %READC-ERR: atom 106 LYS 2HE not found in molecular structure %READC-ERR: atom 106 LYS 3HE not found in molecular structure %READC-ERR: atom 106 LYS QE not found in molecular structure %READC-ERR: atom 106 LYS 1HZ not found in molecular structure %READC-ERR: atom 106 LYS 2HZ not found in molecular structure %READC-ERR: atom 106 LYS 3HZ not found in molecular structure %READC-ERR: atom 106 LYS QZ not found in molecular structure %READC-ERR: atom 107 VAL QG1 not found in molecular structure %READC-ERR: atom 107 VAL QG2 not found in molecular structure %READC-ERR: atom 107 VAL 1HG1 not found in molecular structure %READC-ERR: atom 107 VAL 2HG1 not found in molecular structure %READC-ERR: atom 107 VAL 3HG1 not found in molecular structure %READC-ERR: atom 107 VAL 1HG2 not found in molecular structure %READC-ERR: atom 107 VAL 2HG2 not found in molecular structure %READC-ERR: atom 107 VAL 3HG2 not found in molecular structure %READC-ERR: atom 107 VAL QQG not found in molecular structure %READC-ERR: atom 108 VAL QG1 not found in molecular structure %READC-ERR: atom 108 VAL QG2 not found in molecular structure %READC-ERR: atom 108 VAL 1HG1 not found in molecular structure %READC-ERR: atom 108 VAL 2HG1 not found in molecular structure %READC-ERR: atom 108 VAL 3HG1 not found in molecular structure %READC-ERR: atom 108 VAL 1HG2 not found in molecular structure %READC-ERR: atom 108 VAL 2HG2 not found in molecular structure %READC-ERR: atom 108 VAL 3HG2 not found in molecular structure %READC-ERR: atom 108 VAL QQG not found in molecular structure %READC-ERR: atom 109 GLY 1HA not found in molecular structure %READC-ERR: atom 109 GLY 2HA not found in molecular structure %READC-ERR: atom 109 GLY QA not found in molecular structure %READC-ERR: atom 110 ALA QB not found in molecular structure %READC-ERR: atom 110 ALA 1HB not found in molecular structure %READC-ERR: atom 110 ALA 2HB not found in molecular structure %READC-ERR: atom 110 ALA 3HB not found in molecular structure %READC-ERR: atom 111 LYS 2HB not found in molecular structure %READC-ERR: atom 111 LYS 3HB not found in molecular structure %READC-ERR: atom 111 LYS QB not found in molecular structure %READC-ERR: atom 111 LYS 2HG not found in molecular structure %READC-ERR: atom 111 LYS 3HG not found in molecular structure %READC-ERR: atom 111 LYS QG not found in molecular structure %READC-ERR: atom 111 LYS 2HD not found in molecular structure %READC-ERR: atom 111 LYS 3HD not found in molecular structure %READC-ERR: atom 111 LYS QD not found in molecular structure %READC-ERR: atom 111 LYS 2HE not found in molecular structure %READC-ERR: atom 111 LYS 3HE not found in molecular structure %READC-ERR: atom 111 LYS QE not found in molecular structure %READC-ERR: atom 111 LYS 1HZ not found in molecular structure %READC-ERR: atom 111 LYS 2HZ not found in molecular structure %READC-ERR: atom 111 LYS 3HZ not found in molecular structure %READC-ERR: atom 111 LYS QZ not found in molecular structure %READC-ERR: atom 112 LYS 2HB not found in molecular structure %READC-ERR: atom 112 LYS 3HB not found in molecular structure %READC-ERR: atom 112 LYS QB not found in molecular structure %READC-ERR: atom 112 LYS 2HG not found in molecular structure %READC-ERR: atom 112 LYS 3HG not found in molecular structure %READC-ERR: atom 112 LYS QG not found in molecular structure %READC-ERR: atom 112 LYS 2HD not found in molecular structure %READC-ERR: atom 112 LYS 3HD not found in molecular structure %READC-ERR: atom 112 LYS QD not found in molecular structure %READC-ERR: atom 112 LYS 2HE not found in molecular structure %READC-ERR: atom 112 LYS 3HE not found in molecular structure %READC-ERR: atom 112 LYS QE not found in molecular structure %READC-ERR: atom 112 LYS 1HZ not found in molecular structure %READC-ERR: atom 112 LYS 2HZ not found in molecular structure %READC-ERR: atom 112 LYS 3HZ not found in molecular structure %READC-ERR: atom 112 LYS QZ not found in molecular structure %READC-ERR: atom 113 ASP 2HB not found in molecular structure %READC-ERR: atom 113 ASP 3HB not found in molecular structure %READC-ERR: atom 113 ASP QB not found in molecular structure %READC-ERR: atom 114 GLU 2HB not found in molecular structure %READC-ERR: atom 114 GLU 3HB not found in molecular structure %READC-ERR: atom 114 GLU QB not found in molecular structure %READC-ERR: atom 114 GLU 2HG not found in molecular structure %READC-ERR: atom 114 GLU 3HG not found in molecular structure %READC-ERR: atom 114 GLU QG not found in molecular structure %READC-ERR: atom 115 LEU 2HB not found in molecular structure %READC-ERR: atom 115 LEU 3HB not found in molecular structure %READC-ERR: atom 115 LEU QB not found in molecular structure %READC-ERR: atom 115 LEU QD1 not found in molecular structure %READC-ERR: atom 115 LEU QD2 not found in molecular structure %READC-ERR: atom 115 LEU 1HD1 not found in molecular structure %READC-ERR: atom 115 LEU 2HD1 not found in molecular structure %READC-ERR: atom 115 LEU 3HD1 not found in molecular structure %READC-ERR: atom 115 LEU 1HD2 not found in molecular structure %READC-ERR: atom 115 LEU 2HD2 not found in molecular structure %READC-ERR: atom 115 LEU 3HD2 not found in molecular structure %READC-ERR: atom 115 LEU QQD not found in molecular structure %READC-ERR: atom 116 GLN 2HB not found in molecular structure %READC-ERR: atom 116 GLN 3HB not found in molecular structure %READC-ERR: atom 116 GLN QB not found in molecular structure %READC-ERR: atom 116 GLN 2HG not found in molecular structure %READC-ERR: atom 116 GLN 3HG not found in molecular structure %READC-ERR: atom 116 GLN QG not found in molecular structure %READC-ERR: atom 116 GLN 1HE2 not found in molecular structure %READC-ERR: atom 116 GLN 2HE2 not found in molecular structure %READC-ERR: atom 116 GLN QE2 not found in molecular structure %READC-ERR: atom 117 SER 2HB not found in molecular structure %READC-ERR: atom 117 SER 3HB not found in molecular structure %READC-ERR: atom 117 SER QB not found in molecular structure %READC-ERR: atom 118 THR QG2 not found in molecular structure %READC-ERR: atom 118 THR 1HG2 not found in molecular structure %READC-ERR: atom 118 THR 2HG2 not found in molecular structure %READC-ERR: atom 118 THR 3HG2 not found in molecular structure %READC-ERR: atom 119 ILE QG2 not found in molecular structure %READC-ERR: atom 119 ILE 1HG2 not found in molecular structure %READC-ERR: atom 119 ILE 2HG2 not found in molecular structure %READC-ERR: atom 119 ILE 3HG2 not found in molecular structure %READC-ERR: atom 119 ILE 2HG1 not found in molecular structure %READC-ERR: atom 119 ILE 3HG1 not found in molecular structure %READC-ERR: atom 119 ILE QG1 not found in molecular structure %READC-ERR: atom 119 ILE QD1 not found in molecular structure %READC-ERR: atom 119 ILE 1HD1 not found in molecular structure %READC-ERR: atom 119 ILE 2HD1 not found in molecular structure %READC-ERR: atom 119 ILE 3HD1 not found in molecular structure %READC-ERR: atom 120 ALA QB not found in molecular structure %READC-ERR: atom 120 ALA 1HB not found in molecular structure %READC-ERR: atom 120 ALA 2HB not found in molecular structure %READC-ERR: atom 120 ALA 3HB not found in molecular structure %READC-ERR: atom 121 LYS 2HB not found in molecular structure %READC-ERR: atom 121 LYS 3HB not found in molecular structure %READC-ERR: atom 121 LYS QB not found in molecular structure %READC-ERR: atom 121 LYS 2HG not found in molecular structure %READC-ERR: atom 121 LYS 3HG not found in molecular structure %READC-ERR: atom 121 LYS QG not found in molecular structure %READC-ERR: atom 121 LYS 2HD not found in molecular structure %READC-ERR: atom 121 LYS 3HD not found in molecular structure %READC-ERR: atom 121 LYS QD not found in molecular structure %READC-ERR: atom 121 LYS 2HE not found in molecular structure %READC-ERR: atom 121 LYS 3HE not found in molecular structure %READC-ERR: atom 121 LYS QE not found in molecular structure %READC-ERR: atom 121 LYS 1HZ not found in molecular structure %READC-ERR: atom 121 LYS 2HZ not found in molecular structure %READC-ERR: atom 121 LYS 3HZ not found in molecular structure %READC-ERR: atom 121 LYS QZ not found in molecular structure %READC-ERR: atom 122 HIS 2HB not found in molecular structure %READC-ERR: atom 122 HIS 3HB not found in molecular structure %READC-ERR: atom 122 HIS QB not found in molecular structure %READC-ERR: atom 123 LEU 2HB not found in molecular structure %READC-ERR: atom 123 LEU 3HB not found in molecular structure %READC-ERR: atom 123 LEU QB not found in molecular structure %READC-ERR: atom 123 LEU QD1 not found in molecular structure %READC-ERR: atom 123 LEU QD2 not found in molecular structure %READC-ERR: atom 123 LEU 1HD1 not found in molecular structure %READC-ERR: atom 123 LEU 2HD1 not found in molecular structure %READC-ERR: atom 123 LEU 3HD1 not found in molecular structure %READC-ERR: atom 123 LEU 1HD2 not found in molecular structure %READC-ERR: atom 123 LEU 2HD2 not found in molecular structure %READC-ERR: atom 123 LEU 3HD2 not found in molecular structure %READC-ERR: atom 123 LEU QQD not found in molecular structure %READC-ERR: atom 124 ALA QB not found in molecular structure %READC-ERR: atom 124 ALA 1HB not found in molecular structure %READC-ERR: atom 124 ALA 2HB not found in molecular structure %READC-ERR: atom 124 ALA 3HB not found in molecular structure %READC-ERR: atom 124 ALA O not found in molecular structure COOR>END CNSsolve>parameter @TOPPAR:parallhdg5.3.pro end PARRDR>! JFD adds FES complex parameters from Milo Westler's calculations PARRDR>! and standard topology. PARRDR> PARRDR>remark file protein-allhdg-ucl.param version UCL date 07-JUL-01 PARRDR>remark for file protein-allhdg-ucl.top version UCL date 14-MAR-00 PARRDR>remark for file protein-allhdg-dih-ucl.top version UCL date 07-JUL-01 PARRDR>remark Geometric energy function parameters for distance geometry and PARRDR>remark simulated annealing. PARRDR>remark Original author: Michael Nilges, EMBL Heidelberg PARRDR>remark Modifications: Mark A. Williams, UCL London PARRDR> PARRDR>set echo off message off end SHOW: sum over selected elements = 2.000000 CNSsolve> CNSsolve> if ( $log_level = verbose ) then CNSsolve> set message=normal echo=on end CNSsolve> else CNSsolve> set message=off echo=off end CNSsolve> end if CNSsolve> CNSsolve> CNSsolve> identity (store1) (none) SELRPN: 0 atoms have been selected out of 1960 CNSsolve> CNSsolve> identity (store1) (&atom_build) SELRPN: 619 atoms have been selected out of 1960 CNSsolve> identity (store1) (store1 or hydrogen) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> CNSsolve> show sum(1) (store1) SELRPN: 983 atoms have been selected out of 1960 SHOW: sum over selected elements = 983.000000 CNSsolve> evaluate ($tobuild=$result) EVALUATE: symbol $TOBUILD set to 983.000 (real) CNSsolve> CNSsolve> !evaluate ($tobuild=0) CNSsolve> CNSsolve> if ( $tobuild > 0 ) then NEXTCD: condition evaluated as true CNSsolve> CNSsolve> fix selection=(not(store1)) end SELRPN: 977 atoms have been selected out of 1960 CNSsolve> CNSsolve> show sum(1) (store1) SELRPN: 983 atoms have been selected out of 1960 SHOW: sum over selected elements = 983.000000 CNSsolve> evaluate ($moving=$result) EVALUATE: symbol $MOVING set to 983.000 (real) CNSsolve> CNSsolve> if ( $moving > 0 ) then NEXTCD: condition evaluated as true CNSsolve> for $id in id (tag and byres(store1)) loop avco SELRPN: 124 atoms have been selected out of 1960 FOR ID LOOP: symbol ID set to 1.00000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 1.276556 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 1.27656 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = -0.551222 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.551222 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = -1.408667 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -1.40867 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 20.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = 4.544600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 4.54460 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = 2.364000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 2.36400 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = -0.299400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.299400 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 27.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 7.230200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 7.23020 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 4.929600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 4.92960 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 2.574267 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 2.57427 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 45.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 7.326800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 7.32680 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 9.274400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 9.27440 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 0.068667 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 0.686667E-01 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 63.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 10.921533 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 10.9215 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 9.107333 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 9.10733 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 4.324000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 4.32400 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 81.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 11.141667 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 11.1417 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 15.619933 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 15.6199 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 3.661400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 3.66140 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 99.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 14.169000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 14.1690 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 15.138333 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 15.1383 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 7.756000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 7.75600 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 117.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 13.443200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 13.4432 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 20.719333 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 20.7193 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 8.914267 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 8.91427 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 135.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 16.428727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 16.4287 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 21.770000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 21.7700 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 4.767273 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 4.76727 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 154.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 19.912818 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 19.9128 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 23.428818 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 23.4288 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 7.612545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 7.61255 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 169.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 18.006900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 18.0069 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 26.495900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 26.4959 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 10.877800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 10.8778 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 186.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 18.479143 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 18.4791 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 30.357000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 30.3570 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 10.789286 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 10.7893 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 196.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 19.524444 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 19.5244 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 32.299889 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 32.2999 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 13.853556 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 13.8536 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 207.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 19.792818 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 19.7928 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 36.098000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 36.0980 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 15.716182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 15.7162 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 222.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 24.098273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 24.0983 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 33.878727 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 33.8787 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 16.218636 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 16.2186 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 237.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = 27.707600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 27.7076 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = 35.934400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 35.9344 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = 15.189200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 15.1892 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 244.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 26.039545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 26.0395 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 38.837727 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 38.8377 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 16.486727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 16.4867 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 261.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 28.498100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 28.4981 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 40.661000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 40.6610 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 19.933100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 19.9331 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 277.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 24.971818 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 24.9718 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 41.836909 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 41.8369 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 22.238545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 22.2385 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 296.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 26.368714 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 26.3687 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 45.655143 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 45.6551 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 23.432286 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 23.4323 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 306.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 24.872111 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 24.8721 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 46.371333 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 46.3713 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 26.701000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 26.7010 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 317.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 24.654067 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 24.6541 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 50.618200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 50.6182 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 25.637267 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 25.6373 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 335.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 22.447636 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 22.4476 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 49.846636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 49.8466 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 30.618545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 30.6185 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 349.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 23.687900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 23.6879 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 48.095700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 48.0957 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 34.460000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 34.4600 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 365.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 18.671455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 18.6715 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 47.807273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 47.8073 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 34.309545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 34.3095 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 380.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 19.644818 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 19.6448 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 46.366364 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 46.3664 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 30.220455 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 30.2205 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 394.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1960 SHOW: average of selected elements = 25.049409 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 25.0494 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1960 SHOW: average of selected elements = 42.397636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 42.3976 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1960 SHOW: average of selected elements = 32.066045 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 32.0660 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 418.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 21.067400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 21.0674 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 42.206200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 42.2062 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 35.087200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 35.0872 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 432.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 16.768091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 16.7681 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 43.133000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 43.1330 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 32.110909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 32.1109 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 447.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 19.507000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 19.5070 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 40.421636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 40.4216 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 28.617455 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 28.6175 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 464.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 21.920909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 21.9209 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 38.214091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 38.2141 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 32.387455 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 32.3875 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 483.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 17.095455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 17.0955 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 37.439636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 37.4396 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 34.727000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 34.7270 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 500.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 16.129455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 16.1295 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 37.081273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 37.0813 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 28.988818 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 28.9888 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 522.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 19.462429 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 19.4624 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 34.469857 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 34.4699 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 29.574000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 29.5740 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 532.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 19.776600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 19.7766 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 32.621400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 32.6214 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 33.323200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 33.3232 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 546.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 14.558182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 14.5582 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 32.493273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 32.4933 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 32.623818 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 32.6238 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 561.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 16.297333 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 16.2973 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 31.176444 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 31.1764 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 28.915444 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 28.9154 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 572.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 18.883455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 18.8835 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 27.648909 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 27.6489 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 30.996818 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 30.9968 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 594.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 20.756273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 20.7563 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 31.099727 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 31.0997 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 27.469727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 27.4697 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 608.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 25.765364 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 25.7654 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 30.341273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 30.3413 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 26.749273 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 26.7493 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 627.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 26.471900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 26.4719 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 33.984800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 33.9848 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 28.544000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 28.5440 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 643.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 29.877500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 29.8775 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 35.245800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 35.2458 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 26.281800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 26.2818 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 659.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 31.767800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 31.7678 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 37.966400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 37.9664 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 29.162200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 29.1622 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 675.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 34.233600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 34.2336 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 40.122400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 40.1224 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 25.676000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 25.6760 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 687.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 34.777111 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 34.7771 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 42.855556 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 42.8556 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 29.829333 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 29.8293 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 707.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 37.554727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 37.5547 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 45.095636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 45.0956 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 24.695091 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 24.6951 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 721.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 38.908857 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 38.9089 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 48.407429 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 48.4074 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 24.148286 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 24.1483 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 731.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 38.573000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 38.5730 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 51.267889 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 51.2679 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 21.375222 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 21.3752 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 742.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1960 SHOW: average of selected elements = 41.421909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 41.4219 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1960 SHOW: average of selected elements = 51.581773 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 51.5818 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1960 SHOW: average of selected elements = 25.496182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 25.4962 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 766.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 43.182500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 43.1825 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 48.599875 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 48.5999 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 22.612625 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 22.6126 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 776.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = 45.318600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 45.3186 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = 46.700400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 46.7004 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = 20.545000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 20.5450 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 783.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 45.662000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 45.6620 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 43.510500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 43.5105 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 20.718500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 20.7185 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 797.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 42.404000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 42.4040 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 43.648375 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 43.6484 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 22.150875 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 22.1509 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 807.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1960 SHOW: average of selected elements = 40.584071 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 40.5841 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1960 SHOW: average of selected elements = 47.208500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 47.2085 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1960 SHOW: average of selected elements = 17.527214 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 17.5272 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 831.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 44.113167 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 44.1132 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 41.551556 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 41.5516 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 15.532500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 15.5325 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 851.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 40.451182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 40.4512 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 39.634182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 39.6342 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 19.385364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 19.3854 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 870.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 37.245143 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 37.2451 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 42.065143 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 42.0651 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 18.137571 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 18.1376 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 880.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 36.750375 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 36.7504 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 40.799375 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 40.7994 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 14.901000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 14.9010 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 894.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 39.012222 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 39.0122 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 35.439333 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 35.4393 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 16.050778 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 16.0508 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 914.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 34.915000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 34.9150 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 37.345556 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 37.3456 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 20.961056 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 20.9611 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 934.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 32.290857 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 32.2909 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 37.867429 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 37.8674 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 16.242429 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 16.2424 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 944.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 33.714300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 33.7143 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 35.064300 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 35.0643 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 13.350000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 13.3500 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 956.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 33.577182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 33.5772 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 33.188455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 33.1885 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 17.925273 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 17.9253 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 975.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 30.174000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 30.1740 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 33.139714 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 33.1397 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 17.587429 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 17.5874 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 985.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 29.617909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 29.6179 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 32.332909 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 32.3329 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 12.665545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 12.6655 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1007.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 32.850182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 32.8502 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 29.000364 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 29.0004 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 14.280727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 14.2807 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1029.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 30.106909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 30.1069 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 28.515455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 28.5155 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 18.429909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 18.4299 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1048.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 26.419750 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 26.4198 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 26.438375 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 26.4384 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 17.775500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 17.7755 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1062.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 23.659000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 23.6590 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 28.563000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 28.5630 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 19.729400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 19.7294 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1076.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 26.802600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 26.8026 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 31.008500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 31.0085 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 21.699200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 21.6992 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1092.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 24.683455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 24.6835 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 34.964273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 34.9643 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 23.571364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 23.5714 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1111.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 29.069667 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 29.0697 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 35.340500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 35.3405 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 22.052333 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 22.0523 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1131.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 27.423455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 27.4235 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 40.207818 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 40.2078 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 25.845909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 25.8459 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1150.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 31.062182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 31.0622 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 43.118000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 43.1180 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 23.761273 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 23.7613 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1172.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 31.171000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 31.1710 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 45.327000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 45.3270 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 28.250100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 28.2501 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1188.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 32.701800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 32.7018 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 49.383100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 49.3831 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 26.620700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 26.6207 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1200.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 35.898727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 35.8987 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 49.183364 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 49.1834 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 29.958909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 29.9589 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1214.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 35.877600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 35.8776 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 53.463300 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 53.4633 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 28.343900 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 28.3439 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1226.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 31.007000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 31.0070 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 53.871636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 53.8716 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 29.499182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 29.4992 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1241.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 30.408364 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 30.4084 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 50.637818 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 50.6378 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 32.653091 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 32.6531 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1260.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 35.039455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 35.0395 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 52.035636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 52.0356 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 34.972182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 34.9722 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1282.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 32.661111 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 32.6611 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 50.138111 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 50.1381 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 37.675000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 37.6750 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1293.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 31.354600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 31.3546 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 46.736800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 46.7368 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 35.292700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 35.2927 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1309.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 34.948000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 34.9480 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 45.636571 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 45.6366 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 34.982714 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 34.9827 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1319.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 36.357000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 36.3570 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 46.749667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 46.7497 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 38.337444 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 38.3374 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1330.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 32.421100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 32.4211 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 44.472700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 44.4727 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 39.789700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 39.7897 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1342.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1960 SHOW: average of selected elements = 31.847773 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 31.8478 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1960 SHOW: average of selected elements = 40.149182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 40.1492 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1960 SHOW: average of selected elements = 36.206909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 36.2069 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1366.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 37.548286 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 37.5483 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 41.878429 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 41.8784 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 38.603286 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 38.6033 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1376.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 38.196545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 38.1965 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 42.906091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 42.9061 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 34.970364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 34.9704 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1395.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 42.631818 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 42.6318 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 45.363091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 45.3631 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 36.907727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 36.9077 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1412.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 43.290714 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 43.2907 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 43.032143 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 43.0321 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 33.082571 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 33.0826 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1422.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 42.233800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 42.2338 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 44.078900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 44.0789 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 29.522600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 29.5226 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1439.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 42.255250 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 42.2553 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 41.522875 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 41.5229 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1960 SHOW: average of selected elements = 26.927375 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 26.9274 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1453.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 39.480273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 39.4803 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 39.862455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 39.8625 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 29.943273 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 29.9433 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1467.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 39.510722 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 39.5107 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 36.903611 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 36.9036 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 26.311667 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 26.3117 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1487.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 34.693300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 34.6933 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 35.014000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 35.0140 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 30.874200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 30.8742 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1504.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 33.610278 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 33.6103 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 31.367500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 31.3675 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1960 SHOW: average of selected elements = 26.996167 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 26.9962 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1524.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 30.103545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 30.1035 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 31.770818 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 31.7708 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 31.234000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 31.2340 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1543.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 26.782727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 26.7827 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 26.907364 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 26.9074 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 30.728000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 30.7280 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1565.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 23.236727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 23.2367 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 27.824091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 27.8241 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 31.225727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 31.2257 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1580.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = 25.364800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 25.3648 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = 31.378200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 31.3782 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = 33.479400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 33.4794 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1587.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 27.019727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 27.0197 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 28.745273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 28.7453 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 36.020636 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 36.0206 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1609.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 31.168727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 31.1687 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 30.332455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 30.3325 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 36.050818 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 36.0508 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1628.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 32.061909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 32.0619 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 27.152455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 27.1525 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 32.508636 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 32.5086 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1647.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 35.583700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 35.5837 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 28.807400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 28.8074 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 31.303800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 31.3038 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1659.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 38.572455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 38.5725 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 32.662818 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 32.6628 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 33.780091 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 33.7801 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1681.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 41.014900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 41.0149 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 33.512300 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 33.5123 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 30.457600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 30.4576 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1697.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 43.346800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 43.3468 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 36.856400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 36.8564 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 31.623300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 31.6233 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1713.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = 43.911200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 43.9112 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = 38.081400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 38.0814 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1960 SHOW: average of selected elements = 28.143200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 28.1432 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1720.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 45.207000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 45.2070 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 37.980714 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 37.9807 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 24.611143 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 24.6111 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1730.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 46.851909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 46.8519 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 34.212091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 34.2121 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 23.920091 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 23.9201 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1752.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 45.918364 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 45.9184 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 33.693818 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 33.6938 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 18.597818 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 18.5978 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1774.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 47.445400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 47.4454 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 29.470400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 29.4704 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1960 SHOW: average of selected elements = 20.857600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 20.8576 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1786.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 44.903000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 44.9030 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 29.747636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 29.7476 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 24.846636 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 24.8466 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1801.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 41.283455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 41.2835 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 31.740636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 31.7406 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 21.497909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 21.4979 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1820.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 42.552182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 42.5522 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 27.931182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 27.9312 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 19.021273 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 19.0213 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1837.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 42.003778 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 42.0038 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 26.048333 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 26.0483 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1960 SHOW: average of selected elements = 23.818111 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 23.8181 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1848.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 38.939182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 38.9392 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 28.638182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 28.6382 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 24.590091 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 24.5901 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1862.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 37.266273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 37.2663 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 27.344364 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 27.3444 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 20.714818 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 20.7148 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1881.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 38.012143 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 38.0121 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 23.482714 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 23.4827 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1960 SHOW: average of selected elements = 21.879571 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 21.8796 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1891.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 37.839636 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 37.8396 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 23.761000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 23.7610 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 26.422636 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 26.4226 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1913.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 32.915867 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 32.9159 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 25.561467 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 25.5615 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1960 SHOW: average of selected elements = 25.181133 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 25.1811 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1931.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 34.272818 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 34.2728 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 22.013636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 22.0136 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1960 SHOW: average of selected elements = 20.328182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 20.3282 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1950.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 1960 SHOW: average of selected elements = 32.350333 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 32.3503 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 1960 SHOW: average of selected elements = 18.897167 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 18.8972 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 1960 SHOW: average of selected elements = 21.876333 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 21.8763 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1960 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) CNSsolve> evaluate ($ave_x=$result) CNSsolve> show ave(y) (byres(id $id) and known) CNSsolve> evaluate ($ave_y=$result) CNSsolve> show ave(z) (byres(id $id) and known) CNSsolve> evaluate ($ave_z=$result) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) CNSsolve> do (y=$ave_y) (byres(id $id) and store1) CNSsolve> do (z=$ave_z) (byres(id $id) and store1) CNSsolve> CNSsolve> end loop avco CNSsolve> CNSsolve> do (x=x+random(2.0)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> do (y=y+random(2.0)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> do (z=z+random(2.0)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> CNSsolve> {- start parameter for the side chain building -} CNSsolve> parameter PARRDR> nbonds NBDSET> rcon=20. nbxmod=-2 repel=0.9 wmin=0.1 tolerance=1. NBDSET> rexp=2 irexp=2 inhibit=0.25 NBDSET> end PARRDR> end CNSsolve> CNSsolve> {- Friction coefficient, in 1/ps. -} CNSsolve> do (fbeta=100) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> CNSsolve> evaluate ($bath=300.0) EVALUATE: symbol $BATH set to 300.000 (real) CNSsolve> evaluate ($nstep=500) EVALUATE: symbol $NSTEP set to 500.000 (real) CNSsolve> evaluate ($timestep=0.0005) EVALUATE: symbol $TIMESTEP set to 0.500000E-03 (real) CNSsolve> CNSsolve> do (refy=mass) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> CNSsolve> do (mass=20) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> CNSsolve> igroup interaction SELRPN> (store1) (store1 or known) SELRPN: 983 atoms have been selected out of 1960 SELRPN: 1960 atoms have been selected out of 1960 IGROup> end CNSsolve> CNSsolve> {- turn on initial energy terms -} CNSsolve> flags exclude * include bond angle vdw end CNSsolve> CNSsolve> minimize powell nstep=50 nprint=10 end POWELL: number of degrees of freedom= 2949 NBONDS: generating intra-molecular exclusion list with mode=-2 MAKINB: mode -2 found 983 exclusions and 0 interactions(1-4) %atoms " -1 -MET -HE3 " and " -1 -MET -HT3 " only 0.09 A apart %atoms " -7 -HIS -HB1 " and " -7 -HIS -HE1 " only 0.08 A apart %atoms " -21 -CYS -HN " and " -21 -CYS -HB1 " only 0.07 A apart %atoms " -24 -VAL -HG22" and " -24 -VAL -HG23" only 0.08 A apart %atoms " -27 -TRP -HE1 " and " -27 -TRP -HZ2 " only 0.10 A apart %atoms " -31 -LEU -HB2 " and " -31 -LEU -HD23" only 0.06 A apart %atoms " -33 -LYS -HB2 " and " -33 -LYS -HZ1 " only 0.10 A apart %atoms " -42 -VAL -HN " and " -42 -VAL -HB " only 0.06 A apart %atoms " -52 -PRO -HB1 " and " -52 -PRO -HG2 " only 0.10 A apart %atoms " -53 -CYS -HA " and " -53 -CYS -HB1 " only 0.08 A apart %atoms " -54 -ARG -HD2 " and " -54 -ARG -HH22" only 0.10 A apart %atoms " -60 -PHE -HN " and " -60 -PHE -HB1 " only 0.09 A apart %atoms " -66 -LYS -HG2 " and " -66 -LYS -HD1 " only 0.10 A apart %atoms " -71 -LEU -HG " and " -71 -LEU -HD13" only 0.06 A apart %atoms " -75 -VAL -HA " and " -75 -VAL -HG22" only 0.08 A apart %atoms " -80 -LEU -HA " and " -80 -LEU -HB1 " only 0.07 A apart %atoms " -99 -LYS -HD1 " and " -99 -LYS -HZ3 " only 0.09 A apart %atoms " -121 -LYS -HG1 " and " -121 -LYS -HG2 " only 0.09 A apart NBONDS: found 122348 intra-atom interactions NBONDS: found 18 nonbonded violations %atoms " -9 -LEU -HD13" and " -9 -LEU -HD21" only 0.09 A apart %atoms " -118 -THR -HA " and " -118 -THR -HG1 " only 0.02 A apart NBONDS: found 121071 intra-atom interactions NBONDS: found 2 nonbonded violations NBONDS: found 114797 intra-atom interactions NBONDS: found 110527 intra-atom interactions NBONDS: found 111801 intra-atom interactions NBONDS: found 111977 intra-atom interactions --------------- cycle= 10 ------ stepsize= 0.0000 ----------------------- | Etotal =506201.997 grad(E)=590.104 E(BOND)=83037.985 E(ANGL)=233746.953 | | E(VDW )=189417.059 | ------------------------------------------------------------------------------- NBONDS: found 112748 intra-atom interactions NBONDS: found 112964 intra-atom interactions NBONDS: found 112894 intra-atom interactions --------------- cycle= 20 ------ stepsize= 0.0000 ----------------------- | Etotal =182735.977 grad(E)=338.104 E(BOND)=27820.284 E(ANGL)=62893.854 | | E(VDW )=92021.839 | ------------------------------------------------------------------------------- NBONDS: found 112956 intra-atom interactions NBONDS: found 112919 intra-atom interactions --------------- cycle= 30 ------ stepsize= 0.0000 ----------------------- | Etotal =152667.958 grad(E)=311.370 E(BOND)=24202.190 E(ANGL)=46876.915 | | E(VDW )=81588.852 | ------------------------------------------------------------------------------- NBONDS: found 112990 intra-atom interactions --------------- cycle= 40 ------ stepsize= 0.0003 ----------------------- | Etotal =150874.492 grad(E)=310.053 E(BOND)=23811.458 E(ANGL)=46112.363 | | E(VDW )=80950.671 | ------------------------------------------------------------------------------- --------------- cycle= 50 ------ stepsize= 0.0000 ----------------------- | Etotal =150600.078 grad(E)=309.460 E(BOND)=23946.380 E(ANGL)=46029.264 | | E(VDW )=80624.434 | ------------------------------------------------------------------------------- POWELL: STEP number limit. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> CNSsolve> flags exclude vdw include impr end CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=50 Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=600478.854 E(kin)=907.693 temperature=309.781 | | Etotal =599571.161 grad(E)=571.553 E(BOND)=23946.380 E(ANGL)=46029.264 | | E(IMPR)=529595.517 | ------------------------------------------------------------------------------- -------------------- final step= 50 at 0.02500 ps --------------------- | E(kin)+E(total)=399170.848 E(kin)=58925.973 temperature=20110.477 | | Etotal =340244.875 grad(E)=370.147 E(BOND)=43813.406 E(ANGL)=125222.736 | | E(IMPR)=171208.733 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 30.28545 35.22411 24.29147 velocity [A/ps] : -0.08166 -0.35838 -0.18705 ang. mom. [amu A/ps] : 129862.04637 -1206.65936 -52569.16305 kin. ener. [Kcal/mol] : 3.99608 CNSsolve> CNSsolve> flags include vdw end CNSsolve> CNSsolve> minimize powell nstep=50 nprint=10 end POWELL: number of degrees of freedom= 2949 NBONDS: found 112463 intra-atom interactions NBONDS: found 112236 intra-atom interactions NBONDS: found 112332 intra-atom interactions NBONDS: found 112372 intra-atom interactions NBONDS: found 112604 intra-atom interactions NBONDS: found 112429 intra-atom interactions --------------- cycle= 10 ------ stepsize= 0.0003 ----------------------- | Etotal =305487.068 grad(E)=378.352 E(BOND)=40245.980 E(ANGL)=71295.687 | | E(IMPR)=141776.109 E(VDW )=52169.291 | ------------------------------------------------------------------------------- NBONDS: found 112788 intra-atom interactions NBONDS: found 112803 intra-atom interactions NBONDS: found 112815 intra-atom interactions --------------- cycle= 20 ------ stepsize= 0.0001 ----------------------- | Etotal =210438.621 grad(E)=256.867 E(BOND)=24115.831 E(ANGL)=35572.396 | | E(IMPR)=98534.565 E(VDW )=52215.830 | ------------------------------------------------------------------------------- NBONDS: found 112878 intra-atom interactions NBONDS: found 112833 intra-atom interactions NBONDS: found 112895 intra-atom interactions --------------- cycle= 30 ------ stepsize= 0.0001 ----------------------- | Etotal =180208.222 grad(E)=262.083 E(BOND)=22199.606 E(ANGL)=29928.098 | | E(IMPR)=76414.069 E(VDW )=51666.449 | ------------------------------------------------------------------------------- NBONDS: found 112950 intra-atom interactions NBONDS: found 112966 intra-atom interactions --------------- cycle= 40 ------ stepsize= 0.0001 ----------------------- | Etotal =155704.892 grad(E)=252.340 E(BOND)=21070.297 E(ANGL)=20845.698 | | E(IMPR)=64289.437 E(VDW )=49499.461 | ------------------------------------------------------------------------------- NBONDS: found 112988 intra-atom interactions NBONDS: found 112959 intra-atom interactions NBONDS: found 112929 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0001 ----------------------- | Etotal =146883.504 grad(E)=254.312 E(BOND)=21151.981 E(ANGL)=19058.880 | | E(IMPR)=58041.941 E(VDW )=48630.702 | ------------------------------------------------------------------------------- POWELL: STEP number limit. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=50 Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=147744.633 E(kin)=861.129 temperature=293.889 | | Etotal =146883.504 grad(E)=254.312 E(BOND)=21151.981 E(ANGL)=19058.880 | | E(IMPR)=58041.941 E(VDW )=48630.702 | ------------------------------------------------------------------------------- NBONDS: found 112962 intra-atom interactions NBONDS: found 112994 intra-atom interactions -------------------- final step= 50 at 0.02500 ps --------------------- | E(kin)+E(total)=144096.882 E(kin)=2983.704 temperature=1018.290 | | Etotal =141113.178 grad(E)=261.917 E(BOND)=21889.888 E(ANGL)=19773.561 | | E(IMPR)=51057.884 E(VDW )=48391.844 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 30.30488 35.22251 24.28523 velocity [A/ps] : 0.10826 0.12110 0.25155 ang. mom. [amu A/ps] : 45335.79863 7325.62945 -36526.69967 kin. ener. [Kcal/mol] : 2.10658 CNSsolve> CNSsolve> parameter PARRDR> nbonds NBDSET> rcon=2. nbxmod=-3 repel=0.75 NBDSET> end PARRDR> end CNSsolve> CNSsolve> minimize powell nstep=100 nprint=25 end POWELL: number of degrees of freedom= 2949 NBONDS: generating intra-molecular exclusion list with mode=-3 MAKINB: mode -3 found 3235 exclusions and 0 interactions(1-4) NBONDS: found 110736 intra-atom interactions NBONDS: found 111220 intra-atom interactions NBONDS: found 111066 intra-atom interactions NBONDS: found 111083 intra-atom interactions --------------- cycle= 25 ------ stepsize= 0.0000 ----------------------- | Etotal =51249.734 grad(E)=56.932 E(BOND)=1950.538 E(ANGL)=13756.684 | | E(IMPR)=35539.472 E(VDW )=3.041 | ------------------------------------------------------------------------------- --------------- cycle= 50 ------ stepsize= 0.0000 ----------------------- | Etotal =50960.124 grad(E)=55.625 E(BOND)=1984.393 E(ANGL)=13561.234 | | E(IMPR)=35411.592 E(VDW )=2.906 | ------------------------------------------------------------------------------- POWELL: Line search terminated POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=$nstep Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=51826.800 E(kin)=866.676 temperature=295.783 | | Etotal =50960.123 grad(E)=55.625 E(BOND)=1984.393 E(ANGL)=13561.233 | | E(IMPR)=35411.592 E(VDW )=2.906 | ------------------------------------------------------------------------------- NBONDS: found 111090 intra-atom interactions NBONDS: found 111104 intra-atom interactions NBONDS: found 111083 intra-atom interactions NBONDS: found 111075 intra-atom interactions NBONDS: found 111133 intra-atom interactions NBONDS: found 111223 intra-atom interactions NBONDS: found 111182 intra-atom interactions NBONDS: found 111206 intra-atom interactions NBONDS: found 111260 intra-atom interactions NBONDS: found 111229 intra-atom interactions NBONDS: found 111256 intra-atom interactions NBONDS: found 111282 intra-atom interactions NBONDS: found 111324 intra-atom interactions NBONDS: found 111271 intra-atom interactions NBONDS: found 111254 intra-atom interactions NBONDS: found 111164 intra-atom interactions NBONDS: found 111110 intra-atom interactions NBONDS: found 111092 intra-atom interactions NBONDS: found 111100 intra-atom interactions NBONDS: found 111155 intra-atom interactions NBONDS: found 111188 intra-atom interactions NBONDS: found 111176 intra-atom interactions NBONDS: found 111135 intra-atom interactions NBONDS: found 111127 intra-atom interactions NBONDS: found 111129 intra-atom interactions NBONDS: found 111129 intra-atom interactions NBONDS: found 111108 intra-atom interactions NBONDS: found 111096 intra-atom interactions NBONDS: found 111068 intra-atom interactions NBONDS: found 111091 intra-atom interactions NBONDS: found 111159 intra-atom interactions NBONDS: found 111213 intra-atom interactions NBONDS: found 111165 intra-atom interactions NBONDS: found 111099 intra-atom interactions NBONDS: found 111104 intra-atom interactions -------------------- final step= 500 at 0.25000 ps --------------------- | E(kin)+E(total)=3029.950 E(kin)=994.658 temperature=339.461 | | Etotal =2035.292 grad(E)=50.732 E(BOND)=97.315 E(ANGL)=1479.698 | | E(IMPR)=456.598 E(VDW )=1.681 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 30.30122 35.21484 24.28440 velocity [A/ps] : 0.21561 -0.12110 -0.05253 ang. mom. [amu A/ps] : -8017.25166 -18546.23581 -75207.32900 kin. ener. [Kcal/mol] : 1.50154 CNSsolve> CNSsolve> {- turn on all energy terms -} CNSsolve> flags include dihe ? end EFLAGS: the following energy flags are set EFLAGS: BOND ANGL DIHE IMPR VDW CNSsolve> CNSsolve> {- set repel to ~vdw radii -} CNSsolve> parameter PARRDR> nbonds NBDSET> repel=0.89 NBDSET> end PARRDR> end CNSsolve> CNSsolve> minimize powell nstep=500 nprint=50 end POWELL: number of degrees of freedom= 2949 NBONDS: generating intra-molecular exclusion list with mode=-3 MAKINB: mode -3 found 3235 exclusions and 0 interactions(1-4) NBONDS: found 111160 intra-atom interactions NBONDS: found 111220 intra-atom interactions NBONDS: found 111183 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0000 ----------------------- | Etotal =583.091 grad(E)=21.741 E(BOND)=57.423 E(ANGL)=326.333 | | E(DIHE)=95.225 E(IMPR)=20.239 E(VDW )=83.870 | ------------------------------------------------------------------------------- POWELL: Line search terminated POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> flags exclude * include bond angl impr dihe vdw end CNSsolve> CNSsolve> {- return masses to something sensible -} CNSsolve> do (mass=refy) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=$nstep Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=1467.215 E(kin)=884.125 temperature=301.737 | | Etotal =583.090 grad(E)=21.741 E(BOND)=57.423 E(ANGL)=326.333 | | E(DIHE)=95.225 E(IMPR)=20.239 E(VDW )=83.870 | ------------------------------------------------------------------------------- NBONDS: found 111143 intra-atom interactions NBONDS: found 111150 intra-atom interactions NBONDS: found 111147 intra-atom interactions NBONDS: found 111117 intra-atom interactions NBONDS: found 111135 intra-atom interactions NBONDS: found 111157 intra-atom interactions NBONDS: found 111174 intra-atom interactions NBONDS: found 111151 intra-atom interactions NBONDS: found 111162 intra-atom interactions NBONDS: found 111154 intra-atom interactions NBONDS: found 111141 intra-atom interactions NBONDS: found 111146 intra-atom interactions NBONDS: found 111126 intra-atom interactions NBONDS: found 111121 intra-atom interactions NBONDS: found 111106 intra-atom interactions NBONDS: found 111163 intra-atom interactions NBONDS: found 111207 intra-atom interactions NBONDS: found 111187 intra-atom interactions NBONDS: found 111168 intra-atom interactions NBONDS: found 111123 intra-atom interactions NBONDS: found 111122 intra-atom interactions NBONDS: found 111179 intra-atom interactions NBONDS: found 111229 intra-atom interactions NBONDS: found 111243 intra-atom interactions NBONDS: found 111230 intra-atom interactions NBONDS: found 111195 intra-atom interactions NBONDS: found 111160 intra-atom interactions NBONDS: found 111141 intra-atom interactions NBONDS: found 111152 intra-atom interactions NBONDS: found 111189 intra-atom interactions NBONDS: found 111201 intra-atom interactions NBONDS: found 111225 intra-atom interactions NBONDS: found 111207 intra-atom interactions NBONDS: found 111175 intra-atom interactions NBONDS: found 111161 intra-atom interactions NBONDS: found 111141 intra-atom interactions NBONDS: found 111147 intra-atom interactions NBONDS: found 111173 intra-atom interactions NBONDS: found 111204 intra-atom interactions NBONDS: found 111154 intra-atom interactions NBONDS: found 111129 intra-atom interactions NBONDS: found 111106 intra-atom interactions NBONDS: found 111117 intra-atom interactions NBONDS: found 111169 intra-atom interactions NBONDS: found 111219 intra-atom interactions NBONDS: found 111192 intra-atom interactions NBONDS: found 111147 intra-atom interactions NBONDS: found 111127 intra-atom interactions NBONDS: found 111149 intra-atom interactions NBONDS: found 111205 intra-atom interactions NBONDS: found 111201 intra-atom interactions NBONDS: found 111169 intra-atom interactions NBONDS: found 111153 intra-atom interactions NBONDS: found 111175 intra-atom interactions NBONDS: found 111186 intra-atom interactions NBONDS: found 111159 intra-atom interactions NBONDS: found 111148 intra-atom interactions NBONDS: found 111147 intra-atom interactions NBONDS: found 111191 intra-atom interactions NBONDS: found 111213 intra-atom interactions NBONDS: found 111205 intra-atom interactions NBONDS: found 111196 intra-atom interactions NBONDS: found 111169 intra-atom interactions NBONDS: found 111181 intra-atom interactions NBONDS: found 111173 intra-atom interactions NBONDS: found 111140 intra-atom interactions NBONDS: found 111146 intra-atom interactions NBONDS: found 111185 intra-atom interactions NBONDS: found 111217 intra-atom interactions NBONDS: found 111234 intra-atom interactions NBONDS: found 111258 intra-atom interactions NBONDS: found 111237 intra-atom interactions NBONDS: found 111194 intra-atom interactions NBONDS: found 111159 intra-atom interactions NBONDS: found 111197 intra-atom interactions NBONDS: found 111204 intra-atom interactions NBONDS: found 111193 intra-atom interactions NBONDS: found 111224 intra-atom interactions NBONDS: found 111216 intra-atom interactions NBONDS: found 111204 intra-atom interactions NBONDS: found 111179 intra-atom interactions NBONDS: found 111165 intra-atom interactions NBONDS: found 111194 intra-atom interactions NBONDS: found 111205 intra-atom interactions NBONDS: found 111189 intra-atom interactions NBONDS: found 111147 intra-atom interactions NBONDS: found 111121 intra-atom interactions NBONDS: found 111150 intra-atom interactions NBONDS: found 111173 intra-atom interactions NBONDS: found 111149 intra-atom interactions NBONDS: found 111150 intra-atom interactions NBONDS: found 111130 intra-atom interactions NBONDS: found 111116 intra-atom interactions NBONDS: found 111118 intra-atom interactions NBONDS: found 111136 intra-atom interactions NBONDS: found 111141 intra-atom interactions NBONDS: found 111191 intra-atom interactions NBONDS: found 111174 intra-atom interactions NBONDS: found 111158 intra-atom interactions NBONDS: found 111141 intra-atom interactions NBONDS: found 111133 intra-atom interactions NBONDS: found 111156 intra-atom interactions NBONDS: found 111195 intra-atom interactions NBONDS: found 111199 intra-atom interactions NBONDS: found 111165 intra-atom interactions NBONDS: found 111149 intra-atom interactions NBONDS: found 111132 intra-atom interactions NBONDS: found 111130 intra-atom interactions NBONDS: found 111149 intra-atom interactions NBONDS: found 111163 intra-atom interactions NBONDS: found 111164 intra-atom interactions NBONDS: found 111211 intra-atom interactions NBONDS: found 111230 intra-atom interactions NBONDS: found 111157 intra-atom interactions NBONDS: found 111139 intra-atom interactions NBONDS: found 111153 intra-atom interactions NBONDS: found 111166 intra-atom interactions NBONDS: found 111174 intra-atom interactions NBONDS: found 111153 intra-atom interactions NBONDS: found 111141 intra-atom interactions NBONDS: found 111184 intra-atom interactions NBONDS: found 111186 intra-atom interactions NBONDS: found 111220 intra-atom interactions NBONDS: found 111214 intra-atom interactions NBONDS: found 111185 intra-atom interactions NBONDS: found 111167 intra-atom interactions NBONDS: found 111169 intra-atom interactions NBONDS: found 111156 intra-atom interactions NBONDS: found 111201 intra-atom interactions NBONDS: found 111222 intra-atom interactions NBONDS: found 111228 intra-atom interactions NBONDS: found 111212 intra-atom interactions NBONDS: found 111202 intra-atom interactions NBONDS: found 111171 intra-atom interactions NBONDS: found 111196 intra-atom interactions NBONDS: found 111223 intra-atom interactions NBONDS: found 111255 intra-atom interactions NBONDS: found 111222 intra-atom interactions NBONDS: found 111209 intra-atom interactions NBONDS: found 111179 intra-atom interactions NBONDS: found 111186 intra-atom interactions NBONDS: found 111184 intra-atom interactions NBONDS: found 111192 intra-atom interactions NBONDS: found 111189 intra-atom interactions NBONDS: found 111179 intra-atom interactions NBONDS: found 111180 intra-atom interactions NBONDS: found 111195 intra-atom interactions NBONDS: found 111204 intra-atom interactions NBONDS: found 111202 intra-atom interactions NBONDS: found 111205 intra-atom interactions NBONDS: found 111221 intra-atom interactions NBONDS: found 111196 intra-atom interactions NBONDS: found 111203 intra-atom interactions NBONDS: found 111186 intra-atom interactions NBONDS: found 111196 intra-atom interactions NBONDS: found 111200 intra-atom interactions NBONDS: found 111207 intra-atom interactions NBONDS: found 111235 intra-atom interactions NBONDS: found 111237 intra-atom interactions NBONDS: found 111243 intra-atom interactions NBONDS: found 111207 intra-atom interactions NBONDS: found 111210 intra-atom interactions NBONDS: found 111229 intra-atom interactions NBONDS: found 111224 intra-atom interactions NBONDS: found 111235 intra-atom interactions NBONDS: found 111238 intra-atom interactions NBONDS: found 111215 intra-atom interactions NBONDS: found 111189 intra-atom interactions NBONDS: found 111207 intra-atom interactions NBONDS: found 111215 intra-atom interactions NBONDS: found 111183 intra-atom interactions NBONDS: found 111207 intra-atom interactions NBONDS: found 111203 intra-atom interactions NBONDS: found 111184 intra-atom interactions NBONDS: found 111179 intra-atom interactions NBONDS: found 111175 intra-atom interactions NBONDS: found 111146 intra-atom interactions NBONDS: found 111105 intra-atom interactions NBONDS: found 111098 intra-atom interactions NBONDS: found 111145 intra-atom interactions NBONDS: found 111196 intra-atom interactions NBONDS: found 111192 intra-atom interactions NBONDS: found 111162 intra-atom interactions NBONDS: found 111169 intra-atom interactions NBONDS: found 111173 intra-atom interactions NBONDS: found 111153 intra-atom interactions NBONDS: found 111131 intra-atom interactions NBONDS: found 111116 intra-atom interactions -------------------- final step= 500 at 0.25000 ps --------------------- | E(kin)+E(total)=4581.913 E(kin)=1988.909 temperature=678.782 | | Etotal =2593.004 grad(E)=69.476 E(BOND)=1267.308 E(ANGL)=309.042 | | E(DIHE)=49.167 E(IMPR)=896.459 E(VDW )=71.028 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 30.36800 34.72418 24.27886 velocity [A/ps] : 0.92970 0.96207 0.39620 ang. mom. [amu A/ps] : 14021.26680 -10950.55568 -6560.69019 kin. ener. [Kcal/mol] : 2.37509 CNSsolve> CNSsolve> {- some final minimisation -} CNSsolve> minimize powell POWELL> nstep=500 POWELL> drop=40.0 POWELL> nprint=50 POWELL> end POWELL: number of degrees of freedom= 2949 NBONDS: found 111142 intra-atom interactions NBONDS: found 111179 intra-atom interactions NBONDS: found 111157 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0000 ----------------------- | Etotal =408.386 grad(E)=17.832 E(BOND)=32.355 E(ANGL)=241.718 | | E(DIHE)=46.828 E(IMPR)=16.373 E(VDW )=71.112 | ------------------------------------------------------------------------------- POWELL: Line search terminated POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> print thres=0.02 bonds (atom-i |atom-j ) dist. equil. delta energy const. ( 54 NE | 54 HE ) 1.156 0.980 0.176 30.852 1000.000 Number of violations greater 0.020: 1 RMS deviation= 0.006 CNSsolve> print thres=5. angles (atom-i |atom-j |atom-k ) angle equil. delta energy const. ( 54 CD | 54 NE | 54 HE ) 97.929 118.099 -20.170 61.961 500.000 ( 54 HE | 54 NE | 54 CZ ) 137.959 119.249 18.710 53.317 500.000 Number of violations greater 5.000: 2 RMS deviation= 0.839 CNSsolve> CNSsolve> end if CNSsolve> CNSsolve> fix selection=( none ) end SELRPN: 0 atoms have been selected out of 1960 CNSsolve> CNSsolve> end if CNSsolve> CNSsolve> set echo=false end SELRPN: 0 atoms have been selected out of 1960 SHOW: zero atoms selected NEXTCD: condition evaluated as true SELRPN: 0 atoms have been selected out of 1960 CNSsolve> CNSsolve> if (&set_bfactor=true) then NEXTCD: condition evaluated as false CNSsolve> do (b=&bfactor) ( all ) CNSsolve> else CNSsolve> show ave(b) (known and not(store1)) SELRPN: 977 atoms have been selected out of 1960 SHOW: average of selected elements = 0.000000 CNSsolve> do (b=$result) (store1 and (attr b < 0.01)) SELRPN: 983 atoms have been selected out of 1960 CNSsolve> end if CNSsolve> CNSsolve> if (&set_occupancy=true) then NEXTCD: condition evaluated as false CNSsolve> do (q=&occupancy) ( all ) CNSsolve> end if CNSsolve> CNSsolve> set echo=false end SELRPN: 983 atoms have been selected out of 1960 SHOW: sum over selected elements = 983.000000 NEXTCD: condition evaluated as false CNSsolve> CNSsolve> set remarks=reset end CNSsolve> CNSsolve> buffer message BUFFER> to=remarks BUFFER> dump BUFFER> end CNSsolve> CNSsolve> write coordinates output=&coordinate_outfile end ASSFIL: file 1xxx_13_cns.pdb opened. CNSsolve> CNSsolve>stop HEAP: maximum use = 1254364 current use = 0 bytes HEAP: maximum overhead = 944 current overhead = 64 bytes ============================================================ Maximum dynamic memory allocation: 1254364 bytes Maximum dynamic memory overhead: 944 bytes Program started at: 09:28:48 on 11-Sep-04 Program stopped at: 09:29:13 on 11-Sep-04 CPU time used: 25.1100 seconds ============================================================