============================================================ | | | Crystallography & NMR System (CNS) | | CNSsolve | | | ============================================================ Version: 1.1 Status: Developmental version ============================================================ Written by: A.T.Brunger, P.D.Adams, G.M.Clore, W.L.DeLano, P.Gros, R.W.Grosse-Kunstleve, J.-S.Jiang, J.Kuszewski, M.Nilges, N.S.Pannu, R.J.Read, L.M.Rice, T.Simonson, G.L.Warren. Copyright (c) 1997-1999 Yale University ============================================================ Running on machine: cesg-master.biochem.wisc.edu (Linux,32-bit) Program started by: lytle Program started at: 17:55:28 on 3-Mar-04 ============================================================ FFT3C: Using FFTPACK4.1 CNSsolve>define( DEFINE>{* selection of atoms other than hydrogens for which coordinates DEFINE> will be generated *} DEFINE>{* to generate coordinates for all unknown atoms use: (not(known)) *} DEFINE>{===>} atom_build=(not(known)); DEFINE>{============================= output files ================================} DEFINE> DEFINE>{* input coordinate file *} DEFINE>{===>} coordinate_infile="1xxx_15.pdb"; DEFINE> DEFINE>{* output coordinate file *} DEFINE>{===>} coordinate_outfile="1xxx_15_cns.pdb"; DEFINE>) CNSsolve> CNSsolve> checkversion 1.1 Program version= 1.1 File version= 1.1 CNSsolve> CNSsolve> evaluate ($log_level=verbose) Assuming literal string "VERBOSE" EVALUATE: symbol $LOG_LEVEL set to "VERBOSE" (string) CNSsolve> evaluate ($par_nonbonded="PROLSQ") EVALUATE: symbol $PAR_NONBONDED set to "PROLSQ" (string) CNSsolve> CNSsolve> !@generateProtonsJFD.inp CNSsolve> CNSsolve>{===========================================================================} CNSsolve>{ things below this line do not need to be changed } CNSsolve>{===========================================================================} CNSsolve> CNSsolve>remarks changed Tue Sep 2 09:48:07 CDT 2003 CNSsolve>remarks by jfd to include a fes residue CNSsolve> CNSsolve>!@generate_tmoc.inp CNSsolve> CNSsolve>topology reset end CNSsolve>structure reset end Status of internal molecular topology database: -> NATOM= 0(MAXA= 40000) NBOND= 0(MAXB= 40000) -> NTHETA= 0(MAXT= 80000) NGRP= 0(MAXGRP= 40000) -> NPHI= 0(MAXP= 80000) NIMPHI= 0(MAXIMP= 40000) -> NNB= 0(MAXNB= 40000) CNSsolve> CNSsolve>topology RTFRDR>{===>} @TOPPAR:topallhdg5.3.pro ASSFIL: file /u/volkman/waterrefine/toppar/topallhdg5.3.pro opened. RTFRDR>remark file topallhdg.pro version 5.3 date 23-Sept-02 RTFRDR>remark for file parallhdg.pro version 5.3 date 13-Feb-02 or later RTFRDR>remark Geometric energy function parameters for distance geometry and RTFRDR>remark simulated annealing. RTFRDR>remark Author: Michael Nilges, EMBL Heidelberg; Institut Pasteur, Paris RTFRDR>remark This file contains modifications from M. Williams, UCL London RTFRDR>remark Last modification 16-Sept-02 RTFRDR> RTFRDR>set echo off message off end RTFRDR>end CNSsolve> CNSsolve>! no chain id. CNSsolve>segment name=" " SEGMENT> chain CHAIN> @TOPPAR:topallhdg5.3.pep CHAIN>REMARKS TOPH19.pep -MACRO for protein sequence CHAIN>SET ECHO=FALSE END CHAIN> sequence SEQUENCE> @1xxx.seq SEQUENCE>MET SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) = end SEGMNT: 90 residues were inserted into segment " " CHAIN> end SEGMENT>end Status of internal molecular topology database: -> NATOM= 1385(MAXA= 40000) NBOND= 1392(MAXB= 40000) -> NTHETA= 2526(MAXT= 80000) NGRP= 92(MAXGRP= 40000) -> NPHI= 2186(MAXP= 80000) NIMPHI= 682(MAXIMP= 40000) -> NNB= 522(MAXNB= 40000) CNSsolve> CNSsolve>! turn peptide from trans to cis CNSsolve>!patch CISP reference=nil=( resid 80 ) end CNSsolve> CNSsolve>coor @&coordinate_infile COOR>HEADER Structures from CYANA 03-03-2004 COOR>REMARK model 15 COOR>ATOM 2249 N MET A 1 1.325 0.000 0.000 1.00 0.00 %READC-ERR: atom 1 MET HN not found in molecular structure %READC-ERR: atom 1 MET 2HB not found in molecular structure %READC-ERR: atom 1 MET 3HB not found in molecular structure %READC-ERR: atom 1 MET QB not found in molecular structure %READC-ERR: atom 1 MET 2HG not found in molecular structure %READC-ERR: atom 1 MET 3HG not found in molecular structure %READC-ERR: atom 1 MET QG not found in molecular structure %READC-ERR: atom 1 MET QE not found in molecular structure %READC-ERR: atom 1 MET 1HE not found in molecular structure %READC-ERR: atom 1 MET 2HE not found in molecular structure %READC-ERR: atom 1 MET 3HE not found in molecular structure %READC-ERR: atom 2 THR QG2 not found in molecular structure %READC-ERR: atom 2 THR 1HG2 not found in molecular structure %READC-ERR: atom 2 THR 2HG2 not found in molecular structure %READC-ERR: atom 2 THR 3HG2 not found in molecular structure %READC-ERR: atom 3 GLU 2HB not found in molecular structure %READC-ERR: atom 3 GLU 3HB not found in molecular structure %READC-ERR: atom 3 GLU QB not found in molecular structure %READC-ERR: atom 3 GLU 2HG not found in molecular structure %READC-ERR: atom 3 GLU 3HG not found in molecular structure %READC-ERR: atom 3 GLU QG not found in molecular structure %READC-ERR: atom 4 VAL QG1 not found in molecular structure %READC-ERR: atom 4 VAL QG2 not found in molecular structure %READC-ERR: atom 4 VAL 1HG1 not found in molecular structure %READC-ERR: atom 4 VAL 2HG1 not found in molecular structure %READC-ERR: atom 4 VAL 3HG1 not found in molecular structure %READC-ERR: atom 4 VAL 1HG2 not found in molecular structure %READC-ERR: atom 4 VAL 2HG2 not found in molecular structure %READC-ERR: atom 4 VAL 3HG2 not found in molecular structure %READC-ERR: atom 4 VAL QQG not found in molecular structure %READC-ERR: atom 5 TYR 2HB not found in molecular structure %READC-ERR: atom 5 TYR 3HB not found in molecular structure %READC-ERR: atom 5 TYR QB not found in molecular structure %READC-ERR: atom 5 TYR QD not found in molecular structure %READC-ERR: atom 5 TYR QE not found in molecular structure %READC-ERR: atom 5 TYR QR not found in molecular structure %READC-ERR: atom 6 ASP 2HB not found in molecular structure %READC-ERR: atom 6 ASP 3HB not found in molecular structure %READC-ERR: atom 6 ASP QB not found in molecular structure %READC-ERR: atom 7 LEU 2HB not found in molecular structure %READC-ERR: atom 7 LEU 3HB not found in molecular structure %READC-ERR: atom 7 LEU QB not found in molecular structure %READC-ERR: atom 7 LEU QD1 not found in molecular structure %READC-ERR: atom 7 LEU QD2 not found in molecular structure %READC-ERR: atom 7 LEU 1HD1 not found in molecular structure %READC-ERR: atom 7 LEU 2HD1 not found in molecular structure %READC-ERR: atom 7 LEU 3HD1 not found in molecular structure %READC-ERR: atom 7 LEU 1HD2 not found in molecular structure %READC-ERR: atom 7 LEU 2HD2 not found in molecular structure %READC-ERR: atom 7 LEU 3HD2 not found in molecular structure %READC-ERR: atom 7 LEU QQD not found in molecular structure %READC-ERR: atom 8 GLU 2HB not found in molecular structure %READC-ERR: atom 8 GLU 3HB not found in molecular structure %READC-ERR: atom 8 GLU QB not found in molecular structure %READC-ERR: atom 8 GLU 2HG not found in molecular structure %READC-ERR: atom 8 GLU 3HG not found in molecular structure %READC-ERR: atom 8 GLU QG not found in molecular structure %READC-ERR: atom 9 ILE QG2 not found in molecular structure %READC-ERR: atom 9 ILE 1HG2 not found in molecular structure %READC-ERR: atom 9 ILE 2HG2 not found in molecular structure %READC-ERR: atom 9 ILE 3HG2 not found in molecular structure %READC-ERR: atom 9 ILE 2HG1 not found in molecular structure %READC-ERR: atom 9 ILE 3HG1 not found in molecular structure %READC-ERR: atom 9 ILE QG1 not found in molecular structure %READC-ERR: atom 9 ILE QD1 not found in molecular structure %READC-ERR: atom 9 ILE 1HD1 not found in molecular structure %READC-ERR: atom 9 ILE 2HD1 not found in molecular structure %READC-ERR: atom 9 ILE 3HD1 not found in molecular structure %READC-ERR: atom 10 THR QG2 not found in molecular structure %READC-ERR: atom 10 THR 1HG2 not found in molecular structure %READC-ERR: atom 10 THR 2HG2 not found in molecular structure %READC-ERR: atom 10 THR 3HG2 not found in molecular structure %READC-ERR: atom 11 THR QG2 not found in molecular structure %READC-ERR: atom 11 THR 1HG2 not found in molecular structure %READC-ERR: atom 11 THR 2HG2 not found in molecular structure %READC-ERR: atom 11 THR 3HG2 not found in molecular structure %READC-ERR: atom 12 ASN 2HB not found in molecular structure %READC-ERR: atom 12 ASN 3HB not found in molecular structure %READC-ERR: atom 12 ASN QB not found in molecular structure %READC-ERR: atom 12 ASN 1HD2 not found in molecular structure %READC-ERR: atom 12 ASN 2HD2 not found in molecular structure %READC-ERR: atom 12 ASN QD2 not found in molecular structure %READC-ERR: atom 13 ALA QB not found in molecular structure %READC-ERR: atom 13 ALA 1HB not found in molecular structure %READC-ERR: atom 13 ALA 2HB not found in molecular structure %READC-ERR: atom 13 ALA 3HB not found in molecular structure %READC-ERR: atom 14 THR QG2 not found in molecular structure %READC-ERR: atom 14 THR 1HG2 not found in molecular structure %READC-ERR: atom 14 THR 2HG2 not found in molecular structure %READC-ERR: atom 14 THR 3HG2 not found in molecular structure %READC-ERR: atom 15 ASP 2HB not found in molecular structure %READC-ERR: atom 15 ASP 3HB not found in molecular structure %READC-ERR: atom 15 ASP QB not found in molecular structure %READC-ERR: atom 16 PHE 2HB not found in molecular structure %READC-ERR: atom 16 PHE 3HB not found in molecular structure %READC-ERR: atom 16 PHE QB not found in molecular structure %READC-ERR: atom 16 PHE QD not found in molecular structure %READC-ERR: atom 16 PHE QE not found in molecular structure %READC-ERR: atom 16 PHE QR not found in molecular structure %READC-ERR: atom 17 PRO 2HB not found in molecular structure %READC-ERR: atom 17 PRO 3HB not found in molecular structure %READC-ERR: atom 17 PRO QB not found in molecular structure %READC-ERR: atom 17 PRO 2HG not found in molecular structure %READC-ERR: atom 17 PRO 3HG not found in molecular structure %READC-ERR: atom 17 PRO QG not found in molecular structure %READC-ERR: atom 17 PRO 2HD not found in molecular structure %READC-ERR: atom 17 PRO 3HD not found in molecular structure %READC-ERR: atom 17 PRO QD not found in molecular structure %READC-ERR: atom 18 MET 2HB not found in molecular structure %READC-ERR: atom 18 MET 3HB not found in molecular structure %READC-ERR: atom 18 MET QB not found in molecular structure %READC-ERR: atom 18 MET 2HG not found in molecular structure %READC-ERR: atom 18 MET 3HG not found in molecular structure %READC-ERR: atom 18 MET QG not found in molecular structure %READC-ERR: atom 18 MET QE not found in molecular structure %READC-ERR: atom 18 MET 1HE not found in molecular structure %READC-ERR: atom 18 MET 2HE not found in molecular structure %READC-ERR: atom 18 MET 3HE not found in molecular structure %READC-ERR: atom 19 GLU 2HB not found in molecular structure %READC-ERR: atom 19 GLU 3HB not found in molecular structure %READC-ERR: atom 19 GLU QB not found in molecular structure %READC-ERR: atom 19 GLU 2HG not found in molecular structure %READC-ERR: atom 19 GLU 3HG not found in molecular structure %READC-ERR: atom 19 GLU QG not found in molecular structure %READC-ERR: atom 20 LYS 2HB not found in molecular structure %READC-ERR: atom 20 LYS 3HB not found in molecular structure %READC-ERR: atom 20 LYS QB not found in molecular structure %READC-ERR: atom 20 LYS 2HG not found in molecular structure %READC-ERR: atom 20 LYS 3HG not found in molecular structure %READC-ERR: atom 20 LYS QG not found in molecular structure %READC-ERR: atom 20 LYS 2HD not found in molecular structure %READC-ERR: atom 20 LYS 3HD not found in molecular structure %READC-ERR: atom 20 LYS QD not found in molecular structure %READC-ERR: atom 20 LYS 2HE not found in molecular structure %READC-ERR: atom 20 LYS 3HE not found in molecular structure %READC-ERR: atom 20 LYS QE not found in molecular structure %READC-ERR: atom 20 LYS 1HZ not found in molecular structure %READC-ERR: atom 20 LYS 2HZ not found in molecular structure %READC-ERR: atom 20 LYS 3HZ not found in molecular structure %READC-ERR: atom 20 LYS QZ not found in molecular structure %READC-ERR: atom 21 LYS 2HB not found in molecular structure %READC-ERR: atom 21 LYS 3HB not found in molecular structure %READC-ERR: atom 21 LYS QB not found in molecular structure %READC-ERR: atom 21 LYS 2HG not found in molecular structure %READC-ERR: atom 21 LYS 3HG not found in molecular structure %READC-ERR: atom 21 LYS QG not found in molecular structure %READC-ERR: atom 21 LYS 2HD not found in molecular structure %READC-ERR: atom 21 LYS 3HD not found in molecular structure %READC-ERR: atom 21 LYS QD not found in molecular structure %READC-ERR: atom 21 LYS 2HE not found in molecular structure %READC-ERR: atom 21 LYS 3HE not found in molecular structure %READC-ERR: atom 21 LYS QE not found in molecular structure %READC-ERR: atom 21 LYS 1HZ not found in molecular structure %READC-ERR: atom 21 LYS 2HZ not found in molecular structure %READC-ERR: atom 21 LYS 3HZ not found in molecular structure %READC-ERR: atom 21 LYS QZ not found in molecular structure %READC-ERR: atom 22 TYR 2HB not found in molecular structure %READC-ERR: atom 22 TYR 3HB not found in molecular structure %READC-ERR: atom 22 TYR QB not found in molecular structure %READC-ERR: atom 22 TYR QD not found in molecular structure %READC-ERR: atom 22 TYR QE not found in molecular structure %READC-ERR: atom 22 TYR QR not found in molecular structure %READC-ERR: atom 23 PRO 2HB not found in molecular structure %READC-ERR: atom 23 PRO 3HB not found in molecular structure %READC-ERR: atom 23 PRO QB not found in molecular structure %READC-ERR: atom 23 PRO 2HG not found in molecular structure %READC-ERR: atom 23 PRO 3HG not found in molecular structure %READC-ERR: atom 23 PRO QG not found in molecular structure %READC-ERR: atom 23 PRO 2HD not found in molecular structure %READC-ERR: atom 23 PRO 3HD not found in molecular structure %READC-ERR: atom 23 PRO QD not found in molecular structure %READC-ERR: atom 24 ALA QB not found in molecular structure %READC-ERR: atom 24 ALA 1HB not found in molecular structure %READC-ERR: atom 24 ALA 2HB not found in molecular structure %READC-ERR: atom 24 ALA 3HB not found in molecular structure %READC-ERR: atom 25 GLY 1HA not found in molecular structure %READC-ERR: atom 25 GLY 2HA not found in molecular structure %READC-ERR: atom 25 GLY QA not found in molecular structure %READC-ERR: atom 26 MET 2HB not found in molecular structure %READC-ERR: atom 26 MET 3HB not found in molecular structure %READC-ERR: atom 26 MET QB not found in molecular structure %READC-ERR: atom 26 MET 2HG not found in molecular structure %READC-ERR: atom 26 MET 3HG not found in molecular structure %READC-ERR: atom 26 MET QG not found in molecular structure %READC-ERR: atom 26 MET QE not found in molecular structure %READC-ERR: atom 26 MET 1HE not found in molecular structure %READC-ERR: atom 26 MET 2HE not found in molecular structure %READC-ERR: atom 26 MET 3HE not found in molecular structure %READC-ERR: atom 27 SER 2HB not found in molecular structure %READC-ERR: atom 27 SER 3HB not found in molecular structure %READC-ERR: atom 27 SER QB not found in molecular structure %READC-ERR: atom 28 LEU 2HB not found in molecular structure %READC-ERR: atom 28 LEU 3HB not found in molecular structure %READC-ERR: atom 28 LEU QB not found in molecular structure %READC-ERR: atom 28 LEU QD1 not found in molecular structure %READC-ERR: atom 28 LEU QD2 not found in molecular structure %READC-ERR: atom 28 LEU 1HD1 not found in molecular structure %READC-ERR: atom 28 LEU 2HD1 not found in molecular structure %READC-ERR: atom 28 LEU 3HD1 not found in molecular structure %READC-ERR: atom 28 LEU 1HD2 not found in molecular structure %READC-ERR: atom 28 LEU 2HD2 not found in molecular structure %READC-ERR: atom 28 LEU 3HD2 not found in molecular structure %READC-ERR: atom 28 LEU QQD not found in molecular structure %READC-ERR: atom 29 ASN 2HB not found in molecular structure %READC-ERR: atom 29 ASN 3HB not found in molecular structure %READC-ERR: atom 29 ASN QB not found in molecular structure %READC-ERR: atom 29 ASN 1HD2 not found in molecular structure %READC-ERR: atom 29 ASN 2HD2 not found in molecular structure %READC-ERR: atom 29 ASN QD2 not found in molecular structure %READC-ERR: atom 30 ASP 2HB not found in molecular structure %READC-ERR: atom 30 ASP 3HB not found in molecular structure %READC-ERR: atom 30 ASP QB not found in molecular structure %READC-ERR: atom 31 LEU 2HB not found in molecular structure %READC-ERR: atom 31 LEU 3HB not found in molecular structure %READC-ERR: atom 31 LEU QB not found in molecular structure %READC-ERR: atom 31 LEU QD1 not found in molecular structure %READC-ERR: atom 31 LEU QD2 not found in molecular structure %READC-ERR: atom 31 LEU 1HD1 not found in molecular structure %READC-ERR: atom 31 LEU 2HD1 not found in molecular structure %READC-ERR: atom 31 LEU 3HD1 not found in molecular structure %READC-ERR: atom 31 LEU 1HD2 not found in molecular structure %READC-ERR: atom 31 LEU 2HD2 not found in molecular structure %READC-ERR: atom 31 LEU 3HD2 not found in molecular structure %READC-ERR: atom 31 LEU QQD not found in molecular structure %READC-ERR: atom 32 LYS 2HB not found in molecular structure %READC-ERR: atom 32 LYS 3HB not found in molecular structure %READC-ERR: atom 32 LYS QB not found in molecular structure %READC-ERR: atom 32 LYS 2HG not found in molecular structure %READC-ERR: atom 32 LYS 3HG not found in molecular structure %READC-ERR: atom 32 LYS QG not found in molecular structure %READC-ERR: atom 32 LYS 2HD not found in molecular structure %READC-ERR: atom 32 LYS 3HD not found in molecular structure %READC-ERR: atom 32 LYS QD not found in molecular structure %READC-ERR: atom 32 LYS 2HE not found in molecular structure %READC-ERR: atom 32 LYS 3HE not found in molecular structure %READC-ERR: atom 32 LYS QE not found in molecular structure %READC-ERR: atom 32 LYS 1HZ not found in molecular structure %READC-ERR: atom 32 LYS 2HZ not found in molecular structure %READC-ERR: atom 32 LYS 3HZ not found in molecular structure %READC-ERR: atom 32 LYS QZ not found in molecular structure %READC-ERR: atom 33 LYS 2HB not found in molecular structure %READC-ERR: atom 33 LYS 3HB not found in molecular structure %READC-ERR: atom 33 LYS QB not found in molecular structure %READC-ERR: atom 33 LYS 2HG not found in molecular structure %READC-ERR: atom 33 LYS 3HG not found in molecular structure %READC-ERR: atom 33 LYS QG not found in molecular structure %READC-ERR: atom 33 LYS 2HD not found in molecular structure %READC-ERR: atom 33 LYS 3HD not found in molecular structure %READC-ERR: atom 33 LYS QD not found in molecular structure %READC-ERR: atom 33 LYS 2HE not found in molecular structure %READC-ERR: atom 33 LYS 3HE not found in molecular structure %READC-ERR: atom 33 LYS QE not found in molecular structure %READC-ERR: atom 33 LYS 1HZ not found in molecular structure %READC-ERR: atom 33 LYS 2HZ not found in molecular structure %READC-ERR: atom 33 LYS 3HZ not found in molecular structure %READC-ERR: atom 33 LYS QZ not found in molecular structure %READC-ERR: atom 34 LYS 2HB not found in molecular structure %READC-ERR: atom 34 LYS 3HB not found in molecular structure %READC-ERR: atom 34 LYS QB not found in molecular structure %READC-ERR: atom 34 LYS 2HG not found in molecular structure %READC-ERR: atom 34 LYS 3HG not found in molecular structure %READC-ERR: atom 34 LYS QG not found in molecular structure %READC-ERR: atom 34 LYS 2HD not found in molecular structure %READC-ERR: atom 34 LYS 3HD not found in molecular structure %READC-ERR: atom 34 LYS QD not found in molecular structure %READC-ERR: atom 34 LYS 2HE not found in molecular structure %READC-ERR: atom 34 LYS 3HE not found in molecular structure %READC-ERR: atom 34 LYS QE not found in molecular structure %READC-ERR: atom 34 LYS 1HZ not found in molecular structure %READC-ERR: atom 34 LYS 2HZ not found in molecular structure %READC-ERR: atom 34 LYS 3HZ not found in molecular structure %READC-ERR: atom 34 LYS QZ not found in molecular structure %READC-ERR: atom 35 LEU 2HB not found in molecular structure %READC-ERR: atom 35 LEU 3HB not found in molecular structure %READC-ERR: atom 35 LEU QB not found in molecular structure %READC-ERR: atom 35 LEU QD1 not found in molecular structure %READC-ERR: atom 35 LEU QD2 not found in molecular structure %READC-ERR: atom 35 LEU 1HD1 not found in molecular structure %READC-ERR: atom 35 LEU 2HD1 not found in molecular structure %READC-ERR: atom 35 LEU 3HD1 not found in molecular structure %READC-ERR: atom 35 LEU 1HD2 not found in molecular structure %READC-ERR: atom 35 LEU 2HD2 not found in molecular structure %READC-ERR: atom 35 LEU 3HD2 not found in molecular structure %READC-ERR: atom 35 LEU QQD not found in molecular structure %READC-ERR: atom 36 GLU 2HB not found in molecular structure %READC-ERR: atom 36 GLU 3HB not found in molecular structure %READC-ERR: atom 36 GLU QB not found in molecular structure %READC-ERR: atom 36 GLU 2HG not found in molecular structure %READC-ERR: atom 36 GLU 3HG not found in molecular structure %READC-ERR: atom 36 GLU QG not found in molecular structure %READC-ERR: atom 37 LEU 2HB not found in molecular structure %READC-ERR: atom 37 LEU 3HB not found in molecular structure %READC-ERR: atom 37 LEU QB not found in molecular structure %READC-ERR: atom 37 LEU QD1 not found in molecular structure %READC-ERR: atom 37 LEU QD2 not found in molecular structure %READC-ERR: atom 37 LEU 1HD1 not found in molecular structure %READC-ERR: atom 37 LEU 2HD1 not found in molecular structure %READC-ERR: atom 37 LEU 3HD1 not found in molecular structure %READC-ERR: atom 37 LEU 1HD2 not found in molecular structure %READC-ERR: atom 37 LEU 2HD2 not found in molecular structure %READC-ERR: atom 37 LEU 3HD2 not found in molecular structure %READC-ERR: atom 37 LEU QQD not found in molecular structure %READC-ERR: atom 38 VAL QG1 not found in molecular structure %READC-ERR: atom 38 VAL QG2 not found in molecular structure %READC-ERR: atom 38 VAL 1HG1 not found in molecular structure %READC-ERR: atom 38 VAL 2HG1 not found in molecular structure %READC-ERR: atom 38 VAL 3HG1 not found in molecular structure %READC-ERR: atom 38 VAL 1HG2 not found in molecular structure %READC-ERR: atom 38 VAL 2HG2 not found in molecular structure %READC-ERR: atom 38 VAL 3HG2 not found in molecular structure %READC-ERR: atom 38 VAL QQG not found in molecular structure %READC-ERR: atom 39 VAL QG1 not found in molecular structure %READC-ERR: atom 39 VAL QG2 not found in molecular structure %READC-ERR: atom 39 VAL 1HG1 not found in molecular structure %READC-ERR: atom 39 VAL 2HG1 not found in molecular structure %READC-ERR: atom 39 VAL 3HG1 not found in molecular structure %READC-ERR: atom 39 VAL 1HG2 not found in molecular structure %READC-ERR: atom 39 VAL 2HG2 not found in molecular structure %READC-ERR: atom 39 VAL 3HG2 not found in molecular structure %READC-ERR: atom 39 VAL QQG not found in molecular structure %READC-ERR: atom 40 GLY 1HA not found in molecular structure %READC-ERR: atom 40 GLY 2HA not found in molecular structure %READC-ERR: atom 40 GLY QA not found in molecular structure %READC-ERR: atom 41 THR QG2 not found in molecular structure %READC-ERR: atom 41 THR 1HG2 not found in molecular structure %READC-ERR: atom 41 THR 2HG2 not found in molecular structure %READC-ERR: atom 41 THR 3HG2 not found in molecular structure %READC-ERR: atom 42 THR QG2 not found in molecular structure %READC-ERR: atom 42 THR 1HG2 not found in molecular structure %READC-ERR: atom 42 THR 2HG2 not found in molecular structure %READC-ERR: atom 42 THR 3HG2 not found in molecular structure %READC-ERR: atom 43 VAL QG1 not found in molecular structure %READC-ERR: atom 43 VAL QG2 not found in molecular structure %READC-ERR: atom 43 VAL 1HG1 not found in molecular structure %READC-ERR: atom 43 VAL 2HG1 not found in molecular structure %READC-ERR: atom 43 VAL 3HG1 not found in molecular structure %READC-ERR: atom 43 VAL 1HG2 not found in molecular structure %READC-ERR: atom 43 VAL 2HG2 not found in molecular structure %READC-ERR: atom 43 VAL 3HG2 not found in molecular structure %READC-ERR: atom 43 VAL QQG not found in molecular structure %READC-ERR: atom 44 ASP 2HB not found in molecular structure %READC-ERR: atom 44 ASP 3HB not found in molecular structure %READC-ERR: atom 44 ASP QB not found in molecular structure %READC-ERR: atom 45 SER 2HB not found in molecular structure %READC-ERR: atom 45 SER 3HB not found in molecular structure %READC-ERR: atom 45 SER QB not found in molecular structure %READC-ERR: atom 46 MET 2HB not found in molecular structure %READC-ERR: atom 46 MET 3HB not found in molecular structure %READC-ERR: atom 46 MET QB not found in molecular structure %READC-ERR: atom 46 MET 2HG not found in molecular structure %READC-ERR: atom 46 MET 3HG not found in molecular structure %READC-ERR: atom 46 MET QG not found in molecular structure %READC-ERR: atom 46 MET QE not found in molecular structure %READC-ERR: atom 46 MET 1HE not found in molecular structure %READC-ERR: atom 46 MET 2HE not found in molecular structure %READC-ERR: atom 46 MET 3HE not found in molecular structure %READC-ERR: atom 47 ARG 2HB not found in molecular structure %READC-ERR: atom 47 ARG 3HB not found in molecular structure %READC-ERR: atom 47 ARG QB not found in molecular structure %READC-ERR: atom 47 ARG 2HG not found in molecular structure %READC-ERR: atom 47 ARG 3HG not found in molecular structure %READC-ERR: atom 47 ARG QG not found in molecular structure %READC-ERR: atom 47 ARG 2HD not found in molecular structure %READC-ERR: atom 47 ARG 3HD not found in molecular structure %READC-ERR: atom 47 ARG QD not found in molecular structure %READC-ERR: atom 47 ARG 1HH1 not found in molecular structure %READC-ERR: atom 47 ARG 2HH1 not found in molecular structure %READC-ERR: atom 47 ARG QH1 not found in molecular structure %READC-ERR: atom 47 ARG 1HH2 not found in molecular structure %READC-ERR: atom 47 ARG 2HH2 not found in molecular structure %READC-ERR: atom 47 ARG QH2 not found in molecular structure %READC-ERR: atom 48 ILE QG2 not found in molecular structure %READC-ERR: atom 48 ILE 1HG2 not found in molecular structure %READC-ERR: atom 48 ILE 2HG2 not found in molecular structure %READC-ERR: atom 48 ILE 3HG2 not found in molecular structure %READC-ERR: atom 48 ILE 2HG1 not found in molecular structure %READC-ERR: atom 48 ILE 3HG1 not found in molecular structure %READC-ERR: atom 48 ILE QG1 not found in molecular structure %READC-ERR: atom 48 ILE QD1 not found in molecular structure %READC-ERR: atom 48 ILE 1HD1 not found in molecular structure %READC-ERR: atom 48 ILE 2HD1 not found in molecular structure %READC-ERR: atom 48 ILE 3HD1 not found in molecular structure %READC-ERR: atom 49 GLN 2HB not found in molecular structure %READC-ERR: atom 49 GLN 3HB not found in molecular structure %READC-ERR: atom 49 GLN QB not found in molecular structure %READC-ERR: atom 49 GLN 2HG not found in molecular structure %READC-ERR: atom 49 GLN 3HG not found in molecular structure %READC-ERR: atom 49 GLN QG not found in molecular structure %READC-ERR: atom 49 GLN 1HE2 not found in molecular structure %READC-ERR: atom 49 GLN 2HE2 not found in molecular structure %READC-ERR: atom 49 GLN QE2 not found in molecular structure %READC-ERR: atom 50 LEU 2HB not found in molecular structure %READC-ERR: atom 50 LEU 3HB not found in molecular structure %READC-ERR: atom 50 LEU QB not found in molecular structure %READC-ERR: atom 50 LEU QD1 not found in molecular structure %READC-ERR: atom 50 LEU QD2 not found in molecular structure %READC-ERR: atom 50 LEU 1HD1 not found in molecular structure %READC-ERR: atom 50 LEU 2HD1 not found in molecular structure %READC-ERR: atom 50 LEU 3HD1 not found in molecular structure %READC-ERR: atom 50 LEU 1HD2 not found in molecular structure %READC-ERR: atom 50 LEU 2HD2 not found in molecular structure %READC-ERR: atom 50 LEU 3HD2 not found in molecular structure %READC-ERR: atom 50 LEU QQD not found in molecular structure %READC-ERR: atom 51 PHE 2HB not found in molecular structure %READC-ERR: atom 51 PHE 3HB not found in molecular structure %READC-ERR: atom 51 PHE QB not found in molecular structure %READC-ERR: atom 51 PHE QD not found in molecular structure %READC-ERR: atom 51 PHE QE not found in molecular structure %READC-ERR: atom 51 PHE QR not found in molecular structure %READC-ERR: atom 52 ASP 2HB not found in molecular structure %READC-ERR: atom 52 ASP 3HB not found in molecular structure %READC-ERR: atom 52 ASP QB not found in molecular structure %READC-ERR: atom 53 GLY 1HA not found in molecular structure %READC-ERR: atom 53 GLY 2HA not found in molecular structure %READC-ERR: atom 53 GLY QA not found in molecular structure %READC-ERR: atom 54 ASP 2HB not found in molecular structure %READC-ERR: atom 54 ASP 3HB not found in molecular structure %READC-ERR: atom 54 ASP QB not found in molecular structure %READC-ERR: atom 55 ASP 2HB not found in molecular structure %READC-ERR: atom 55 ASP 3HB not found in molecular structure %READC-ERR: atom 55 ASP QB not found in molecular structure %READC-ERR: atom 56 GLN 2HB not found in molecular structure %READC-ERR: atom 56 GLN 3HB not found in molecular structure %READC-ERR: atom 56 GLN QB not found in molecular structure %READC-ERR: atom 56 GLN 2HG not found in molecular structure %READC-ERR: atom 56 GLN 3HG not found in molecular structure %READC-ERR: atom 56 GLN QG not found in molecular structure %READC-ERR: atom 56 GLN 1HE2 not found in molecular structure %READC-ERR: atom 56 GLN 2HE2 not found in molecular structure %READC-ERR: atom 56 GLN QE2 not found in molecular structure %READC-ERR: atom 57 LEU 2HB not found in molecular structure %READC-ERR: atom 57 LEU 3HB not found in molecular structure %READC-ERR: atom 57 LEU QB not found in molecular structure %READC-ERR: atom 57 LEU QD1 not found in molecular structure %READC-ERR: atom 57 LEU QD2 not found in molecular structure %READC-ERR: atom 57 LEU 1HD1 not found in molecular structure %READC-ERR: atom 57 LEU 2HD1 not found in molecular structure %READC-ERR: atom 57 LEU 3HD1 not found in molecular structure %READC-ERR: atom 57 LEU 1HD2 not found in molecular structure %READC-ERR: atom 57 LEU 2HD2 not found in molecular structure %READC-ERR: atom 57 LEU 3HD2 not found in molecular structure %READC-ERR: atom 57 LEU QQD not found in molecular structure %READC-ERR: atom 58 LYS 2HB not found in molecular structure %READC-ERR: atom 58 LYS 3HB not found in molecular structure %READC-ERR: atom 58 LYS QB not found in molecular structure %READC-ERR: atom 58 LYS 2HG not found in molecular structure %READC-ERR: atom 58 LYS 3HG not found in molecular structure %READC-ERR: atom 58 LYS QG not found in molecular structure %READC-ERR: atom 58 LYS 2HD not found in molecular structure %READC-ERR: atom 58 LYS 3HD not found in molecular structure %READC-ERR: atom 58 LYS QD not found in molecular structure %READC-ERR: atom 58 LYS 2HE not found in molecular structure %READC-ERR: atom 58 LYS 3HE not found in molecular structure %READC-ERR: atom 58 LYS QE not found in molecular structure %READC-ERR: atom 58 LYS 1HZ not found in molecular structure %READC-ERR: atom 58 LYS 2HZ not found in molecular structure %READC-ERR: atom 58 LYS 3HZ not found in molecular structure %READC-ERR: atom 58 LYS QZ not found in molecular structure %READC-ERR: atom 59 GLY 1HA not found in molecular structure %READC-ERR: atom 59 GLY 2HA not found in molecular structure %READC-ERR: atom 59 GLY QA not found in molecular structure %READC-ERR: atom 60 GLU 2HB not found in molecular structure %READC-ERR: atom 60 GLU 3HB not found in molecular structure %READC-ERR: atom 60 GLU QB not found in molecular structure %READC-ERR: atom 60 GLU 2HG not found in molecular structure %READC-ERR: atom 60 GLU 3HG not found in molecular structure %READC-ERR: atom 60 GLU QG not found in molecular structure %READC-ERR: atom 61 LEU 2HB not found in molecular structure %READC-ERR: atom 61 LEU 3HB not found in molecular structure %READC-ERR: atom 61 LEU QB not found in molecular structure %READC-ERR: atom 61 LEU QD1 not found in molecular structure %READC-ERR: atom 61 LEU QD2 not found in molecular structure %READC-ERR: atom 61 LEU 1HD1 not found in molecular structure %READC-ERR: atom 61 LEU 2HD1 not found in molecular structure %READC-ERR: atom 61 LEU 3HD1 not found in molecular structure %READC-ERR: atom 61 LEU 1HD2 not found in molecular structure %READC-ERR: atom 61 LEU 2HD2 not found in molecular structure %READC-ERR: atom 61 LEU 3HD2 not found in molecular structure %READC-ERR: atom 61 LEU QQD not found in molecular structure %READC-ERR: atom 62 THR QG2 not found in molecular structure %READC-ERR: atom 62 THR 1HG2 not found in molecular structure %READC-ERR: atom 62 THR 2HG2 not found in molecular structure %READC-ERR: atom 62 THR 3HG2 not found in molecular structure %READC-ERR: atom 63 ASP 2HB not found in molecular structure %READC-ERR: atom 63 ASP 3HB not found in molecular structure %READC-ERR: atom 63 ASP QB not found in molecular structure %READC-ERR: atom 64 GLY 1HA not found in molecular structure %READC-ERR: atom 64 GLY 2HA not found in molecular structure %READC-ERR: atom 64 GLY QA not found in molecular structure %READC-ERR: atom 65 ALA QB not found in molecular structure %READC-ERR: atom 65 ALA 1HB not found in molecular structure %READC-ERR: atom 65 ALA 2HB not found in molecular structure %READC-ERR: atom 65 ALA 3HB not found in molecular structure %READC-ERR: atom 66 LYS 2HB not found in molecular structure %READC-ERR: atom 66 LYS 3HB not found in molecular structure %READC-ERR: atom 66 LYS QB not found in molecular structure %READC-ERR: atom 66 LYS 2HG not found in molecular structure %READC-ERR: atom 66 LYS 3HG not found in molecular structure %READC-ERR: atom 66 LYS QG not found in molecular structure %READC-ERR: atom 66 LYS 2HD not found in molecular structure %READC-ERR: atom 66 LYS 3HD not found in molecular structure %READC-ERR: atom 66 LYS QD not found in molecular structure %READC-ERR: atom 66 LYS 2HE not found in molecular structure %READC-ERR: atom 66 LYS 3HE not found in molecular structure %READC-ERR: atom 66 LYS QE not found in molecular structure %READC-ERR: atom 66 LYS 1HZ not found in molecular structure %READC-ERR: atom 66 LYS 2HZ not found in molecular structure %READC-ERR: atom 66 LYS 3HZ not found in molecular structure %READC-ERR: atom 66 LYS QZ not found in molecular structure %READC-ERR: atom 67 SER 2HB not found in molecular structure %READC-ERR: atom 67 SER 3HB not found in molecular structure %READC-ERR: atom 67 SER QB not found in molecular structure %READC-ERR: atom 68 LEU 2HB not found in molecular structure %READC-ERR: atom 68 LEU 3HB not found in molecular structure %READC-ERR: atom 68 LEU QB not found in molecular structure %READC-ERR: atom 68 LEU QD1 not found in molecular structure %READC-ERR: atom 68 LEU QD2 not found in molecular structure %READC-ERR: atom 68 LEU 1HD1 not found in molecular structure %READC-ERR: atom 68 LEU 2HD1 not found in molecular structure %READC-ERR: atom 68 LEU 3HD1 not found in molecular structure %READC-ERR: atom 68 LEU 1HD2 not found in molecular structure %READC-ERR: atom 68 LEU 2HD2 not found in molecular structure %READC-ERR: atom 68 LEU 3HD2 not found in molecular structure %READC-ERR: atom 68 LEU QQD not found in molecular structure %READC-ERR: atom 69 LYS 2HB not found in molecular structure %READC-ERR: atom 69 LYS 3HB not found in molecular structure %READC-ERR: atom 69 LYS QB not found in molecular structure %READC-ERR: atom 69 LYS 2HG not found in molecular structure %READC-ERR: atom 69 LYS 3HG not found in molecular structure %READC-ERR: atom 69 LYS QG not found in molecular structure %READC-ERR: atom 69 LYS 2HD not found in molecular structure %READC-ERR: atom 69 LYS 3HD not found in molecular structure %READC-ERR: atom 69 LYS QD not found in molecular structure %READC-ERR: atom 69 LYS 2HE not found in molecular structure %READC-ERR: atom 69 LYS 3HE not found in molecular structure %READC-ERR: atom 69 LYS QE not found in molecular structure %READC-ERR: atom 69 LYS 1HZ not found in molecular structure %READC-ERR: atom 69 LYS 2HZ not found in molecular structure %READC-ERR: atom 69 LYS 3HZ not found in molecular structure %READC-ERR: atom 69 LYS QZ not found in molecular structure %READC-ERR: atom 70 ASP 2HB not found in molecular structure %READC-ERR: atom 70 ASP 3HB not found in molecular structure %READC-ERR: atom 70 ASP QB not found in molecular structure %READC-ERR: atom 71 LEU 2HB not found in molecular structure %READC-ERR: atom 71 LEU 3HB not found in molecular structure %READC-ERR: atom 71 LEU QB not found in molecular structure %READC-ERR: atom 71 LEU QD1 not found in molecular structure %READC-ERR: atom 71 LEU QD2 not found in molecular structure %READC-ERR: atom 71 LEU 1HD1 not found in molecular structure %READC-ERR: atom 71 LEU 2HD1 not found in molecular structure %READC-ERR: atom 71 LEU 3HD1 not found in molecular structure %READC-ERR: atom 71 LEU 1HD2 not found in molecular structure %READC-ERR: atom 71 LEU 2HD2 not found in molecular structure %READC-ERR: atom 71 LEU 3HD2 not found in molecular structure %READC-ERR: atom 71 LEU QQD not found in molecular structure %READC-ERR: atom 72 GLY 1HA not found in molecular structure %READC-ERR: atom 72 GLY 2HA not found in molecular structure %READC-ERR: atom 72 GLY QA not found in molecular structure %READC-ERR: atom 73 VAL QG1 not found in molecular structure %READC-ERR: atom 73 VAL QG2 not found in molecular structure %READC-ERR: atom 73 VAL 1HG1 not found in molecular structure %READC-ERR: atom 73 VAL 2HG1 not found in molecular structure %READC-ERR: atom 73 VAL 3HG1 not found in molecular structure %READC-ERR: atom 73 VAL 1HG2 not found in molecular structure %READC-ERR: atom 73 VAL 2HG2 not found in molecular structure %READC-ERR: atom 73 VAL 3HG2 not found in molecular structure %READC-ERR: atom 73 VAL QQG not found in molecular structure %READC-ERR: atom 74 ARG 2HB not found in molecular structure %READC-ERR: atom 74 ARG 3HB not found in molecular structure %READC-ERR: atom 74 ARG QB not found in molecular structure %READC-ERR: atom 74 ARG 2HG not found in molecular structure %READC-ERR: atom 74 ARG 3HG not found in molecular structure %READC-ERR: atom 74 ARG QG not found in molecular structure %READC-ERR: atom 74 ARG 2HD not found in molecular structure %READC-ERR: atom 74 ARG 3HD not found in molecular structure %READC-ERR: atom 74 ARG QD not found in molecular structure %READC-ERR: atom 74 ARG 1HH1 not found in molecular structure %READC-ERR: atom 74 ARG 2HH1 not found in molecular structure %READC-ERR: atom 74 ARG QH1 not found in molecular structure %READC-ERR: atom 74 ARG 1HH2 not found in molecular structure %READC-ERR: atom 74 ARG 2HH2 not found in molecular structure %READC-ERR: atom 74 ARG QH2 not found in molecular structure %READC-ERR: atom 75 ASP 2HB not found in molecular structure %READC-ERR: atom 75 ASP 3HB not found in molecular structure %READC-ERR: atom 75 ASP QB not found in molecular structure %READC-ERR: atom 76 GLY 1HA not found in molecular structure %READC-ERR: atom 76 GLY 2HA not found in molecular structure %READC-ERR: atom 76 GLY QA not found in molecular structure %READC-ERR: atom 77 TYR 2HB not found in molecular structure %READC-ERR: atom 77 TYR 3HB not found in molecular structure %READC-ERR: atom 77 TYR QB not found in molecular structure %READC-ERR: atom 77 TYR QD not found in molecular structure %READC-ERR: atom 77 TYR QE not found in molecular structure %READC-ERR: atom 77 TYR QR not found in molecular structure %READC-ERR: atom 78 ARG 2HB not found in molecular structure %READC-ERR: atom 78 ARG 3HB not found in molecular structure %READC-ERR: atom 78 ARG QB not found in molecular structure %READC-ERR: atom 78 ARG 2HG not found in molecular structure %READC-ERR: atom 78 ARG 3HG not found in molecular structure %READC-ERR: atom 78 ARG QG not found in molecular structure %READC-ERR: atom 78 ARG 2HD not found in molecular structure %READC-ERR: atom 78 ARG 3HD not found in molecular structure %READC-ERR: atom 78 ARG QD not found in molecular structure %READC-ERR: atom 78 ARG 1HH1 not found in molecular structure %READC-ERR: atom 78 ARG 2HH1 not found in molecular structure %READC-ERR: atom 78 ARG QH1 not found in molecular structure %READC-ERR: atom 78 ARG 1HH2 not found in molecular structure %READC-ERR: atom 78 ARG 2HH2 not found in molecular structure %READC-ERR: atom 78 ARG QH2 not found in molecular structure %READC-ERR: atom 79 ILE QG2 not found in molecular structure %READC-ERR: atom 79 ILE 1HG2 not found in molecular structure %READC-ERR: atom 79 ILE 2HG2 not found in molecular structure %READC-ERR: atom 79 ILE 3HG2 not found in molecular structure %READC-ERR: atom 79 ILE 2HG1 not found in molecular structure %READC-ERR: atom 79 ILE 3HG1 not found in molecular structure %READC-ERR: atom 79 ILE QG1 not found in molecular structure %READC-ERR: atom 79 ILE QD1 not found in molecular structure %READC-ERR: atom 79 ILE 1HD1 not found in molecular structure %READC-ERR: atom 79 ILE 2HD1 not found in molecular structure %READC-ERR: atom 79 ILE 3HD1 not found in molecular structure %READC-ERR: atom 80 HIS 2HB not found in molecular structure %READC-ERR: atom 80 HIS 3HB not found in molecular structure %READC-ERR: atom 80 HIS QB not found in molecular structure %READC-ERR: atom 81 ALA QB not found in molecular structure %READC-ERR: atom 81 ALA 1HB not found in molecular structure %READC-ERR: atom 81 ALA 2HB not found in molecular structure %READC-ERR: atom 81 ALA 3HB not found in molecular structure %READC-ERR: atom 82 VAL QG1 not found in molecular structure %READC-ERR: atom 82 VAL QG2 not found in molecular structure %READC-ERR: atom 82 VAL 1HG1 not found in molecular structure %READC-ERR: atom 82 VAL 2HG1 not found in molecular structure %READC-ERR: atom 82 VAL 3HG1 not found in molecular structure %READC-ERR: atom 82 VAL 1HG2 not found in molecular structure %READC-ERR: atom 82 VAL 2HG2 not found in molecular structure %READC-ERR: atom 82 VAL 3HG2 not found in molecular structure %READC-ERR: atom 82 VAL QQG not found in molecular structure %READC-ERR: atom 83 ASP 2HB not found in molecular structure %READC-ERR: atom 83 ASP 3HB not found in molecular structure %READC-ERR: atom 83 ASP QB not found in molecular structure %READC-ERR: atom 84 VAL QG1 not found in molecular structure %READC-ERR: atom 84 VAL QG2 not found in molecular structure %READC-ERR: atom 84 VAL 1HG1 not found in molecular structure %READC-ERR: atom 84 VAL 2HG1 not found in molecular structure %READC-ERR: atom 84 VAL 3HG1 not found in molecular structure %READC-ERR: atom 84 VAL 1HG2 not found in molecular structure %READC-ERR: atom 84 VAL 2HG2 not found in molecular structure %READC-ERR: atom 84 VAL 3HG2 not found in molecular structure %READC-ERR: atom 84 VAL QQG not found in molecular structure %READC-ERR: atom 85 THR QG2 not found in molecular structure %READC-ERR: atom 85 THR 1HG2 not found in molecular structure %READC-ERR: atom 85 THR 2HG2 not found in molecular structure %READC-ERR: atom 85 THR 3HG2 not found in molecular structure %READC-ERR: atom 86 GLY 1HA not found in molecular structure %READC-ERR: atom 86 GLY 2HA not found in molecular structure %READC-ERR: atom 86 GLY QA not found in molecular structure %READC-ERR: atom 87 GLY 1HA not found in molecular structure %READC-ERR: atom 87 GLY 2HA not found in molecular structure %READC-ERR: atom 87 GLY QA not found in molecular structure %READC-ERR: atom 88 ASN 2HB not found in molecular structure %READC-ERR: atom 88 ASN 3HB not found in molecular structure %READC-ERR: atom 88 ASN QB not found in molecular structure %READC-ERR: atom 88 ASN 1HD2 not found in molecular structure %READC-ERR: atom 88 ASN 2HD2 not found in molecular structure %READC-ERR: atom 88 ASN QD2 not found in molecular structure %READC-ERR: atom 89 GLU 2HB not found in molecular structure %READC-ERR: atom 89 GLU 3HB not found in molecular structure %READC-ERR: atom 89 GLU QB not found in molecular structure %READC-ERR: atom 89 GLU 2HG not found in molecular structure %READC-ERR: atom 89 GLU 3HG not found in molecular structure %READC-ERR: atom 89 GLU QG not found in molecular structure %READC-ERR: atom 90 ASP 2HB not found in molecular structure %READC-ERR: atom 90 ASP 3HB not found in molecular structure %READC-ERR: atom 90 ASP QB not found in molecular structure %READC-ERR: atom 90 ASP O not found in molecular structure COOR>END CNSsolve>parameter @TOPPAR:parallhdg5.3.pro end PARRDR>! JFD adds FES complex parameters from Milo Westler's calculations PARRDR>! and standard topology. PARRDR> PARRDR>remark file protein-allhdg-ucl.param version UCL date 07-JUL-01 PARRDR>remark for file protein-allhdg-ucl.top version UCL date 14-MAR-00 PARRDR>remark for file protein-allhdg-dih-ucl.top version UCL date 07-JUL-01 PARRDR>remark Geometric energy function parameters for distance geometry and PARRDR>remark simulated annealing. PARRDR>remark Original author: Michael Nilges, EMBL Heidelberg PARRDR>remark Modifications: Mark A. Williams, UCL London PARRDR> PARRDR>set echo off message off end SHOW: sum over selected elements = 2.000000 CNSsolve> CNSsolve> if ( $log_level = verbose ) then CNSsolve> set message=normal echo=on end CNSsolve> else CNSsolve> set message=off echo=off end CNSsolve> end if CNSsolve> CNSsolve> CNSsolve> identity (store1) (none) SELRPN: 0 atoms have been selected out of 1385 CNSsolve> CNSsolve> identity (store1) (&atom_build) SELRPN: 453 atoms have been selected out of 1385 CNSsolve> identity (store1) (store1 or hydrogen) SELRPN: 692 atoms have been selected out of 1385 CNSsolve> CNSsolve> show sum(1) (store1) SELRPN: 692 atoms have been selected out of 1385 SHOW: sum over selected elements = 692.000000 CNSsolve> evaluate ($tobuild=$result) EVALUATE: symbol $TOBUILD set to 692.000 (real) CNSsolve> CNSsolve> !evaluate ($tobuild=0) CNSsolve> CNSsolve> if ( $tobuild > 0 ) then NEXTCD: condition evaluated as true CNSsolve> CNSsolve> fix selection=(not(store1)) end SELRPN: 693 atoms have been selected out of 1385 CNSsolve> CNSsolve> show sum(1) (store1) SELRPN: 692 atoms have been selected out of 1385 SHOW: sum over selected elements = 692.000000 CNSsolve> evaluate ($moving=$result) EVALUATE: symbol $MOVING set to 692.000 (real) CNSsolve> CNSsolve> if ( $moving > 0 ) then NEXTCD: condition evaluated as true CNSsolve> for $id in id (tag and byres(store1)) loop avco SELRPN: 90 atoms have been selected out of 1385 FOR ID LOOP: symbol ID set to 1.00000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1385 SHOW: average of selected elements = 1.654222 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 1.65422 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1385 SHOW: average of selected elements = -0.240000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.240000 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1385 SHOW: average of selected elements = -2.240667 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.24067 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 20.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 5.077364 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 5.07736 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 2.273455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 2.27345 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -3.249091 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.24909 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 34.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 1.615091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 1.61509 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 5.598636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 5.59864 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -3.898545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.89855 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 49.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 5.321000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 5.32100 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 8.490500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 8.49050 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -2.462900 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.46290 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 65.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1385 SHOW: average of selected elements = 4.932316 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 4.93232 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1385 SHOW: average of selected elements = 10.103895 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 10.1039 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1385 SHOW: average of selected elements = -6.814105 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.81411 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 86.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 9.126600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 9.12660 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 14.756900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 14.7569 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -4.292000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -4.29200 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 98.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 6.188364 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 6.18836 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 17.415091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 17.4151 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -4.539545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -4.53955 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 117.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 9.259636 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 9.25964 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 21.871364 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 21.8714 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -5.142273 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -5.14227 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 132.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 7.022636 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 7.02264 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 24.015636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 24.0156 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -2.065909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.06591 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 151.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 6.746727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 6.74673 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 27.229000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 27.2290 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -5.079909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -5.07991 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 165.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 5.529000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 5.52900 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 30.998545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 30.9985 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -3.636364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.63636 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 179.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 4.273900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 4.27390 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 34.734200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 34.7342 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -5.699800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -5.69980 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 193.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1385 SHOW: average of selected elements = 5.721571 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 5.72157 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1385 SHOW: average of selected elements = 35.929286 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 35.9293 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1385 SHOW: average of selected elements = -2.716143 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.71614 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 203.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 8.221091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 8.22109 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 33.546455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 33.5465 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -1.626818 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -1.62682 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 217.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 11.781900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 11.7819 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 33.721200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 33.7212 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -4.445700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -4.44570 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 229.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1385 SHOW: average of selected elements = 13.918556 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 13.9186 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1385 SHOW: average of selected elements = 29.772222 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 29.7722 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1385 SHOW: average of selected elements = 0.002722 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 0.272222E-02 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 249.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1385 SHOW: average of selected elements = 12.265000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 12.2650 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1385 SHOW: average of selected elements = 26.880875 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 26.8809 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1385 SHOW: average of selected elements = -3.198875 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.19888 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 263.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 10.571000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 10.5710 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 23.895100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 23.8951 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 0.114700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 0.114700 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 280.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 12.593273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 12.5933 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 20.111636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 20.1116 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -1.270455 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -1.27045 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 295.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 8.174364 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 8.17436 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 17.835909 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 17.8359 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 1.291091 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.29109 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 317.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 8.190273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 8.19027 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 13.322455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 13.3225 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -0.191727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.191727 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 339.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1385 SHOW: average of selected elements = 3.599000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 3.59900 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1385 SHOW: average of selected elements = 15.826368 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 15.8264 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1385 SHOW: average of selected elements = 0.331000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 0.331000 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 360.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1385 SHOW: average of selected elements = 1.166250 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 1.16625 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1385 SHOW: average of selected elements = 10.812125 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 10.8121 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1385 SHOW: average of selected elements = -0.819375 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.819375 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 374.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1385 SHOW: average of selected elements = 0.155714 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 0.155714 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1385 SHOW: average of selected elements = 9.538857 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 9.53886 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1385 SHOW: average of selected elements = -4.590000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -4.59000 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 384.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1385 SHOW: average of selected elements = -3.052000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -3.05200 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1385 SHOW: average of selected elements = 9.534000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 9.53400 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1385 SHOW: average of selected elements = -2.964400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.96440 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 391.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -3.837200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -3.83720 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 11.823600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 11.8236 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -0.223300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.223300 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 408.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1385 SHOW: average of selected elements = -6.647444 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -6.64744 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1385 SHOW: average of selected elements = 14.540111 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 14.5401 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1385 SHOW: average of selected elements = -1.520778 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -1.52078 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 419.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -4.649909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -4.64991 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 18.191273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 18.1913 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -4.213545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -4.21355 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 438.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -8.635800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -8.63580 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 19.203700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 19.2037 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -1.578100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -1.57810 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 452.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -5.868500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -5.86850 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 17.687000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 17.6870 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 2.331700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 2.33170 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 464.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -2.089000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -2.08900 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 19.022818 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 19.0228 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 0.025727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 0.257273E-01 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 483.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -4.916818 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -4.91682 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 23.221636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 23.2216 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -1.494455 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -1.49445 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 505.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -6.970909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -6.97091 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 22.675727 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 22.6757 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 3.313091 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 3.31309 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 527.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -2.249091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -2.24909 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 21.097000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 21.0970 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 5.386091 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 5.38609 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 549.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -0.171909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -0.171909 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 24.109182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 24.1092 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 1.604091 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.60409 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 568.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -3.856000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -3.85600 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 27.458000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 27.4580 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 2.282455 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 2.28245 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 583.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -2.806636 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -2.80664 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 26.056091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 26.0561 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 7.484182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 7.48418 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 602.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 1.114200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 1.11420 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 27.329500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 27.3295 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 5.606200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 5.60620 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 618.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -0.600500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -0.600500 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 30.122700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 30.1227 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 2.965300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 2.96530 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 634.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1385 SHOW: average of selected elements = -2.938200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -2.93820 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1385 SHOW: average of selected elements = 31.385400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 31.3854 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1385 SHOW: average of selected elements = 5.464800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 5.46480 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 641.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -4.458182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -4.45818 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 32.032636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 32.0326 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 2.623091 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 2.62309 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 655.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -8.285727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -8.28573 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 31.295818 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 31.2958 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 1.039909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.03991 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 669.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -8.742700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -8.74270 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 27.442200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 27.4422 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -0.927000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.927000 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 685.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -11.754200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -11.7542 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 29.466800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 29.4668 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -3.412200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.41220 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 697.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1385 SHOW: average of selected elements = -9.062667 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -9.06267 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1385 SHOW: average of selected elements = 32.994889 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 32.9949 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1385 SHOW: average of selected elements = -3.075667 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.07567 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 708.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -5.413300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -5.41330 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 30.021900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 30.0219 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -3.663600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.66360 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 725.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1385 SHOW: average of selected elements = -4.893571 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -4.89357 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1385 SHOW: average of selected elements = 29.677857 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 29.6779 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1385 SHOW: average of selected elements = -9.522286 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.52229 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 749.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -2.260909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -2.26091 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 25.755182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 25.7552 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -6.965636 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.96564 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 768.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 0.245091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 0.245091 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 26.358455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 26.3585 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -11.282545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.2825 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 785.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 1.446636 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 1.44664 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 21.691818 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 21.6918 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -11.701364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.7014 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 804.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1385 SHOW: average of selected elements = 5.307444 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 5.30744 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1385 SHOW: average of selected elements = 25.350389 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 25.3504 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1385 SHOW: average of selected elements = -13.737611 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -13.7376 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 824.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 6.592000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 6.59200 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 19.797500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 19.7975 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -15.694400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -15.6944 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 836.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1385 SHOW: average of selected elements = 9.818400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 9.81840 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1385 SHOW: average of selected elements = 20.296600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 20.2966 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1385 SHOW: average of selected elements = -15.215600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -15.2156 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 843.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 11.973000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 11.9730 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 23.277900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 23.2779 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -16.026400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -16.0264 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 855.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 8.975600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 8.97560 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 25.546900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 25.5469 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -18.221500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -18.2215 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 867.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 7.732364 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 7.73236 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 22.126636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 22.1266 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -19.590000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -19.5900 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 884.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 2.126273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 2.12627 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 23.141182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 23.1412 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -18.387545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -18.3875 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 903.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 1.910091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 1.91009 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 18.968455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 18.9685 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -16.610364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -16.6104 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 925.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1385 SHOW: average of selected elements = -0.940400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -0.940400 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1385 SHOW: average of selected elements = 21.688000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 21.6880 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1385 SHOW: average of selected elements = -15.016600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -15.0166 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 932.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -4.604909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -4.60491 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 23.773727 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 23.7737 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -12.908000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -12.9080 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 947.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -3.575091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -3.57509 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 21.463273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 21.4633 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -9.382364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.38236 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 966.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -7.508000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -7.50800 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 23.150545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 23.1505 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -7.258000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.25800 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 980.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -8.534500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -8.53450 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 19.453500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 19.4535 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -8.195200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -8.19520 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 992.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1385 SHOW: average of selected elements = -9.870800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -9.87080 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1385 SHOW: average of selected elements = 16.863800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 16.8638 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1385 SHOW: average of selected elements = -4.769800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -4.76980 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 999.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1385 SHOW: average of selected elements = -11.810429 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -11.8104 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1385 SHOW: average of selected elements = 14.854429 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 14.8544 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1385 SHOW: average of selected elements = -6.159857 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.15986 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1009.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -8.668364 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -8.66836 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 13.650273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 13.6503 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -8.366364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -8.36636 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1031.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1385 SHOW: average of selected elements = -6.018111 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -6.01811 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1385 SHOW: average of selected elements = 11.082111 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 11.0821 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1385 SHOW: average of selected elements = -6.587778 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.58778 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1042.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -1.951727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -1.95173 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 13.562273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 13.5623 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -5.863182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -5.86318 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1061.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -1.876091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -1.87609 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 8.968273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 8.96827 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -9.732455 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.73245 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1083.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -5.747300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -5.74730 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 11.160800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 11.1608 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -11.214700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.2147 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1095.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -4.194182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -4.19418 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 15.342636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 15.3426 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -10.317182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -10.3172 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1114.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1385 SHOW: average of selected elements = -0.567200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -0.567200 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1385 SHOW: average of selected elements = 13.815600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 13.8156 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1385 SHOW: average of selected elements = -12.126600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -12.1266 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1121.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 1.173000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 1.17300 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 15.003200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 15.0032 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -9.273800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.27380 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1137.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1385 SHOW: average of selected elements = 4.135357 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 4.13536 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1385 SHOW: average of selected elements = 12.235071 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 12.2351 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1385 SHOW: average of selected elements = -12.821857 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -12.8219 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1161.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 7.998500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 7.99850 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 12.094200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 12.0942 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -9.195800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.19580 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1173.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1385 SHOW: average of selected elements = 9.488800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 9.48880 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1385 SHOW: average of selected elements = 16.066400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 16.0664 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1385 SHOW: average of selected elements = -8.998600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -8.99860 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1180.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1385 SHOW: average of selected elements = 5.778421 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 5.77842 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1385 SHOW: average of selected elements = 16.487842 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 16.4878 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1385 SHOW: average of selected elements = -11.699211 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.6992 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1201.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1385 SHOW: average of selected elements = 7.132000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 7.13200 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1385 SHOW: average of selected elements = 23.521071 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 23.5211 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1385 SHOW: average of selected elements = -9.728143 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.72814 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1225.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 3.809909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 3.80991 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 22.668545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 22.6685 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -6.312727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.31273 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1244.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 16 atoms have been selected out of 1385 SHOW: average of selected elements = 3.272250 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 3.27225 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 16 atoms have been selected out of 1385 SHOW: average of selected elements = 28.736500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 28.7365 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 16 atoms have been selected out of 1385 SHOW: average of selected elements = -7.890000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.89000 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1262.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1385 SHOW: average of selected elements = 1.500857 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 1.50086 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1385 SHOW: average of selected elements = 29.208571 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 29.2086 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1385 SHOW: average of selected elements = -5.162571 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -5.16257 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1272.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -0.879400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -0.879400 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 32.067500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 32.0675 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -6.396000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.39600 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1288.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -2.214900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -2.21490 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 35.044200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 35.0442 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -3.935800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.93580 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1300.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -6.413800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -6.41380 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 35.097900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 35.0979 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -6.377000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.37700 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1316.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -7.427727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -7.42773 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 37.717818 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 37.7178 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -2.949727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.94973 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1330.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1385 SHOW: average of selected elements = -3.906200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -3.90620 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1385 SHOW: average of selected elements = 39.208800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 39.2088 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1385 SHOW: average of selected elements = -4.443000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -4.44300 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1337.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1385 SHOW: average of selected elements = -3.407000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -3.40700 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1385 SHOW: average of selected elements = 39.497200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 39.4972 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1385 SHOW: average of selected elements = -7.245800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.24580 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1344.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 0.146900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 0.146900 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = 38.808900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 38.8089 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1385 SHOW: average of selected elements = -6.611100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.61110 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1358.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 0.346727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 0.346727 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = 38.459545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 38.4595 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1385 SHOW: average of selected elements = -11.388545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.3885 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1373.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1385 SHOW: average of selected elements = 2.449667 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 2.44967 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1385 SHOW: average of selected elements = 42.309000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 42.3090 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1385 SHOW: average of selected elements = -11.989667 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.9897 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1385 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) CNSsolve> evaluate ($ave_x=$result) CNSsolve> show ave(y) (byres(id $id) and known) CNSsolve> evaluate ($ave_y=$result) CNSsolve> show ave(z) (byres(id $id) and known) CNSsolve> evaluate ($ave_z=$result) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) CNSsolve> do (y=$ave_y) (byres(id $id) and store1) CNSsolve> do (z=$ave_z) (byres(id $id) and store1) CNSsolve> CNSsolve> end loop avco CNSsolve> CNSsolve> do (x=x+random(2.0)) (store1) SELRPN: 692 atoms have been selected out of 1385 CNSsolve> do (y=y+random(2.0)) (store1) SELRPN: 692 atoms have been selected out of 1385 CNSsolve> do (z=z+random(2.0)) (store1) SELRPN: 692 atoms have been selected out of 1385 CNSsolve> CNSsolve> {- start parameter for the side chain building -} CNSsolve> parameter PARRDR> nbonds NBDSET> rcon=20. nbxmod=-2 repel=0.9 wmin=0.1 tolerance=1. NBDSET> rexp=2 irexp=2 inhibit=0.25 NBDSET> end PARRDR> end CNSsolve> CNSsolve> {- Friction coefficient, in 1/ps. -} CNSsolve> do (fbeta=100) (store1) SELRPN: 692 atoms have been selected out of 1385 CNSsolve> CNSsolve> evaluate ($bath=300.0) EVALUATE: symbol $BATH set to 300.000 (real) CNSsolve> evaluate ($nstep=500) EVALUATE: symbol $NSTEP set to 500.000 (real) CNSsolve> evaluate ($timestep=0.0005) EVALUATE: symbol $TIMESTEP set to 0.500000E-03 (real) CNSsolve> CNSsolve> do (refy=mass) (store1) SELRPN: 692 atoms have been selected out of 1385 CNSsolve> CNSsolve> do (mass=20) (store1) SELRPN: 692 atoms have been selected out of 1385 CNSsolve> CNSsolve> igroup interaction SELRPN> (store1) (store1 or known) SELRPN: 692 atoms have been selected out of 1385 SELRPN: 1385 atoms have been selected out of 1385 IGROup> end CNSsolve> CNSsolve> {- turn on initial energy terms -} CNSsolve> flags exclude * include bond angle vdw end CNSsolve> CNSsolve> minimize powell nstep=50 nprint=10 end POWELL: number of degrees of freedom= 2076 NBONDS: generating intra-molecular exclusion list with mode=-2 MAKINB: mode -2 found 692 exclusions and 0 interactions(1-4) %atoms " -13 -ALA -HN " and " -13 -ALA -HB3 " only 0.10 A apart %atoms " -32 -LYS -HE1 " and " -32 -LYS -HZ3 " only 0.05 A apart %atoms " -33 -LYS -HB1 " and " -33 -LYS -HG1 " only 0.09 A apart %atoms " -34 -LYS -HB1 " and " -34 -LYS -HE1 " only 0.10 A apart %atoms " -47 -ARG -HA " and " -47 -ARG -HD1 " only 0.07 A apart %atoms " -47 -ARG -HA " and " -47 -ARG -HD2 " only 0.09 A apart %atoms " -47 -ARG -HD1 " and " -47 -ARG -HD2 " only 0.07 A apart %atoms " -48 -ILE -HG21" and " -48 -ILE -HG22" only 0.10 A apart %atoms " -49 -GLN -CB " and " -49 -GLN -HE22" only 0.06 A apart %atoms " -58 -LYS -HA " and " -58 -LYS -HZ3 " only 0.08 A apart %atoms " -61 -LEU -HD13" and " -61 -LEU -HD23" only 0.07 A apart %atoms " -66 -LYS -HA " and " -66 -LYS -HB1 " only 0.10 A apart %atoms " -68 -LEU -HB1 " and " -68 -LEU -HD22" only 0.07 A apart %atoms " -71 -LEU -HG " and " -71 -LEU -HD22" only 0.03 A apart %atoms " -84 -VAL -CA " and " -84 -VAL -HB " only 0.06 A apart NBONDS: found 90210 intra-atom interactions NBONDS: found 15 nonbonded violations NBONDS: found 89578 intra-atom interactions NBONDS: found 86329 intra-atom interactions NBONDS: found 84055 intra-atom interactions NBONDS: found 84516 intra-atom interactions --------------- cycle= 10 ------ stepsize= 0.0000 ----------------------- | Etotal =360064.356 grad(E)=586.666 E(BOND)=53084.179 E(ANGL)=177618.134 | | E(VDW )=129362.043 | ------------------------------------------------------------------------------- NBONDS: found 85182 intra-atom interactions NBONDS: found 85253 intra-atom interactions NBONDS: found 85163 intra-atom interactions --------------- cycle= 20 ------ stepsize= 0.0000 ----------------------- | Etotal =126941.491 grad(E)=344.420 E(BOND)=19653.328 E(ANGL)=44742.044 | | E(VDW )=62546.118 | ------------------------------------------------------------------------------- NBONDS: found 85150 intra-atom interactions NBONDS: found 85109 intra-atom interactions NBONDS: found 85127 intra-atom interactions --------------- cycle= 30 ------ stepsize= 0.0002 ----------------------- | Etotal =110271.475 grad(E)=321.069 E(BOND)=17099.036 E(ANGL)=34807.971 | | E(VDW )=58364.468 | ------------------------------------------------------------------------------- NBONDS: found 85095 intra-atom interactions --------------- cycle= 40 ------ stepsize= 0.0002 ----------------------- | Etotal =108520.855 grad(E)=318.974 E(BOND)=16938.165 E(ANGL)=34028.197 | | E(VDW )=57554.493 | ------------------------------------------------------------------------------- --------------- cycle= 50 ------ stepsize= -0.0001 ----------------------- | Etotal =108271.304 grad(E)=319.283 E(BOND)=17055.111 E(ANGL)=33926.943 | | E(VDW )=57289.250 | ------------------------------------------------------------------------------- POWELL: STEP number limit. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 692 atoms have been selected out of 1385 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 692 atoms have been selected out of 1385 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 692 atoms have been selected out of 1385 CNSsolve> CNSsolve> flags exclude vdw include impr end CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=50 Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=456545.349 E(kin)=620.050 temperature=300.601 | | Etotal =455925.299 grad(E)=690.694 E(BOND)=17055.111 E(ANGL)=33926.943 | | E(IMPR)=404943.246 | ------------------------------------------------------------------------------- -------------------- final step= 50 at 0.02500 ps --------------------- | E(kin)+E(total)=299860.333 E(kin)=44967.560 temperature=21800.294 | | Etotal =254892.773 grad(E)=408.349 E(BOND)=33238.365 E(ANGL)=95157.200 | | E(IMPR)=126497.209 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 0.57391 21.59241 -5.11911 velocity [A/ps] : 1.08128 0.59281 -0.41957 ang. mom. [amu A/ps] :-276736.60237 12045.58046 6387.84596 kin. ener. [Kcal/mol] : 28.06114 CNSsolve> CNSsolve> flags include vdw end CNSsolve> CNSsolve> minimize powell nstep=50 nprint=10 end POWELL: number of degrees of freedom= 2076 NBONDS: found 84493 intra-atom interactions NBONDS: found 84453 intra-atom interactions NBONDS: found 84562 intra-atom interactions NBONDS: found 84738 intra-atom interactions NBONDS: found 84917 intra-atom interactions --------------- cycle= 10 ------ stepsize= 0.0003 ----------------------- | Etotal =223766.676 grad(E)=392.286 E(BOND)=31503.919 E(ANGL)=54852.155 | | E(IMPR)=102028.921 E(VDW )=35381.681 | ------------------------------------------------------------------------------- NBONDS: found 85058 intra-atom interactions NBONDS: found 84945 intra-atom interactions NBONDS: found 84893 intra-atom interactions --------------- cycle= 20 ------ stepsize= 0.0001 ----------------------- | Etotal =145684.610 grad(E)=259.348 E(BOND)=14498.997 E(ANGL)=21081.783 | | E(IMPR)=73764.772 E(VDW )=36339.059 | ------------------------------------------------------------------------------- NBONDS: found 84939 intra-atom interactions NBONDS: found 84863 intra-atom interactions NBONDS: found 84863 intra-atom interactions --------------- cycle= 30 ------ stepsize= 0.0005 ----------------------- | Etotal =134340.705 grad(E)=263.473 E(BOND)=14901.837 E(ANGL)=20664.536 | | E(IMPR)=63363.811 E(VDW )=35410.521 | ------------------------------------------------------------------------------- NBONDS: found 84940 intra-atom interactions NBONDS: found 84900 intra-atom interactions NBONDS: found 84880 intra-atom interactions --------------- cycle= 40 ------ stepsize= 0.0005 ----------------------- | Etotal =122885.938 grad(E)=268.921 E(BOND)=15464.819 E(ANGL)=18282.289 | | E(IMPR)=54868.476 E(VDW )=34270.355 | ------------------------------------------------------------------------------- NBONDS: found 84891 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0004 ----------------------- | Etotal =116077.774 grad(E)=257.039 E(BOND)=14169.231 E(ANGL)=15603.862 | | E(IMPR)=52355.689 E(VDW )=33948.993 | ------------------------------------------------------------------------------- POWELL: STEP number limit. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 692 atoms have been selected out of 1385 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 692 atoms have been selected out of 1385 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 692 atoms have been selected out of 1385 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=50 Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=116713.180 E(kin)=635.406 temperature=308.045 | | Etotal =116077.774 grad(E)=257.039 E(BOND)=14169.231 E(ANGL)=15603.862 | | E(IMPR)=52355.689 E(VDW )=33948.993 | ------------------------------------------------------------------------------- NBONDS: found 84860 intra-atom interactions NBONDS: found 84865 intra-atom interactions NBONDS: found 84849 intra-atom interactions -------------------- final step= 50 at 0.02500 ps --------------------- | E(kin)+E(total)=114234.093 E(kin)=2586.212 temperature=1253.797 | | Etotal =111647.881 grad(E)=260.932 E(BOND)=15256.296 E(ANGL)=15986.295 | | E(IMPR)=46939.209 E(VDW )=33466.082 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 0.59102 21.58773 -5.09504 velocity [A/ps] : -0.14277 -0.01523 0.06393 ang. mom. [amu A/ps] : 2220.17408 -7145.47383 -39640.88080 kin. ener. [Kcal/mol] : 0.40855 CNSsolve> CNSsolve> parameter PARRDR> nbonds NBDSET> rcon=2. nbxmod=-3 repel=0.75 NBDSET> end PARRDR> end CNSsolve> CNSsolve> minimize powell nstep=100 nprint=25 end POWELL: number of degrees of freedom= 2076 NBONDS: generating intra-molecular exclusion list with mode=-3 MAKINB: mode -3 found 2276 exclusions and 0 interactions(1-4) NBONDS: found 83266 intra-atom interactions NBONDS: found 83662 intra-atom interactions NBONDS: found 83669 intra-atom interactions NBONDS: found 83695 intra-atom interactions --------------- cycle= 25 ------ stepsize= 0.0000 ----------------------- | Etotal =48240.071 grad(E)=84.361 E(BOND)=2277.072 E(ANGL)=14245.600 | | E(IMPR)=31709.766 E(VDW )=7.634 | ------------------------------------------------------------------------------- --------------- cycle= 50 ------ stepsize= 0.0000 ----------------------- | Etotal =49019.104 grad(E)=158.858 E(BOND)=2267.855 E(ANGL)=14212.359 | | E(IMPR)=32531.309 E(VDW )=7.581 | ------------------------------------------------------------------------------- POWELL: Line search terminated POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 692 atoms have been selected out of 1385 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 692 atoms have been selected out of 1385 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 692 atoms have been selected out of 1385 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=$nstep Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=48765.913 E(kin)=599.836 temperature=290.801 | | Etotal =48166.077 grad(E)=83.869 E(BOND)=2267.855 E(ANGL)=14212.359 | | E(IMPR)=31678.282 E(VDW )=7.581 | ------------------------------------------------------------------------------- NBONDS: found 83705 intra-atom interactions NBONDS: found 83714 intra-atom interactions NBONDS: found 83681 intra-atom interactions NBONDS: found 83671 intra-atom interactions NBONDS: found 83714 intra-atom interactions NBONDS: found 83713 intra-atom interactions NBONDS: found 83697 intra-atom interactions NBONDS: found 83687 intra-atom interactions NBONDS: found 83670 intra-atom interactions NBONDS: found 83640 intra-atom interactions NBONDS: found 83703 intra-atom interactions NBONDS: found 83784 intra-atom interactions NBONDS: found 83847 intra-atom interactions NBONDS: found 83850 intra-atom interactions NBONDS: found 83820 intra-atom interactions NBONDS: found 83717 intra-atom interactions NBONDS: found 83636 intra-atom interactions NBONDS: found 83636 intra-atom interactions NBONDS: found 83726 intra-atom interactions NBONDS: found 83775 intra-atom interactions NBONDS: found 83747 intra-atom interactions NBONDS: found 83721 intra-atom interactions NBONDS: found 83731 intra-atom interactions NBONDS: found 83752 intra-atom interactions NBONDS: found 83740 intra-atom interactions NBONDS: found 83706 intra-atom interactions NBONDS: found 83709 intra-atom interactions NBONDS: found 83698 intra-atom interactions NBONDS: found 83741 intra-atom interactions NBONDS: found 83743 intra-atom interactions NBONDS: found 83715 intra-atom interactions NBONDS: found 83704 intra-atom interactions NBONDS: found 83716 intra-atom interactions NBONDS: found 83750 intra-atom interactions NBONDS: found 83769 intra-atom interactions NBONDS: found 83756 intra-atom interactions NBONDS: found 83709 intra-atom interactions NBONDS: found 83715 intra-atom interactions NBONDS: found 83708 intra-atom interactions NBONDS: found 83717 intra-atom interactions NBONDS: found 83725 intra-atom interactions -------------------- final step= 500 at 0.25000 ps --------------------- | E(kin)+E(total)=6967.284 E(kin)=3007.876 temperature=1458.220 | | Etotal =3959.407 grad(E)=177.564 E(BOND)=475.507 E(ANGL)=615.982 | | E(IMPR)=2866.366 E(VDW )=1.553 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 0.59572 21.59883 -5.09920 velocity [A/ps] : -0.00508 0.61617 -0.00524 ang. mom. [amu A/ps] : 40922.87399 -52519.70394 26404.04610 kin. ener. [Kcal/mol] : 6.28025 CNSsolve> CNSsolve> {- turn on all energy terms -} CNSsolve> flags include dihe ? end EFLAGS: the following energy flags are set EFLAGS: BOND ANGL DIHE IMPR VDW CNSsolve> CNSsolve> {- set repel to ~vdw radii -} CNSsolve> parameter PARRDR> nbonds NBDSET> repel=0.89 NBDSET> end PARRDR> end CNSsolve> CNSsolve> minimize powell nstep=500 nprint=50 end POWELL: number of degrees of freedom= 2076 NBONDS: generating intra-molecular exclusion list with mode=-3 MAKINB: mode -3 found 2276 exclusions and 0 interactions(1-4) NBONDS: found 83712 intra-atom interactions POWELL: Line search terminated POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> flags exclude * include bond angl impr dihe vdw end CNSsolve> CNSsolve> {- return masses to something sensible -} CNSsolve> do (mass=refy) (store1) SELRPN: 692 atoms have been selected out of 1385 CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 692 atoms have been selected out of 1385 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 692 atoms have been selected out of 1385 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 692 atoms have been selected out of 1385 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=$nstep Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=3505.290 E(kin)=617.141 temperature=299.190 | | Etotal =2888.150 grad(E)=74.511 E(BOND)=361.578 E(ANGL)=766.534 | | E(DIHE)=71.718 E(IMPR)=1620.610 E(VDW )=67.709 | ------------------------------------------------------------------------------- NBONDS: found 83754 intra-atom interactions NBONDS: found 83740 intra-atom interactions NBONDS: found 83655 intra-atom interactions NBONDS: found 83702 intra-atom interactions NBONDS: found 83718 intra-atom interactions NBONDS: found 83681 intra-atom interactions NBONDS: found 83686 intra-atom interactions NBONDS: found 83725 intra-atom interactions NBONDS: found 83742 intra-atom interactions NBONDS: found 83751 intra-atom interactions NBONDS: found 83751 intra-atom interactions NBONDS: found 83727 intra-atom interactions NBONDS: found 83702 intra-atom interactions NBONDS: found 83716 intra-atom interactions NBONDS: found 83725 intra-atom interactions NBONDS: found 83745 intra-atom interactions NBONDS: found 83740 intra-atom interactions NBONDS: found 83718 intra-atom interactions NBONDS: found 83678 intra-atom interactions NBONDS: found 83669 intra-atom interactions NBONDS: found 83701 intra-atom interactions NBONDS: found 83700 intra-atom interactions NBONDS: found 83737 intra-atom interactions NBONDS: found 83739 intra-atom interactions NBONDS: found 83734 intra-atom interactions NBONDS: found 83763 intra-atom interactions NBONDS: found 83768 intra-atom interactions NBONDS: found 83765 intra-atom interactions NBONDS: found 83738 intra-atom interactions NBONDS: found 83678 intra-atom interactions NBONDS: found 83683 intra-atom interactions NBONDS: found 83681 intra-atom interactions NBONDS: found 83728 intra-atom interactions NBONDS: found 83742 intra-atom interactions NBONDS: found 83772 intra-atom interactions NBONDS: found 83783 intra-atom interactions NBONDS: found 83756 intra-atom interactions NBONDS: found 83748 intra-atom interactions NBONDS: found 83768 intra-atom interactions NBONDS: found 83756 intra-atom interactions NBONDS: found 83736 intra-atom interactions NBONDS: found 83738 intra-atom interactions NBONDS: found 83716 intra-atom interactions NBONDS: found 83702 intra-atom interactions NBONDS: found 83713 intra-atom interactions NBONDS: found 83739 intra-atom interactions NBONDS: found 83783 intra-atom interactions NBONDS: found 83815 intra-atom interactions NBONDS: found 83780 intra-atom interactions NBONDS: found 83721 intra-atom interactions NBONDS: found 83671 intra-atom interactions NBONDS: found 83669 intra-atom interactions NBONDS: found 83684 intra-atom interactions NBONDS: found 83706 intra-atom interactions NBONDS: found 83759 intra-atom interactions NBONDS: found 83800 intra-atom interactions NBONDS: found 83762 intra-atom interactions NBONDS: found 83721 intra-atom interactions NBONDS: found 83706 intra-atom interactions NBONDS: found 83705 intra-atom interactions NBONDS: found 83721 intra-atom interactions NBONDS: found 83733 intra-atom interactions NBONDS: found 83753 intra-atom interactions NBONDS: found 83769 intra-atom interactions NBONDS: found 83767 intra-atom interactions NBONDS: found 83739 intra-atom interactions NBONDS: found 83708 intra-atom interactions NBONDS: found 83714 intra-atom interactions NBONDS: found 83725 intra-atom interactions NBONDS: found 83755 intra-atom interactions NBONDS: found 83754 intra-atom interactions NBONDS: found 83745 intra-atom interactions NBONDS: found 83726 intra-atom interactions NBONDS: found 83707 intra-atom interactions NBONDS: found 83706 intra-atom interactions NBONDS: found 83686 intra-atom interactions NBONDS: found 83668 intra-atom interactions NBONDS: found 83666 intra-atom interactions NBONDS: found 83689 intra-atom interactions NBONDS: found 83702 intra-atom interactions NBONDS: found 83710 intra-atom interactions NBONDS: found 83753 intra-atom interactions NBONDS: found 83768 intra-atom interactions NBONDS: found 83753 intra-atom interactions NBONDS: found 83730 intra-atom interactions NBONDS: found 83740 intra-atom interactions NBONDS: found 83744 intra-atom interactions NBONDS: found 83730 intra-atom interactions NBONDS: found 83725 intra-atom interactions NBONDS: found 83726 intra-atom interactions NBONDS: found 83735 intra-atom interactions NBONDS: found 83752 intra-atom interactions NBONDS: found 83754 intra-atom interactions NBONDS: found 83733 intra-atom interactions NBONDS: found 83743 intra-atom interactions NBONDS: found 83752 intra-atom interactions NBONDS: found 83764 intra-atom interactions NBONDS: found 83763 intra-atom interactions NBONDS: found 83755 intra-atom interactions NBONDS: found 83749 intra-atom interactions NBONDS: found 83720 intra-atom interactions NBONDS: found 83685 intra-atom interactions NBONDS: found 83664 intra-atom interactions NBONDS: found 83662 intra-atom interactions NBONDS: found 83676 intra-atom interactions NBONDS: found 83692 intra-atom interactions NBONDS: found 83720 intra-atom interactions NBONDS: found 83748 intra-atom interactions NBONDS: found 83780 intra-atom interactions NBONDS: found 83746 intra-atom interactions NBONDS: found 83709 intra-atom interactions NBONDS: found 83678 intra-atom interactions NBONDS: found 83660 intra-atom interactions NBONDS: found 83627 intra-atom interactions NBONDS: found 83631 intra-atom interactions NBONDS: found 83654 intra-atom interactions NBONDS: found 83678 intra-atom interactions NBONDS: found 83715 intra-atom interactions NBONDS: found 83733 intra-atom interactions NBONDS: found 83778 intra-atom interactions NBONDS: found 83759 intra-atom interactions NBONDS: found 83723 intra-atom interactions NBONDS: found 83665 intra-atom interactions NBONDS: found 83670 intra-atom interactions NBONDS: found 83695 intra-atom interactions NBONDS: found 83730 intra-atom interactions NBONDS: found 83744 intra-atom interactions NBONDS: found 83763 intra-atom interactions NBONDS: found 83755 intra-atom interactions NBONDS: found 83726 intra-atom interactions NBONDS: found 83690 intra-atom interactions NBONDS: found 83675 intra-atom interactions NBONDS: found 83663 intra-atom interactions NBONDS: found 83659 intra-atom interactions NBONDS: found 83696 intra-atom interactions NBONDS: found 83743 intra-atom interactions NBONDS: found 83777 intra-atom interactions NBONDS: found 83797 intra-atom interactions NBONDS: found 83785 intra-atom interactions NBONDS: found 83732 intra-atom interactions NBONDS: found 83703 intra-atom interactions NBONDS: found 83665 intra-atom interactions NBONDS: found 83646 intra-atom interactions NBONDS: found 83632 intra-atom interactions NBONDS: found 83629 intra-atom interactions NBONDS: found 83677 intra-atom interactions NBONDS: found 83707 intra-atom interactions NBONDS: found 83716 intra-atom interactions NBONDS: found 83738 intra-atom interactions NBONDS: found 83770 intra-atom interactions NBONDS: found 83782 intra-atom interactions NBONDS: found 83772 intra-atom interactions NBONDS: found 83744 intra-atom interactions NBONDS: found 83716 intra-atom interactions NBONDS: found 83696 intra-atom interactions NBONDS: found 83648 intra-atom interactions NBONDS: found 83626 intra-atom interactions NBONDS: found 83643 intra-atom interactions NBONDS: found 83667 intra-atom interactions NBONDS: found 83694 intra-atom interactions NBONDS: found 83722 intra-atom interactions NBONDS: found 83725 intra-atom interactions NBONDS: found 83724 intra-atom interactions NBONDS: found 83692 intra-atom interactions NBONDS: found 83651 intra-atom interactions NBONDS: found 83670 intra-atom interactions NBONDS: found 83709 intra-atom interactions NBONDS: found 83738 intra-atom interactions NBONDS: found 83746 intra-atom interactions NBONDS: found 83716 intra-atom interactions NBONDS: found 83671 intra-atom interactions NBONDS: found 83668 intra-atom interactions NBONDS: found 83663 intra-atom interactions NBONDS: found 83673 intra-atom interactions NBONDS: found 83688 intra-atom interactions NBONDS: found 83701 intra-atom interactions NBONDS: found 83684 intra-atom interactions NBONDS: found 83669 intra-atom interactions NBONDS: found 83680 intra-atom interactions NBONDS: found 83678 intra-atom interactions NBONDS: found 83695 intra-atom interactions NBONDS: found 83676 intra-atom interactions NBONDS: found 83648 intra-atom interactions NBONDS: found 83660 intra-atom interactions NBONDS: found 83697 intra-atom interactions NBONDS: found 83737 intra-atom interactions NBONDS: found 83751 intra-atom interactions NBONDS: found 83719 intra-atom interactions NBONDS: found 83687 intra-atom interactions NBONDS: found 83670 intra-atom interactions NBONDS: found 83683 intra-atom interactions NBONDS: found 83684 intra-atom interactions NBONDS: found 83694 intra-atom interactions NBONDS: found 83715 intra-atom interactions NBONDS: found 83716 intra-atom interactions NBONDS: found 83684 intra-atom interactions NBONDS: found 83668 intra-atom interactions NBONDS: found 83642 intra-atom interactions NBONDS: found 83632 intra-atom interactions NBONDS: found 83643 intra-atom interactions NBONDS: found 83661 intra-atom interactions NBONDS: found 83675 intra-atom interactions NBONDS: found 83701 intra-atom interactions NBONDS: found 83720 intra-atom interactions NBONDS: found 83722 intra-atom interactions NBONDS: found 83707 intra-atom interactions NBONDS: found 83694 intra-atom interactions NBONDS: found 83694 intra-atom interactions NBONDS: found 83687 intra-atom interactions NBONDS: found 83671 intra-atom interactions NBONDS: found 83654 intra-atom interactions NBONDS: found 83649 intra-atom interactions NBONDS: found 83656 intra-atom interactions NBONDS: found 83650 intra-atom interactions NBONDS: found 83662 intra-atom interactions NBONDS: found 83671 intra-atom interactions NBONDS: found 83679 intra-atom interactions NBONDS: found 83699 intra-atom interactions NBONDS: found 83688 intra-atom interactions NBONDS: found 83684 intra-atom interactions NBONDS: found 83683 intra-atom interactions NBONDS: found 83685 intra-atom interactions NBONDS: found 83687 intra-atom interactions NBONDS: found 83705 intra-atom interactions NBONDS: found 83698 intra-atom interactions NBONDS: found 83676 intra-atom interactions NBONDS: found 83668 intra-atom interactions NBONDS: found 83652 intra-atom interactions NBONDS: found 83641 intra-atom interactions NBONDS: found 83645 intra-atom interactions NBONDS: found 83652 intra-atom interactions NBONDS: found 83644 intra-atom interactions NBONDS: found 83662 intra-atom interactions NBONDS: found 83692 intra-atom interactions NBONDS: found 83713 intra-atom interactions NBONDS: found 83717 intra-atom interactions NBONDS: found 83702 intra-atom interactions NBONDS: found 83682 intra-atom interactions NBONDS: found 83639 intra-atom interactions NBONDS: found 83628 intra-atom interactions NBONDS: found 83614 intra-atom interactions NBONDS: found 83614 intra-atom interactions NBONDS: found 83604 intra-atom interactions NBONDS: found 83603 intra-atom interactions NBONDS: found 83612 intra-atom interactions NBONDS: found 83611 intra-atom interactions NBONDS: found 83616 intra-atom interactions NBONDS: found 83669 intra-atom interactions NBONDS: found 83695 intra-atom interactions NBONDS: found 83723 intra-atom interactions NBONDS: found 83716 intra-atom interactions NBONDS: found 83722 intra-atom interactions NBONDS: found 83719 intra-atom interactions NBONDS: found 83702 intra-atom interactions NBONDS: found 83691 intra-atom interactions NBONDS: found 83677 intra-atom interactions NBONDS: found 83664 intra-atom interactions NBONDS: found 83641 intra-atom interactions NBONDS: found 83639 intra-atom interactions NBONDS: found 83642 intra-atom interactions NBONDS: found 83650 intra-atom interactions NBONDS: found 83665 intra-atom interactions NBONDS: found 83682 intra-atom interactions NBONDS: found 83703 intra-atom interactions NBONDS: found 83708 intra-atom interactions NBONDS: found 83726 intra-atom interactions NBONDS: found 83733 intra-atom interactions NBONDS: found 83715 intra-atom interactions NBONDS: found 83705 intra-atom interactions NBONDS: found 83686 intra-atom interactions NBONDS: found 83671 intra-atom interactions NBONDS: found 83638 intra-atom interactions NBONDS: found 83630 intra-atom interactions NBONDS: found 83619 intra-atom interactions NBONDS: found 83640 intra-atom interactions NBONDS: found 83640 intra-atom interactions NBONDS: found 83649 intra-atom interactions NBONDS: found 83659 intra-atom interactions NBONDS: found 83675 intra-atom interactions NBONDS: found 83704 intra-atom interactions NBONDS: found 83712 intra-atom interactions NBONDS: found 83704 intra-atom interactions NBONDS: found 83703 intra-atom interactions NBONDS: found 83668 intra-atom interactions NBONDS: found 83635 intra-atom interactions NBONDS: found 83633 intra-atom interactions NBONDS: found 83661 intra-atom interactions NBONDS: found 83680 intra-atom interactions NBONDS: found 83699 intra-atom interactions NBONDS: found 83741 intra-atom interactions NBONDS: found 83760 intra-atom interactions -------------------- final step= 500 at 0.25000 ps --------------------- | E(kin)+E(total)=21292.431 E(kin)=9569.440 temperature=4639.269 | | Etotal =11722.990 grad(E)=169.954 E(BOND)=8438.740 E(ANGL)=1193.254 | | E(DIHE)=14.764 E(IMPR)=1983.287 E(VDW )=92.946 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 0.76913 22.42605 -5.38314 velocity [A/ps] : 0.50417 1.91159 -2.37477 ang. mom. [amu A/ps] : -11224.57427 1177.20607 -7952.58744 kin. ener. [Kcal/mol] : 8.30100 CNSsolve> CNSsolve> {- some final minimisation -} CNSsolve> minimize powell POWELL> nstep=500 POWELL> drop=40.0 POWELL> nprint=50 POWELL> end POWELL: number of degrees of freedom= 2076 NBONDS: found 83748 intra-atom interactions NBONDS: found 83701 intra-atom interactions NBONDS: found 83704 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0000 ----------------------- | Etotal =2419.890 grad(E)=70.053 E(BOND)=69.274 E(ANGL)=1658.608 | | E(DIHE)=14.709 E(IMPR)=589.616 E(VDW )=87.683 | ------------------------------------------------------------------------------- POWELL: Line search terminated POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> print thres=0.02 bonds (atom-i |atom-j ) dist. equil. delta energy const. ( 47 NE | 47 HE ) 1.193 0.980 0.213 45.200 1000.000 ( 74 NE | 74 HE ) 1.126 0.980 0.146 21.417 1000.000 ( 78 NE | 78 HE ) 0.942 0.980 -0.038 1.451 1000.000 Number of violations greater 0.020: 3 RMS deviation= 0.010 CNSsolve> print thres=5. angles (atom-i |atom-j |atom-k ) angle equil. delta energy const. ( 47 CD | 47 NE | 47 HE ) 80.035 118.099 -38.063 220.669 500.000 ( 47 HE | 47 NE | 47 CZ ) 153.917 119.249 34.668 183.053 500.000 ( 74 CD | 74 NE | 74 HE ) 77.462 118.099 -40.636 251.508 500.000 ( 74 HE | 74 NE | 74 CZ ) 146.994 119.249 27.745 117.245 500.000 ( 78 CD | 78 NE | 78 HE ) 66.549 118.099 -51.549 404.737 500.000 ( 78 HE | 78 NE | 78 CZ ) 169.155 119.249 49.906 379.340 500.000 Number of violations greater 5.000: 6 RMS deviation= 2.622 CNSsolve> CNSsolve> end if CNSsolve> CNSsolve> fix selection=( none ) end SELRPN: 0 atoms have been selected out of 1385 CNSsolve> CNSsolve> end if CNSsolve> CNSsolve> set echo=false end SELRPN: 0 atoms have been selected out of 1385 SHOW: zero atoms selected NEXTCD: condition evaluated as true SELRPN: 0 atoms have been selected out of 1385 CNSsolve> CNSsolve> if (&set_bfactor=true) then NEXTCD: condition evaluated as false CNSsolve> do (b=&bfactor) ( all ) CNSsolve> else CNSsolve> show ave(b) (known and not(store1)) SELRPN: 693 atoms have been selected out of 1385 SHOW: average of selected elements = 0.000000 CNSsolve> do (b=$result) (store1 and (attr b < 0.01)) SELRPN: 692 atoms have been selected out of 1385 CNSsolve> end if CNSsolve> CNSsolve> if (&set_occupancy=true) then NEXTCD: condition evaluated as false CNSsolve> do (q=&occupancy) ( all ) CNSsolve> end if CNSsolve> CNSsolve> set echo=false end SELRPN: 692 atoms have been selected out of 1385 SHOW: sum over selected elements = 692.000000 NEXTCD: condition evaluated as false CNSsolve> CNSsolve> set remarks=reset end CNSsolve> CNSsolve> buffer message BUFFER> to=remarks BUFFER> dump BUFFER> end CNSsolve> CNSsolve> write coordinates output=&coordinate_outfile end ASSFIL: file 1xxx_15_cns.pdb opened. CNSsolve> CNSsolve>stop HEAP: maximum use = 969580 current use = 0 bytes HEAP: maximum overhead = 968 current overhead = 64 bytes ============================================================ Maximum dynamic memory allocation: 969580 bytes Maximum dynamic memory overhead: 968 bytes Program started at: 17:55:28 on 3-Mar-04 Program stopped at: 17:55:47 on 3-Mar-04 CPU time used: 19.2300 seconds ============================================================