============================================================ | | | Crystallography & NMR System (CNS) | | CNSsolve | | | ============================================================ Version: 1.1 Status: Developmental version ============================================================ Written by: A.T.Brunger, P.D.Adams, G.M.Clore, W.L.DeLano, P.Gros, R.W.Grosse-Kunstleve, J.-S.Jiang, J.Kuszewski, M.Nilges, N.S.Pannu, R.J.Read, L.M.Rice, T.Simonson, G.L.Warren. Copyright (c) 1997-1999 Yale University ============================================================ Running on machine: cesg-master.biochem.wisc.edu (Linux,32-bit) Program started by: volkman Program started at: 02:03:04 on 28-Dec-04 ============================================================ FFT3C: Using FFTPACK4.1 CNSsolve>define( DEFINE>{* selection of atoms other than hydrogens for which coordinates DEFINE> will be generated *} DEFINE>{* to generate coordinates for all unknown atoms use: (not(known)) *} DEFINE>{===>} atom_build=(not(known)); DEFINE>{============================= output files ================================} DEFINE> DEFINE>{* input coordinate file *} DEFINE>{===>} coordinate_infile="1xxx_19.pdb"; DEFINE> DEFINE>{* output coordinate file *} DEFINE>{===>} coordinate_outfile="1xxx_19_cns.pdb"; DEFINE>) CNSsolve> CNSsolve> checkversion 1.1 Program version= 1.1 File version= 1.1 CNSsolve> CNSsolve> evaluate ($log_level=verbose) Assuming literal string "VERBOSE" EVALUATE: symbol $LOG_LEVEL set to "VERBOSE" (string) CNSsolve> evaluate ($par_nonbonded="PROLSQ") EVALUATE: symbol $PAR_NONBONDED set to "PROLSQ" (string) CNSsolve> CNSsolve> !@generateProtonsJFD.inp CNSsolve> CNSsolve>{===========================================================================} CNSsolve>{ things below this line do not need to be changed } CNSsolve>{===========================================================================} CNSsolve> CNSsolve>remarks changed Tue Sep 2 09:48:07 CDT 2003 CNSsolve>remarks by jfd to include a fes residue CNSsolve> CNSsolve>!@generate_tmoc.inp CNSsolve> CNSsolve>topology reset end CNSsolve>structure reset end Status of internal molecular topology database: -> NATOM= 0(MAXA= 40000) NBOND= 0(MAXB= 40000) -> NTHETA= 0(MAXT= 80000) NGRP= 0(MAXGRP= 40000) -> NPHI= 0(MAXP= 80000) NIMPHI= 0(MAXIMP= 40000) -> NNB= 0(MAXNB= 40000) CNSsolve> CNSsolve>topology RTFRDR>{===>} @TOPPAR:topallhdg5.3.pro ASSFIL: file /u/volkman/waterrefine/toppar/topallhdg5.3.pro opened. RTFRDR>remark file topallhdg.pro version 5.3 date 23-Sept-02 RTFRDR>remark for file parallhdg.pro version 5.3 date 13-Feb-02 or later RTFRDR>remark Geometric energy function parameters for distance geometry and RTFRDR>remark simulated annealing. RTFRDR>remark Author: Michael Nilges, EMBL Heidelberg; Institut Pasteur, Paris RTFRDR>remark This file contains modifications from M. Williams, UCL London RTFRDR>remark Last modification 16-Sept-02 RTFRDR> RTFRDR>set echo off message off end RTFRDR>end CNSsolve> CNSsolve>! no chain id. CNSsolve>segment name=" " SEGMENT> chain CHAIN> @TOPPAR:topallhdg5.3.pep CHAIN>REMARKS TOPH19.pep -MACRO for protein sequence CHAIN>SET ECHO=FALSE END CHAIN> sequence SEQUENCE> @1xxx.seq SEQUENCE>MET SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =TRP SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =TRP SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =CYS SEQUence-element (terminate with END) = end SEGMNT: 102 residues were inserted into segment " " CHAIN> end SEGMENT>end Status of internal molecular topology database: -> NATOM= 1677(MAXA= 40000) NBOND= 1701(MAXB= 40000) -> NTHETA= 3064(MAXT= 80000) NGRP= 104(MAXGRP= 40000) -> NPHI= 2502(MAXP= 80000) NIMPHI= 926(MAXIMP= 40000) -> NNB= 648(MAXNB= 40000) CNSsolve> CNSsolve>! turn peptide from trans to cis CNSsolve>!patch CISP reference=nil=( resid 80 ) end CNSsolve> CNSsolve>coor @&coordinate_infile COOR>HEADER Structures from CYANA 28-12-2004 COOR>REMARK model 19 COOR>ATOM 3517 N MET A 1 1.325 0.000 0.000 1.00 0.00 %READC-ERR: atom 1 MET HN not found in molecular structure %READC-ERR: atom 1 MET 2HB not found in molecular structure %READC-ERR: atom 1 MET 3HB not found in molecular structure %READC-ERR: atom 1 MET QB not found in molecular structure %READC-ERR: atom 1 MET 2HG not found in molecular structure %READC-ERR: atom 1 MET 3HG not found in molecular structure %READC-ERR: atom 1 MET QG not found in molecular structure %READC-ERR: atom 1 MET QE not found in molecular structure %READC-ERR: atom 1 MET 1HE not found in molecular structure %READC-ERR: atom 1 MET 2HE not found in molecular structure %READC-ERR: atom 1 MET 3HE not found in molecular structure %READC-ERR: atom 2 ALA QB not found in molecular structure %READC-ERR: atom 2 ALA 1HB not found in molecular structure %READC-ERR: atom 2 ALA 2HB not found in molecular structure %READC-ERR: atom 2 ALA 3HB not found in molecular structure %READC-ERR: atom 3 ASP 2HB not found in molecular structure %READC-ERR: atom 3 ASP 3HB not found in molecular structure %READC-ERR: atom 3 ASP QB not found in molecular structure %READC-ERR: atom 4 THR QG2 not found in molecular structure %READC-ERR: atom 4 THR 1HG2 not found in molecular structure %READC-ERR: atom 4 THR 2HG2 not found in molecular structure %READC-ERR: atom 4 THR 3HG2 not found in molecular structure %READC-ERR: atom 5 GLY 1HA not found in molecular structure %READC-ERR: atom 5 GLY 2HA not found in molecular structure %READC-ERR: atom 5 GLY QA not found in molecular structure %READC-ERR: atom 6 GLU 2HB not found in molecular structure %READC-ERR: atom 6 GLU 3HB not found in molecular structure %READC-ERR: atom 6 GLU QB not found in molecular structure %READC-ERR: atom 6 GLU 2HG not found in molecular structure %READC-ERR: atom 6 GLU 3HG not found in molecular structure %READC-ERR: atom 6 GLU QG not found in molecular structure %READC-ERR: atom 7 VAL QG1 not found in molecular structure %READC-ERR: atom 7 VAL QG2 not found in molecular structure %READC-ERR: atom 7 VAL 1HG1 not found in molecular structure %READC-ERR: atom 7 VAL 2HG1 not found in molecular structure %READC-ERR: atom 7 VAL 3HG1 not found in molecular structure %READC-ERR: atom 7 VAL 1HG2 not found in molecular structure %READC-ERR: atom 7 VAL 2HG2 not found in molecular structure %READC-ERR: atom 7 VAL 3HG2 not found in molecular structure %READC-ERR: atom 7 VAL QQG not found in molecular structure %READC-ERR: atom 8 GLN 2HB not found in molecular structure %READC-ERR: atom 8 GLN 3HB not found in molecular structure %READC-ERR: atom 8 GLN QB not found in molecular structure %READC-ERR: atom 8 GLN 2HG not found in molecular structure %READC-ERR: atom 8 GLN 3HG not found in molecular structure %READC-ERR: atom 8 GLN QG not found in molecular structure %READC-ERR: atom 8 GLN 1HE2 not found in molecular structure %READC-ERR: atom 8 GLN 2HE2 not found in molecular structure %READC-ERR: atom 8 GLN QE2 not found in molecular structure %READC-ERR: atom 9 PHE 2HB not found in molecular structure %READC-ERR: atom 9 PHE 3HB not found in molecular structure %READC-ERR: atom 9 PHE QB not found in molecular structure %READC-ERR: atom 9 PHE QD not found in molecular structure %READC-ERR: atom 9 PHE QE not found in molecular structure %READC-ERR: atom 9 PHE QR not found in molecular structure %READC-ERR: atom 10 MET 2HB not found in molecular structure %READC-ERR: atom 10 MET 3HB not found in molecular structure %READC-ERR: atom 10 MET QB not found in molecular structure %READC-ERR: atom 10 MET 2HG not found in molecular structure %READC-ERR: atom 10 MET 3HG not found in molecular structure %READC-ERR: atom 10 MET QG not found in molecular structure %READC-ERR: atom 10 MET QE not found in molecular structure %READC-ERR: atom 10 MET 1HE not found in molecular structure %READC-ERR: atom 10 MET 2HE not found in molecular structure %READC-ERR: atom 10 MET 3HE not found in molecular structure %READC-ERR: atom 11 LYS 2HB not found in molecular structure %READC-ERR: atom 11 LYS 3HB not found in molecular structure %READC-ERR: atom 11 LYS QB not found in molecular structure %READC-ERR: atom 11 LYS 2HG not found in molecular structure %READC-ERR: atom 11 LYS 3HG not found in molecular structure %READC-ERR: atom 11 LYS QG not found in molecular structure %READC-ERR: atom 11 LYS 2HD not found in molecular structure %READC-ERR: atom 11 LYS 3HD not found in molecular structure %READC-ERR: atom 11 LYS QD not found in molecular structure %READC-ERR: atom 11 LYS 2HE not found in molecular structure %READC-ERR: atom 11 LYS 3HE not found in molecular structure %READC-ERR: atom 11 LYS QE not found in molecular structure %READC-ERR: atom 11 LYS 1HZ not found in molecular structure %READC-ERR: atom 11 LYS 2HZ not found in molecular structure %READC-ERR: atom 11 LYS 3HZ not found in molecular structure %READC-ERR: atom 11 LYS QZ not found in molecular structure %READC-ERR: atom 12 PRO 2HB not found in molecular structure %READC-ERR: atom 12 PRO 3HB not found in molecular structure %READC-ERR: atom 12 PRO QB not found in molecular structure %READC-ERR: atom 12 PRO 2HG not found in molecular structure %READC-ERR: atom 12 PRO 3HG not found in molecular structure %READC-ERR: atom 12 PRO QG not found in molecular structure %READC-ERR: atom 12 PRO 2HD not found in molecular structure %READC-ERR: atom 12 PRO 3HD not found in molecular structure %READC-ERR: atom 12 PRO QD not found in molecular structure %READC-ERR: atom 13 PHE 2HB not found in molecular structure %READC-ERR: atom 13 PHE 3HB not found in molecular structure %READC-ERR: atom 13 PHE QB not found in molecular structure %READC-ERR: atom 13 PHE QD not found in molecular structure %READC-ERR: atom 13 PHE QE not found in molecular structure %READC-ERR: atom 13 PHE QR not found in molecular structure %READC-ERR: atom 14 ILE QG2 not found in molecular structure %READC-ERR: atom 14 ILE 1HG2 not found in molecular structure %READC-ERR: atom 14 ILE 2HG2 not found in molecular structure %READC-ERR: atom 14 ILE 3HG2 not found in molecular structure %READC-ERR: atom 14 ILE 2HG1 not found in molecular structure %READC-ERR: atom 14 ILE 3HG1 not found in molecular structure %READC-ERR: atom 14 ILE QG1 not found in molecular structure %READC-ERR: atom 14 ILE QD1 not found in molecular structure %READC-ERR: atom 14 ILE 1HD1 not found in molecular structure %READC-ERR: atom 14 ILE 2HD1 not found in molecular structure %READC-ERR: atom 14 ILE 3HD1 not found in molecular structure %READC-ERR: atom 15 SER 2HB not found in molecular structure %READC-ERR: atom 15 SER 3HB not found in molecular structure %READC-ERR: atom 15 SER QB not found in molecular structure %READC-ERR: atom 16 GLU 2HB not found in molecular structure %READC-ERR: atom 16 GLU 3HB not found in molecular structure %READC-ERR: atom 16 GLU QB not found in molecular structure %READC-ERR: atom 16 GLU 2HG not found in molecular structure %READC-ERR: atom 16 GLU 3HG not found in molecular structure %READC-ERR: atom 16 GLU QG not found in molecular structure %READC-ERR: atom 17 LYS 2HB not found in molecular structure %READC-ERR: atom 17 LYS 3HB not found in molecular structure %READC-ERR: atom 17 LYS QB not found in molecular structure %READC-ERR: atom 17 LYS 2HG not found in molecular structure %READC-ERR: atom 17 LYS 3HG not found in molecular structure %READC-ERR: atom 17 LYS QG not found in molecular structure %READC-ERR: atom 17 LYS 2HD not found in molecular structure %READC-ERR: atom 17 LYS 3HD not found in molecular structure %READC-ERR: atom 17 LYS QD not found in molecular structure %READC-ERR: atom 17 LYS 2HE not found in molecular structure %READC-ERR: atom 17 LYS 3HE not found in molecular structure %READC-ERR: atom 17 LYS QE not found in molecular structure %READC-ERR: atom 17 LYS 1HZ not found in molecular structure %READC-ERR: atom 17 LYS 2HZ not found in molecular structure %READC-ERR: atom 17 LYS 3HZ not found in molecular structure %READC-ERR: atom 17 LYS QZ not found in molecular structure %READC-ERR: atom 18 SER 2HB not found in molecular structure %READC-ERR: atom 18 SER 3HB not found in molecular structure %READC-ERR: atom 18 SER QB not found in molecular structure %READC-ERR: atom 19 SER 2HB not found in molecular structure %READC-ERR: atom 19 SER 3HB not found in molecular structure %READC-ERR: atom 19 SER QB not found in molecular structure %READC-ERR: atom 20 LYS 2HB not found in molecular structure %READC-ERR: atom 20 LYS 3HB not found in molecular structure %READC-ERR: atom 20 LYS QB not found in molecular structure %READC-ERR: atom 20 LYS 2HG not found in molecular structure %READC-ERR: atom 20 LYS 3HG not found in molecular structure %READC-ERR: atom 20 LYS QG not found in molecular structure %READC-ERR: atom 20 LYS 2HD not found in molecular structure %READC-ERR: atom 20 LYS 3HD not found in molecular structure %READC-ERR: atom 20 LYS QD not found in molecular structure %READC-ERR: atom 20 LYS 2HE not found in molecular structure %READC-ERR: atom 20 LYS 3HE not found in molecular structure %READC-ERR: atom 20 LYS QE not found in molecular structure %READC-ERR: atom 20 LYS 1HZ not found in molecular structure %READC-ERR: atom 20 LYS 2HZ not found in molecular structure %READC-ERR: atom 20 LYS 3HZ not found in molecular structure %READC-ERR: atom 20 LYS QZ not found in molecular structure %READC-ERR: atom 21 SER 2HB not found in molecular structure %READC-ERR: atom 21 SER 3HB not found in molecular structure %READC-ERR: atom 21 SER QB not found in molecular structure %READC-ERR: atom 22 LEU 2HB not found in molecular structure %READC-ERR: atom 22 LEU 3HB not found in molecular structure %READC-ERR: atom 22 LEU QB not found in molecular structure %READC-ERR: atom 22 LEU QD1 not found in molecular structure %READC-ERR: atom 22 LEU QD2 not found in molecular structure %READC-ERR: atom 22 LEU 1HD1 not found in molecular structure %READC-ERR: atom 22 LEU 2HD1 not found in molecular structure %READC-ERR: atom 22 LEU 3HD1 not found in molecular structure %READC-ERR: atom 22 LEU 1HD2 not found in molecular structure %READC-ERR: atom 22 LEU 2HD2 not found in molecular structure %READC-ERR: atom 22 LEU 3HD2 not found in molecular structure %READC-ERR: atom 22 LEU QQD not found in molecular structure %READC-ERR: atom 23 GLU 2HB not found in molecular structure %READC-ERR: atom 23 GLU 3HB not found in molecular structure %READC-ERR: atom 23 GLU QB not found in molecular structure %READC-ERR: atom 23 GLU 2HG not found in molecular structure %READC-ERR: atom 23 GLU 3HG not found in molecular structure %READC-ERR: atom 23 GLU QG not found in molecular structure %READC-ERR: atom 24 ILE QG2 not found in molecular structure %READC-ERR: atom 24 ILE 1HG2 not found in molecular structure %READC-ERR: atom 24 ILE 2HG2 not found in molecular structure %READC-ERR: atom 24 ILE 3HG2 not found in molecular structure %READC-ERR: atom 24 ILE 2HG1 not found in molecular structure %READC-ERR: atom 24 ILE 3HG1 not found in molecular structure %READC-ERR: atom 24 ILE QG1 not found in molecular structure %READC-ERR: atom 24 ILE QD1 not found in molecular structure %READC-ERR: atom 24 ILE 1HD1 not found in molecular structure %READC-ERR: atom 24 ILE 2HD1 not found in molecular structure %READC-ERR: atom 24 ILE 3HD1 not found in molecular structure %READC-ERR: atom 25 PRO 2HB not found in molecular structure %READC-ERR: atom 25 PRO 3HB not found in molecular structure %READC-ERR: atom 25 PRO QB not found in molecular structure %READC-ERR: atom 25 PRO 2HG not found in molecular structure %READC-ERR: atom 25 PRO 3HG not found in molecular structure %READC-ERR: atom 25 PRO QG not found in molecular structure %READC-ERR: atom 25 PRO 2HD not found in molecular structure %READC-ERR: atom 25 PRO 3HD not found in molecular structure %READC-ERR: atom 25 PRO QD not found in molecular structure %READC-ERR: atom 26 LEU 2HB not found in molecular structure %READC-ERR: atom 26 LEU 3HB not found in molecular structure %READC-ERR: atom 26 LEU QB not found in molecular structure %READC-ERR: atom 26 LEU QD1 not found in molecular structure %READC-ERR: atom 26 LEU QD2 not found in molecular structure %READC-ERR: atom 26 LEU 1HD1 not found in molecular structure %READC-ERR: atom 26 LEU 2HD1 not found in molecular structure %READC-ERR: atom 26 LEU 3HD1 not found in molecular structure %READC-ERR: atom 26 LEU 1HD2 not found in molecular structure %READC-ERR: atom 26 LEU 2HD2 not found in molecular structure %READC-ERR: atom 26 LEU 3HD2 not found in molecular structure %READC-ERR: atom 26 LEU QQD not found in molecular structure %READC-ERR: atom 27 GLY 1HA not found in molecular structure %READC-ERR: atom 27 GLY 2HA not found in molecular structure %READC-ERR: atom 27 GLY QA not found in molecular structure %READC-ERR: atom 28 PHE 2HB not found in molecular structure %READC-ERR: atom 28 PHE 3HB not found in molecular structure %READC-ERR: atom 28 PHE QB not found in molecular structure %READC-ERR: atom 28 PHE QD not found in molecular structure %READC-ERR: atom 28 PHE QE not found in molecular structure %READC-ERR: atom 28 PHE QR not found in molecular structure %READC-ERR: atom 29 ASN 2HB not found in molecular structure %READC-ERR: atom 29 ASN 3HB not found in molecular structure %READC-ERR: atom 29 ASN QB not found in molecular structure %READC-ERR: atom 29 ASN 1HD2 not found in molecular structure %READC-ERR: atom 29 ASN 2HD2 not found in molecular structure %READC-ERR: atom 29 ASN QD2 not found in molecular structure %READC-ERR: atom 30 GLU 2HB not found in molecular structure %READC-ERR: atom 30 GLU 3HB not found in molecular structure %READC-ERR: atom 30 GLU QB not found in molecular structure %READC-ERR: atom 30 GLU 2HG not found in molecular structure %READC-ERR: atom 30 GLU 3HG not found in molecular structure %READC-ERR: atom 30 GLU QG not found in molecular structure %READC-ERR: atom 31 TYR 2HB not found in molecular structure %READC-ERR: atom 31 TYR 3HB not found in molecular structure %READC-ERR: atom 31 TYR QB not found in molecular structure %READC-ERR: atom 31 TYR QD not found in molecular structure %READC-ERR: atom 31 TYR QE not found in molecular structure %READC-ERR: atom 31 TYR QR not found in molecular structure %READC-ERR: atom 32 PHE 2HB not found in molecular structure %READC-ERR: atom 32 PHE 3HB not found in molecular structure %READC-ERR: atom 32 PHE QB not found in molecular structure %READC-ERR: atom 32 PHE QD not found in molecular structure %READC-ERR: atom 32 PHE QE not found in molecular structure %READC-ERR: atom 32 PHE QR not found in molecular structure %READC-ERR: atom 33 PRO 2HB not found in molecular structure %READC-ERR: atom 33 PRO 3HB not found in molecular structure %READC-ERR: atom 33 PRO QB not found in molecular structure %READC-ERR: atom 33 PRO 2HG not found in molecular structure %READC-ERR: atom 33 PRO 3HG not found in molecular structure %READC-ERR: atom 33 PRO QG not found in molecular structure %READC-ERR: atom 33 PRO 2HD not found in molecular structure %READC-ERR: atom 33 PRO 3HD not found in molecular structure %READC-ERR: atom 33 PRO QD not found in molecular structure %READC-ERR: atom 34 ALA QB not found in molecular structure %READC-ERR: atom 34 ALA 1HB not found in molecular structure %READC-ERR: atom 34 ALA 2HB not found in molecular structure %READC-ERR: atom 34 ALA 3HB not found in molecular structure %READC-ERR: atom 35 PRO 2HB not found in molecular structure %READC-ERR: atom 35 PRO 3HB not found in molecular structure %READC-ERR: atom 35 PRO QB not found in molecular structure %READC-ERR: atom 35 PRO 2HG not found in molecular structure %READC-ERR: atom 35 PRO 3HG not found in molecular structure %READC-ERR: atom 35 PRO QG not found in molecular structure %READC-ERR: atom 35 PRO 2HD not found in molecular structure %READC-ERR: atom 35 PRO 3HD not found in molecular structure %READC-ERR: atom 35 PRO QD not found in molecular structure %READC-ERR: atom 36 PHE 2HB not found in molecular structure %READC-ERR: atom 36 PHE 3HB not found in molecular structure %READC-ERR: atom 36 PHE QB not found in molecular structure %READC-ERR: atom 36 PHE QD not found in molecular structure %READC-ERR: atom 36 PHE QE not found in molecular structure %READC-ERR: atom 36 PHE QR not found in molecular structure %READC-ERR: atom 37 PRO 2HB not found in molecular structure %READC-ERR: atom 37 PRO 3HB not found in molecular structure %READC-ERR: atom 37 PRO QB not found in molecular structure %READC-ERR: atom 37 PRO 2HG not found in molecular structure %READC-ERR: atom 37 PRO 3HG not found in molecular structure %READC-ERR: atom 37 PRO QG not found in molecular structure %READC-ERR: atom 37 PRO 2HD not found in molecular structure %READC-ERR: atom 37 PRO 3HD not found in molecular structure %READC-ERR: atom 37 PRO QD not found in molecular structure %READC-ERR: atom 38 ILE QG2 not found in molecular structure %READC-ERR: atom 38 ILE 1HG2 not found in molecular structure %READC-ERR: atom 38 ILE 2HG2 not found in molecular structure %READC-ERR: atom 38 ILE 3HG2 not found in molecular structure %READC-ERR: atom 38 ILE 2HG1 not found in molecular structure %READC-ERR: atom 38 ILE 3HG1 not found in molecular structure %READC-ERR: atom 38 ILE QG1 not found in molecular structure %READC-ERR: atom 38 ILE QD1 not found in molecular structure %READC-ERR: atom 38 ILE 1HD1 not found in molecular structure %READC-ERR: atom 38 ILE 2HD1 not found in molecular structure %READC-ERR: atom 38 ILE 3HD1 not found in molecular structure %READC-ERR: atom 39 THR QG2 not found in molecular structure %READC-ERR: atom 39 THR 1HG2 not found in molecular structure %READC-ERR: atom 39 THR 2HG2 not found in molecular structure %READC-ERR: atom 39 THR 3HG2 not found in molecular structure %READC-ERR: atom 40 VAL QG1 not found in molecular structure %READC-ERR: atom 40 VAL QG2 not found in molecular structure %READC-ERR: atom 40 VAL 1HG1 not found in molecular structure %READC-ERR: atom 40 VAL 2HG1 not found in molecular structure %READC-ERR: atom 40 VAL 3HG1 not found in molecular structure %READC-ERR: atom 40 VAL 1HG2 not found in molecular structure %READC-ERR: atom 40 VAL 2HG2 not found in molecular structure %READC-ERR: atom 40 VAL 3HG2 not found in molecular structure %READC-ERR: atom 40 VAL QQG not found in molecular structure %READC-ERR: atom 41 ASP 2HB not found in molecular structure %READC-ERR: atom 41 ASP 3HB not found in molecular structure %READC-ERR: atom 41 ASP QB not found in molecular structure %READC-ERR: atom 42 LEU 2HB not found in molecular structure %READC-ERR: atom 42 LEU 3HB not found in molecular structure %READC-ERR: atom 42 LEU QB not found in molecular structure %READC-ERR: atom 42 LEU QD1 not found in molecular structure %READC-ERR: atom 42 LEU QD2 not found in molecular structure %READC-ERR: atom 42 LEU 1HD1 not found in molecular structure %READC-ERR: atom 42 LEU 2HD1 not found in molecular structure %READC-ERR: atom 42 LEU 3HD1 not found in molecular structure %READC-ERR: atom 42 LEU 1HD2 not found in molecular structure %READC-ERR: atom 42 LEU 2HD2 not found in molecular structure %READC-ERR: atom 42 LEU 3HD2 not found in molecular structure %READC-ERR: atom 42 LEU QQD not found in molecular structure %READC-ERR: atom 43 LEU 2HB not found in molecular structure %READC-ERR: atom 43 LEU 3HB not found in molecular structure %READC-ERR: atom 43 LEU QB not found in molecular structure %READC-ERR: atom 43 LEU QD1 not found in molecular structure %READC-ERR: atom 43 LEU QD2 not found in molecular structure %READC-ERR: atom 43 LEU 1HD1 not found in molecular structure %READC-ERR: atom 43 LEU 2HD1 not found in molecular structure %READC-ERR: atom 43 LEU 3HD1 not found in molecular structure %READC-ERR: atom 43 LEU 1HD2 not found in molecular structure %READC-ERR: atom 43 LEU 2HD2 not found in molecular structure %READC-ERR: atom 43 LEU 3HD2 not found in molecular structure %READC-ERR: atom 43 LEU QQD not found in molecular structure %READC-ERR: atom 44 ASP 2HB not found in molecular structure %READC-ERR: atom 44 ASP 3HB not found in molecular structure %READC-ERR: atom 44 ASP QB not found in molecular structure %READC-ERR: atom 45 TYR 2HB not found in molecular structure %READC-ERR: atom 45 TYR 3HB not found in molecular structure %READC-ERR: atom 45 TYR QB not found in molecular structure %READC-ERR: atom 45 TYR QD not found in molecular structure %READC-ERR: atom 45 TYR QE not found in molecular structure %READC-ERR: atom 45 TYR QR not found in molecular structure %READC-ERR: atom 46 SER 2HB not found in molecular structure %READC-ERR: atom 46 SER 3HB not found in molecular structure %READC-ERR: atom 46 SER QB not found in molecular structure %READC-ERR: atom 47 GLY 1HA not found in molecular structure %READC-ERR: atom 47 GLY 2HA not found in molecular structure %READC-ERR: atom 47 GLY QA not found in molecular structure %READC-ERR: atom 48 ARG 2HB not found in molecular structure %READC-ERR: atom 48 ARG 3HB not found in molecular structure %READC-ERR: atom 48 ARG QB not found in molecular structure %READC-ERR: atom 48 ARG 2HG not found in molecular structure %READC-ERR: atom 48 ARG 3HG not found in molecular structure %READC-ERR: atom 48 ARG QG not found in molecular structure %READC-ERR: atom 48 ARG 2HD not found in molecular structure %READC-ERR: atom 48 ARG 3HD not found in molecular structure %READC-ERR: atom 48 ARG QD not found in molecular structure %READC-ERR: atom 48 ARG 1HH1 not found in molecular structure %READC-ERR: atom 48 ARG 2HH1 not found in molecular structure %READC-ERR: atom 48 ARG QH1 not found in molecular structure %READC-ERR: atom 48 ARG 1HH2 not found in molecular structure %READC-ERR: atom 48 ARG 2HH2 not found in molecular structure %READC-ERR: atom 48 ARG QH2 not found in molecular structure %READC-ERR: atom 49 SER 2HB not found in molecular structure %READC-ERR: atom 49 SER 3HB not found in molecular structure %READC-ERR: atom 49 SER QB not found in molecular structure %READC-ERR: atom 50 TRP 2HB not found in molecular structure %READC-ERR: atom 50 TRP 3HB not found in molecular structure %READC-ERR: atom 50 TRP QB not found in molecular structure %READC-ERR: atom 51 THR QG2 not found in molecular structure %READC-ERR: atom 51 THR 1HG2 not found in molecular structure %READC-ERR: atom 51 THR 2HG2 not found in molecular structure %READC-ERR: atom 51 THR 3HG2 not found in molecular structure %READC-ERR: atom 52 VAL QG1 not found in molecular structure %READC-ERR: atom 52 VAL QG2 not found in molecular structure %READC-ERR: atom 52 VAL 1HG1 not found in molecular structure %READC-ERR: atom 52 VAL 2HG1 not found in molecular structure %READC-ERR: atom 52 VAL 3HG1 not found in molecular structure %READC-ERR: atom 52 VAL 1HG2 not found in molecular structure %READC-ERR: atom 52 VAL 2HG2 not found in molecular structure %READC-ERR: atom 52 VAL 3HG2 not found in molecular structure %READC-ERR: atom 52 VAL QQG not found in molecular structure %READC-ERR: atom 53 ARG 2HB not found in molecular structure %READC-ERR: atom 53 ARG 3HB not found in molecular structure %READC-ERR: atom 53 ARG QB not found in molecular structure %READC-ERR: atom 53 ARG 2HG not found in molecular structure %READC-ERR: atom 53 ARG 3HG not found in molecular structure %READC-ERR: atom 53 ARG QG not found in molecular structure %READC-ERR: atom 53 ARG 2HD not found in molecular structure %READC-ERR: atom 53 ARG 3HD not found in molecular structure %READC-ERR: atom 53 ARG QD not found in molecular structure %READC-ERR: atom 53 ARG 1HH1 not found in molecular structure %READC-ERR: atom 53 ARG 2HH1 not found in molecular structure %READC-ERR: atom 53 ARG QH1 not found in molecular structure %READC-ERR: atom 53 ARG 1HH2 not found in molecular structure %READC-ERR: atom 53 ARG 2HH2 not found in molecular structure %READC-ERR: atom 53 ARG QH2 not found in molecular structure %READC-ERR: atom 54 MET 2HB not found in molecular structure %READC-ERR: atom 54 MET 3HB not found in molecular structure %READC-ERR: atom 54 MET QB not found in molecular structure %READC-ERR: atom 54 MET 2HG not found in molecular structure %READC-ERR: atom 54 MET 3HG not found in molecular structure %READC-ERR: atom 54 MET QG not found in molecular structure %READC-ERR: atom 54 MET QE not found in molecular structure %READC-ERR: atom 54 MET 1HE not found in molecular structure %READC-ERR: atom 54 MET 2HE not found in molecular structure %READC-ERR: atom 54 MET 3HE not found in molecular structure %READC-ERR: atom 55 LYS 2HB not found in molecular structure %READC-ERR: atom 55 LYS 3HB not found in molecular structure %READC-ERR: atom 55 LYS QB not found in molecular structure %READC-ERR: atom 55 LYS 2HG not found in molecular structure %READC-ERR: atom 55 LYS 3HG not found in molecular structure %READC-ERR: atom 55 LYS QG not found in molecular structure %READC-ERR: atom 55 LYS 2HD not found in molecular structure %READC-ERR: atom 55 LYS 3HD not found in molecular structure %READC-ERR: atom 55 LYS QD not found in molecular structure %READC-ERR: atom 55 LYS 2HE not found in molecular structure %READC-ERR: atom 55 LYS 3HE not found in molecular structure %READC-ERR: atom 55 LYS QE not found in molecular structure %READC-ERR: atom 55 LYS 1HZ not found in molecular structure %READC-ERR: atom 55 LYS 2HZ not found in molecular structure %READC-ERR: atom 55 LYS 3HZ not found in molecular structure %READC-ERR: atom 55 LYS QZ not found in molecular structure %READC-ERR: atom 56 LYS 2HB not found in molecular structure %READC-ERR: atom 56 LYS 3HB not found in molecular structure %READC-ERR: atom 56 LYS QB not found in molecular structure %READC-ERR: atom 56 LYS 2HG not found in molecular structure %READC-ERR: atom 56 LYS 3HG not found in molecular structure %READC-ERR: atom 56 LYS QG not found in molecular structure %READC-ERR: atom 56 LYS 2HD not found in molecular structure %READC-ERR: atom 56 LYS 3HD not found in molecular structure %READC-ERR: atom 56 LYS QD not found in molecular structure %READC-ERR: atom 56 LYS 2HE not found in molecular structure %READC-ERR: atom 56 LYS 3HE not found in molecular structure %READC-ERR: atom 56 LYS QE not found in molecular structure %READC-ERR: atom 56 LYS 1HZ not found in molecular structure %READC-ERR: atom 56 LYS 2HZ not found in molecular structure %READC-ERR: atom 56 LYS 3HZ not found in molecular structure %READC-ERR: atom 56 LYS QZ not found in molecular structure %READC-ERR: atom 57 ARG 2HB not found in molecular structure %READC-ERR: atom 57 ARG 3HB not found in molecular structure %READC-ERR: atom 57 ARG QB not found in molecular structure %READC-ERR: atom 57 ARG 2HG not found in molecular structure %READC-ERR: atom 57 ARG 3HG not found in molecular structure %READC-ERR: atom 57 ARG QG not found in molecular structure %READC-ERR: atom 57 ARG 2HD not found in molecular structure %READC-ERR: atom 57 ARG 3HD not found in molecular structure %READC-ERR: atom 57 ARG QD not found in molecular structure %READC-ERR: atom 57 ARG 1HH1 not found in molecular structure %READC-ERR: atom 57 ARG 2HH1 not found in molecular structure %READC-ERR: atom 57 ARG QH1 not found in molecular structure %READC-ERR: atom 57 ARG 1HH2 not found in molecular structure %READC-ERR: atom 57 ARG 2HH2 not found in molecular structure %READC-ERR: atom 57 ARG QH2 not found in molecular structure %READC-ERR: atom 58 GLY 1HA not found in molecular structure %READC-ERR: atom 58 GLY 2HA not found in molecular structure %READC-ERR: atom 58 GLY QA not found in molecular structure %READC-ERR: atom 59 GLU 2HB not found in molecular structure %READC-ERR: atom 59 GLU 3HB not found in molecular structure %READC-ERR: atom 59 GLU QB not found in molecular structure %READC-ERR: atom 59 GLU 2HG not found in molecular structure %READC-ERR: atom 59 GLU 3HG not found in molecular structure %READC-ERR: atom 59 GLU QG not found in molecular structure %READC-ERR: atom 60 LYS 2HB not found in molecular structure %READC-ERR: atom 60 LYS 3HB not found in molecular structure %READC-ERR: atom 60 LYS QB not found in molecular structure %READC-ERR: atom 60 LYS 2HG not found in molecular structure %READC-ERR: atom 60 LYS 3HG not found in molecular structure %READC-ERR: atom 60 LYS QG not found in molecular structure %READC-ERR: atom 60 LYS 2HD not found in molecular structure %READC-ERR: atom 60 LYS 3HD not found in molecular structure %READC-ERR: atom 60 LYS QD not found in molecular structure %READC-ERR: atom 60 LYS 2HE not found in molecular structure %READC-ERR: atom 60 LYS 3HE not found in molecular structure %READC-ERR: atom 60 LYS QE not found in molecular structure %READC-ERR: atom 60 LYS 1HZ not found in molecular structure %READC-ERR: atom 60 LYS 2HZ not found in molecular structure %READC-ERR: atom 60 LYS 3HZ not found in molecular structure %READC-ERR: atom 60 LYS QZ not found in molecular structure %READC-ERR: atom 61 VAL QG1 not found in molecular structure %READC-ERR: atom 61 VAL QG2 not found in molecular structure %READC-ERR: atom 61 VAL 1HG1 not found in molecular structure %READC-ERR: atom 61 VAL 2HG1 not found in molecular structure %READC-ERR: atom 61 VAL 3HG1 not found in molecular structure %READC-ERR: atom 61 VAL 1HG2 not found in molecular structure %READC-ERR: atom 61 VAL 2HG2 not found in molecular structure %READC-ERR: atom 61 VAL 3HG2 not found in molecular structure %READC-ERR: atom 61 VAL QQG not found in molecular structure %READC-ERR: atom 62 PHE 2HB not found in molecular structure %READC-ERR: atom 62 PHE 3HB not found in molecular structure %READC-ERR: atom 62 PHE QB not found in molecular structure %READC-ERR: atom 62 PHE QD not found in molecular structure %READC-ERR: atom 62 PHE QE not found in molecular structure %READC-ERR: atom 62 PHE QR not found in molecular structure %READC-ERR: atom 63 LEU 2HB not found in molecular structure %READC-ERR: atom 63 LEU 3HB not found in molecular structure %READC-ERR: atom 63 LEU QB not found in molecular structure %READC-ERR: atom 63 LEU QD1 not found in molecular structure %READC-ERR: atom 63 LEU QD2 not found in molecular structure %READC-ERR: atom 63 LEU 1HD1 not found in molecular structure %READC-ERR: atom 63 LEU 2HD1 not found in molecular structure %READC-ERR: atom 63 LEU 3HD1 not found in molecular structure %READC-ERR: atom 63 LEU 1HD2 not found in molecular structure %READC-ERR: atom 63 LEU 2HD2 not found in molecular structure %READC-ERR: atom 63 LEU 3HD2 not found in molecular structure %READC-ERR: atom 63 LEU QQD not found in molecular structure %READC-ERR: atom 64 THR QG2 not found in molecular structure %READC-ERR: atom 64 THR 1HG2 not found in molecular structure %READC-ERR: atom 64 THR 2HG2 not found in molecular structure %READC-ERR: atom 64 THR 3HG2 not found in molecular structure %READC-ERR: atom 65 VAL QG1 not found in molecular structure %READC-ERR: atom 65 VAL QG2 not found in molecular structure %READC-ERR: atom 65 VAL 1HG1 not found in molecular structure %READC-ERR: atom 65 VAL 2HG1 not found in molecular structure %READC-ERR: atom 65 VAL 3HG1 not found in molecular structure %READC-ERR: atom 65 VAL 1HG2 not found in molecular structure %READC-ERR: atom 65 VAL 2HG2 not found in molecular structure %READC-ERR: atom 65 VAL 3HG2 not found in molecular structure %READC-ERR: atom 65 VAL QQG not found in molecular structure %READC-ERR: atom 66 GLY 1HA not found in molecular structure %READC-ERR: atom 66 GLY 2HA not found in molecular structure %READC-ERR: atom 66 GLY QA not found in molecular structure %READC-ERR: atom 67 TRP 2HB not found in molecular structure %READC-ERR: atom 67 TRP 3HB not found in molecular structure %READC-ERR: atom 67 TRP QB not found in molecular structure %READC-ERR: atom 68 GLU 2HB not found in molecular structure %READC-ERR: atom 68 GLU 3HB not found in molecular structure %READC-ERR: atom 68 GLU QB not found in molecular structure %READC-ERR: atom 68 GLU 2HG not found in molecular structure %READC-ERR: atom 68 GLU 3HG not found in molecular structure %READC-ERR: atom 68 GLU QG not found in molecular structure %READC-ERR: atom 69 ASN 2HB not found in molecular structure %READC-ERR: atom 69 ASN 3HB not found in molecular structure %READC-ERR: atom 69 ASN QB not found in molecular structure %READC-ERR: atom 69 ASN 1HD2 not found in molecular structure %READC-ERR: atom 69 ASN 2HD2 not found in molecular structure %READC-ERR: atom 69 ASN QD2 not found in molecular structure %READC-ERR: atom 70 PHE 2HB not found in molecular structure %READC-ERR: atom 70 PHE 3HB not found in molecular structure %READC-ERR: atom 70 PHE QB not found in molecular structure %READC-ERR: atom 70 PHE QD not found in molecular structure %READC-ERR: atom 70 PHE QE not found in molecular structure %READC-ERR: atom 70 PHE QR not found in molecular structure %READC-ERR: atom 71 VAL QG1 not found in molecular structure %READC-ERR: atom 71 VAL QG2 not found in molecular structure %READC-ERR: atom 71 VAL 1HG1 not found in molecular structure %READC-ERR: atom 71 VAL 2HG1 not found in molecular structure %READC-ERR: atom 71 VAL 3HG1 not found in molecular structure %READC-ERR: atom 71 VAL 1HG2 not found in molecular structure %READC-ERR: atom 71 VAL 2HG2 not found in molecular structure %READC-ERR: atom 71 VAL 3HG2 not found in molecular structure %READC-ERR: atom 71 VAL QQG not found in molecular structure %READC-ERR: atom 72 LYS 2HB not found in molecular structure %READC-ERR: atom 72 LYS 3HB not found in molecular structure %READC-ERR: atom 72 LYS QB not found in molecular structure %READC-ERR: atom 72 LYS 2HG not found in molecular structure %READC-ERR: atom 72 LYS 3HG not found in molecular structure %READC-ERR: atom 72 LYS QG not found in molecular structure %READC-ERR: atom 72 LYS 2HD not found in molecular structure %READC-ERR: atom 72 LYS 3HD not found in molecular structure %READC-ERR: atom 72 LYS QD not found in molecular structure %READC-ERR: atom 72 LYS 2HE not found in molecular structure %READC-ERR: atom 72 LYS 3HE not found in molecular structure %READC-ERR: atom 72 LYS QE not found in molecular structure %READC-ERR: atom 72 LYS 1HZ not found in molecular structure %READC-ERR: atom 72 LYS 2HZ not found in molecular structure %READC-ERR: atom 72 LYS 3HZ not found in molecular structure %READC-ERR: atom 72 LYS QZ not found in molecular structure %READC-ERR: atom 73 ASP 2HB not found in molecular structure %READC-ERR: atom 73 ASP 3HB not found in molecular structure %READC-ERR: atom 73 ASP QB not found in molecular structure %READC-ERR: atom 74 ASN 2HB not found in molecular structure %READC-ERR: atom 74 ASN 3HB not found in molecular structure %READC-ERR: atom 74 ASN QB not found in molecular structure %READC-ERR: atom 74 ASN 1HD2 not found in molecular structure %READC-ERR: atom 74 ASN 2HD2 not found in molecular structure %READC-ERR: atom 74 ASN QD2 not found in molecular structure %READC-ERR: atom 75 ASN 2HB not found in molecular structure %READC-ERR: atom 75 ASN 3HB not found in molecular structure %READC-ERR: atom 75 ASN QB not found in molecular structure %READC-ERR: atom 75 ASN 1HD2 not found in molecular structure %READC-ERR: atom 75 ASN 2HD2 not found in molecular structure %READC-ERR: atom 75 ASN QD2 not found in molecular structure %READC-ERR: atom 76 LEU 2HB not found in molecular structure %READC-ERR: atom 76 LEU 3HB not found in molecular structure %READC-ERR: atom 76 LEU QB not found in molecular structure %READC-ERR: atom 76 LEU QD1 not found in molecular structure %READC-ERR: atom 76 LEU QD2 not found in molecular structure %READC-ERR: atom 76 LEU 1HD1 not found in molecular structure %READC-ERR: atom 76 LEU 2HD1 not found in molecular structure %READC-ERR: atom 76 LEU 3HD1 not found in molecular structure %READC-ERR: atom 76 LEU 1HD2 not found in molecular structure %READC-ERR: atom 76 LEU 2HD2 not found in molecular structure %READC-ERR: atom 76 LEU 3HD2 not found in molecular structure %READC-ERR: atom 76 LEU QQD not found in molecular structure %READC-ERR: atom 77 GLU 2HB not found in molecular structure %READC-ERR: atom 77 GLU 3HB not found in molecular structure %READC-ERR: atom 77 GLU QB not found in molecular structure %READC-ERR: atom 77 GLU 2HG not found in molecular structure %READC-ERR: atom 77 GLU 3HG not found in molecular structure %READC-ERR: atom 77 GLU QG not found in molecular structure %READC-ERR: atom 78 ASP 2HB not found in molecular structure %READC-ERR: atom 78 ASP 3HB not found in molecular structure %READC-ERR: atom 78 ASP QB not found in molecular structure %READC-ERR: atom 79 GLY 1HA not found in molecular structure %READC-ERR: atom 79 GLY 2HA not found in molecular structure %READC-ERR: atom 79 GLY QA not found in molecular structure %READC-ERR: atom 80 LYS 2HB not found in molecular structure %READC-ERR: atom 80 LYS 3HB not found in molecular structure %READC-ERR: atom 80 LYS QB not found in molecular structure %READC-ERR: atom 80 LYS 2HG not found in molecular structure %READC-ERR: atom 80 LYS 3HG not found in molecular structure %READC-ERR: atom 80 LYS QG not found in molecular structure %READC-ERR: atom 80 LYS 2HD not found in molecular structure %READC-ERR: atom 80 LYS 3HD not found in molecular structure %READC-ERR: atom 80 LYS QD not found in molecular structure %READC-ERR: atom 80 LYS 2HE not found in molecular structure %READC-ERR: atom 80 LYS 3HE not found in molecular structure %READC-ERR: atom 80 LYS QE not found in molecular structure %READC-ERR: atom 80 LYS 1HZ not found in molecular structure %READC-ERR: atom 80 LYS 2HZ not found in molecular structure %READC-ERR: atom 80 LYS 3HZ not found in molecular structure %READC-ERR: atom 80 LYS QZ not found in molecular structure %READC-ERR: atom 81 TYR 2HB not found in molecular structure %READC-ERR: atom 81 TYR 3HB not found in molecular structure %READC-ERR: atom 81 TYR QB not found in molecular structure %READC-ERR: atom 81 TYR QD not found in molecular structure %READC-ERR: atom 81 TYR QE not found in molecular structure %READC-ERR: atom 81 TYR QR not found in molecular structure %READC-ERR: atom 82 LEU 2HB not found in molecular structure %READC-ERR: atom 82 LEU 3HB not found in molecular structure %READC-ERR: atom 82 LEU QB not found in molecular structure %READC-ERR: atom 82 LEU QD1 not found in molecular structure %READC-ERR: atom 82 LEU QD2 not found in molecular structure %READC-ERR: atom 82 LEU 1HD1 not found in molecular structure %READC-ERR: atom 82 LEU 2HD1 not found in molecular structure %READC-ERR: atom 82 LEU 3HD1 not found in molecular structure %READC-ERR: atom 82 LEU 1HD2 not found in molecular structure %READC-ERR: atom 82 LEU 2HD2 not found in molecular structure %READC-ERR: atom 82 LEU 3HD2 not found in molecular structure %READC-ERR: atom 82 LEU QQD not found in molecular structure %READC-ERR: atom 83 GLN 2HB not found in molecular structure %READC-ERR: atom 83 GLN 3HB not found in molecular structure %READC-ERR: atom 83 GLN QB not found in molecular structure %READC-ERR: atom 83 GLN 2HG not found in molecular structure %READC-ERR: atom 83 GLN 3HG not found in molecular structure %READC-ERR: atom 83 GLN QG not found in molecular structure %READC-ERR: atom 83 GLN 1HE2 not found in molecular structure %READC-ERR: atom 83 GLN 2HE2 not found in molecular structure %READC-ERR: atom 83 GLN QE2 not found in molecular structure %READC-ERR: atom 84 PHE 2HB not found in molecular structure %READC-ERR: atom 84 PHE 3HB not found in molecular structure %READC-ERR: atom 84 PHE QB not found in molecular structure %READC-ERR: atom 84 PHE QD not found in molecular structure %READC-ERR: atom 84 PHE QE not found in molecular structure %READC-ERR: atom 84 PHE QR not found in molecular structure %READC-ERR: atom 85 ILE QG2 not found in molecular structure %READC-ERR: atom 85 ILE 1HG2 not found in molecular structure %READC-ERR: atom 85 ILE 2HG2 not found in molecular structure %READC-ERR: atom 85 ILE 3HG2 not found in molecular structure %READC-ERR: atom 85 ILE 2HG1 not found in molecular structure %READC-ERR: atom 85 ILE 3HG1 not found in molecular structure %READC-ERR: atom 85 ILE QG1 not found in molecular structure %READC-ERR: atom 85 ILE QD1 not found in molecular structure %READC-ERR: atom 85 ILE 1HD1 not found in molecular structure %READC-ERR: atom 85 ILE 2HD1 not found in molecular structure %READC-ERR: atom 85 ILE 3HD1 not found in molecular structure %READC-ERR: atom 86 TYR 2HB not found in molecular structure %READC-ERR: atom 86 TYR 3HB not found in molecular structure %READC-ERR: atom 86 TYR QB not found in molecular structure %READC-ERR: atom 86 TYR QD not found in molecular structure %READC-ERR: atom 86 TYR QE not found in molecular structure %READC-ERR: atom 86 TYR QR not found in molecular structure %READC-ERR: atom 87 ASP 2HB not found in molecular structure %READC-ERR: atom 87 ASP 3HB not found in molecular structure %READC-ERR: atom 87 ASP QB not found in molecular structure %READC-ERR: atom 88 ARG 2HB not found in molecular structure %READC-ERR: atom 88 ARG 3HB not found in molecular structure %READC-ERR: atom 88 ARG QB not found in molecular structure %READC-ERR: atom 88 ARG 2HG not found in molecular structure %READC-ERR: atom 88 ARG 3HG not found in molecular structure %READC-ERR: atom 88 ARG QG not found in molecular structure %READC-ERR: atom 88 ARG 2HD not found in molecular structure %READC-ERR: atom 88 ARG 3HD not found in molecular structure %READC-ERR: atom 88 ARG QD not found in molecular structure %READC-ERR: atom 88 ARG 1HH1 not found in molecular structure %READC-ERR: atom 88 ARG 2HH1 not found in molecular structure %READC-ERR: atom 88 ARG QH1 not found in molecular structure %READC-ERR: atom 88 ARG 1HH2 not found in molecular structure %READC-ERR: atom 88 ARG 2HH2 not found in molecular structure %READC-ERR: atom 88 ARG QH2 not found in molecular structure %READC-ERR: atom 89 ASP 2HB not found in molecular structure %READC-ERR: atom 89 ASP 3HB not found in molecular structure %READC-ERR: atom 89 ASP QB not found in molecular structure %READC-ERR: atom 90 ARG 2HB not found in molecular structure %READC-ERR: atom 90 ARG 3HB not found in molecular structure %READC-ERR: atom 90 ARG QB not found in molecular structure %READC-ERR: atom 90 ARG 2HG not found in molecular structure %READC-ERR: atom 90 ARG 3HG not found in molecular structure %READC-ERR: atom 90 ARG QG not found in molecular structure %READC-ERR: atom 90 ARG 2HD not found in molecular structure %READC-ERR: atom 90 ARG 3HD not found in molecular structure %READC-ERR: atom 90 ARG QD not found in molecular structure %READC-ERR: atom 90 ARG 1HH1 not found in molecular structure %READC-ERR: atom 90 ARG 2HH1 not found in molecular structure %READC-ERR: atom 90 ARG QH1 not found in molecular structure %READC-ERR: atom 90 ARG 1HH2 not found in molecular structure %READC-ERR: atom 90 ARG 2HH2 not found in molecular structure %READC-ERR: atom 90 ARG QH2 not found in molecular structure %READC-ERR: atom 91 THR QG2 not found in molecular structure %READC-ERR: atom 91 THR 1HG2 not found in molecular structure %READC-ERR: atom 91 THR 2HG2 not found in molecular structure %READC-ERR: atom 91 THR 3HG2 not found in molecular structure %READC-ERR: atom 92 PHE 2HB not found in molecular structure %READC-ERR: atom 92 PHE 3HB not found in molecular structure %READC-ERR: atom 92 PHE QB not found in molecular structure %READC-ERR: atom 92 PHE QD not found in molecular structure %READC-ERR: atom 92 PHE QE not found in molecular structure %READC-ERR: atom 92 PHE QR not found in molecular structure %READC-ERR: atom 93 TYR 2HB not found in molecular structure %READC-ERR: atom 93 TYR 3HB not found in molecular structure %READC-ERR: atom 93 TYR QB not found in molecular structure %READC-ERR: atom 93 TYR QD not found in molecular structure %READC-ERR: atom 93 TYR QE not found in molecular structure %READC-ERR: atom 93 TYR QR not found in molecular structure %READC-ERR: atom 94 VAL QG1 not found in molecular structure %READC-ERR: atom 94 VAL QG2 not found in molecular structure %READC-ERR: atom 94 VAL 1HG1 not found in molecular structure %READC-ERR: atom 94 VAL 2HG1 not found in molecular structure %READC-ERR: atom 94 VAL 3HG1 not found in molecular structure %READC-ERR: atom 94 VAL 1HG2 not found in molecular structure %READC-ERR: atom 94 VAL 2HG2 not found in molecular structure %READC-ERR: atom 94 VAL 3HG2 not found in molecular structure %READC-ERR: atom 94 VAL QQG not found in molecular structure %READC-ERR: atom 95 ILE QG2 not found in molecular structure %READC-ERR: atom 95 ILE 1HG2 not found in molecular structure %READC-ERR: atom 95 ILE 2HG2 not found in molecular structure %READC-ERR: atom 95 ILE 3HG2 not found in molecular structure %READC-ERR: atom 95 ILE 2HG1 not found in molecular structure %READC-ERR: atom 95 ILE 3HG1 not found in molecular structure %READC-ERR: atom 95 ILE QG1 not found in molecular structure %READC-ERR: atom 95 ILE QD1 not found in molecular structure %READC-ERR: atom 95 ILE 1HD1 not found in molecular structure %READC-ERR: atom 95 ILE 2HD1 not found in molecular structure %READC-ERR: atom 95 ILE 3HD1 not found in molecular structure %READC-ERR: atom 96 ILE QG2 not found in molecular structure %READC-ERR: atom 96 ILE 1HG2 not found in molecular structure %READC-ERR: atom 96 ILE 2HG2 not found in molecular structure %READC-ERR: atom 96 ILE 3HG2 not found in molecular structure %READC-ERR: atom 96 ILE 2HG1 not found in molecular structure %READC-ERR: atom 96 ILE 3HG1 not found in molecular structure %READC-ERR: atom 96 ILE QG1 not found in molecular structure %READC-ERR: atom 96 ILE QD1 not found in molecular structure %READC-ERR: atom 96 ILE 1HD1 not found in molecular structure %READC-ERR: atom 96 ILE 2HD1 not found in molecular structure %READC-ERR: atom 96 ILE 3HD1 not found in molecular structure %READC-ERR: atom 97 TYR 2HB not found in molecular structure %READC-ERR: atom 97 TYR 3HB not found in molecular structure %READC-ERR: atom 97 TYR QB not found in molecular structure %READC-ERR: atom 97 TYR QD not found in molecular structure %READC-ERR: atom 97 TYR QE not found in molecular structure %READC-ERR: atom 97 TYR QR not found in molecular structure %READC-ERR: atom 98 GLY 1HA not found in molecular structure %READC-ERR: atom 98 GLY 2HA not found in molecular structure %READC-ERR: atom 98 GLY QA not found in molecular structure %READC-ERR: atom 99 HIS 2HB not found in molecular structure %READC-ERR: atom 99 HIS 3HB not found in molecular structure %READC-ERR: atom 99 HIS QB not found in molecular structure %READC-ERR: atom 100 ASN 2HB not found in molecular structure %READC-ERR: atom 100 ASN 3HB not found in molecular structure %READC-ERR: atom 100 ASN QB not found in molecular structure %READC-ERR: atom 100 ASN 1HD2 not found in molecular structure %READC-ERR: atom 100 ASN 2HD2 not found in molecular structure %READC-ERR: atom 100 ASN QD2 not found in molecular structure %READC-ERR: atom 101 MET 2HB not found in molecular structure %READC-ERR: atom 101 MET 3HB not found in molecular structure %READC-ERR: atom 101 MET QB not found in molecular structure %READC-ERR: atom 101 MET 2HG not found in molecular structure %READC-ERR: atom 101 MET 3HG not found in molecular structure %READC-ERR: atom 101 MET QG not found in molecular structure %READC-ERR: atom 101 MET QE not found in molecular structure %READC-ERR: atom 101 MET 1HE not found in molecular structure %READC-ERR: atom 101 MET 2HE not found in molecular structure %READC-ERR: atom 101 MET 3HE not found in molecular structure %READC-ERR: atom 102 CYS 2HB not found in molecular structure %READC-ERR: atom 102 CYS 3HB not found in molecular structure %READC-ERR: atom 102 CYS QB not found in molecular structure %READC-ERR: atom 102 CYS O not found in molecular structure COOR>END CNSsolve>parameter @TOPPAR:parallhdg5.3.pro end PARRDR>! JFD adds FES complex parameters from Milo Westler's calculations PARRDR>! and standard topology. PARRDR> PARRDR>remark file protein-allhdg-ucl.param version UCL date 07-JUL-01 PARRDR>remark for file protein-allhdg-ucl.top version UCL date 14-MAR-00 PARRDR>remark for file protein-allhdg-dih-ucl.top version UCL date 07-JUL-01 PARRDR>remark Geometric energy function parameters for distance geometry and PARRDR>remark simulated annealing. PARRDR>remark Original author: Michael Nilges, EMBL Heidelberg PARRDR>remark Modifications: Mark A. Williams, UCL London PARRDR> PARRDR>set echo off message off end SHOW: sum over selected elements = 2.000000 CNSsolve> CNSsolve> if ( $log_level = verbose ) then CNSsolve> set message=normal echo=on end CNSsolve> else CNSsolve> set message=off echo=off end CNSsolve> end if CNSsolve> CNSsolve> CNSsolve> identity (store1) (none) SELRPN: 0 atoms have been selected out of 1677 CNSsolve> CNSsolve> identity (store1) (&atom_build) SELRPN: 507 atoms have been selected out of 1677 CNSsolve> identity (store1) (store1 or hydrogen) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> CNSsolve> show sum(1) (store1) SELRPN: 830 atoms have been selected out of 1677 SHOW: sum over selected elements = 830.000000 CNSsolve> evaluate ($tobuild=$result) EVALUATE: symbol $TOBUILD set to 830.000 (real) CNSsolve> CNSsolve> !evaluate ($tobuild=0) CNSsolve> CNSsolve> if ( $tobuild > 0 ) then NEXTCD: condition evaluated as true CNSsolve> CNSsolve> fix selection=(not(store1)) end SELRPN: 847 atoms have been selected out of 1677 CNSsolve> CNSsolve> show sum(1) (store1) SELRPN: 830 atoms have been selected out of 1677 SHOW: sum over selected elements = 830.000000 CNSsolve> evaluate ($moving=$result) EVALUATE: symbol $MOVING set to 830.000 (real) CNSsolve> CNSsolve> if ( $moving > 0 ) then NEXTCD: condition evaluated as true CNSsolve> for $id in id (tag and byres(store1)) loop avco SELRPN: 102 atoms have been selected out of 1677 FOR ID LOOP: symbol ID set to 1.00000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = 2.060222 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 2.06022 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = 0.707667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.707667 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -2.102333 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.10233 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 20.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1677 SHOW: average of selected elements = 5.277857 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 5.27786 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1677 SHOW: average of selected elements = -1.198714 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.19871 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1677 SHOW: average of selected elements = -2.536286 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.53629 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 30.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 8.037100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 8.03710 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 0.401100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.401100 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -4.297700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -4.29770 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 42.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 12.423818 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 12.4238 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -1.114818 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.11482 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -3.393545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.39355 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 56.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = 12.796000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 12.7960 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = 0.370200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.370200 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -6.809400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.80940 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 63.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 12.755545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 12.7555 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 0.166545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.166545 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -11.263636 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.2636 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 78.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 15.455300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 15.4553 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 3.080500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 3.08050 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -12.684100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -12.6841 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 94.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 15.403364 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 15.4034 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 1.443455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.44345 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -17.528182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -17.5282 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 111.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = 20.039889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 20.0399 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = 3.793278 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 3.79328 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -17.671667 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -17.6717 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 131.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 19.911100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 19.9111 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 3.712400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 3.71240 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -23.282600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -23.2826 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 148.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 24.625455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 24.6255 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 5.041000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 5.04100 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -22.792636 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -22.7926 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 170.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = 25.744125 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 25.7441 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = 5.026875 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 5.02688 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = -25.958125 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -25.9581 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 184.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = 30.606944 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 30.6069 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = 0.778889 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.778889 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -25.986556 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -25.9866 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 204.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 32.223545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 32.2235 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 4.573636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 4.57364 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -26.747818 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -26.7478 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 223.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = 35.086222 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 35.0862 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = 1.536222 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.53622 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -28.316333 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -28.3163 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 234.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 37.260909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 37.2609 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 5.454545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 5.45455 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -28.534364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -28.5344 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 249.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 36.239636 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 36.2396 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 6.629909 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 6.62991 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -23.987455 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -23.9875 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 271.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = 34.492222 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 34.4922 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = 2.012556 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 2.01256 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -23.277778 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -23.2778 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 282.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = 38.811889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 38.8119 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = 1.120778 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.12078 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -23.773444 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -23.7734 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 293.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 40.238455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 40.2385 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 0.823273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.823273 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -20.654818 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -20.6548 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 315.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = 37.187444 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 37.1874 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = 4.040444 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 4.04044 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -19.313667 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -19.3137 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 326.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 32.301818 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 32.3018 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 3.622818 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 3.62282 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -19.344364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -19.3444 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 345.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 31.724364 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 31.7244 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 7.154000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 7.15400 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -21.425727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -21.4257 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 360.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 29.050091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 29.0501 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 8.462273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 8.46227 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -17.172727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -17.1727 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 379.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = 26.050125 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 26.0501 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = 10.861375 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 10.8614 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = -18.667625 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -18.6676 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 393.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 25.948273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 25.9483 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 15.071545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 15.0715 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -16.139364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -16.1394 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 412.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = 22.334400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 22.3344 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = 12.941600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 12.9416 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -16.594000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -16.5940 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 419.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = 23.872111 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 23.8721 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = 8.126722 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 8.12672 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -14.116944 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -14.1169 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 439.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 25.176300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 25.1763 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 11.788800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 11.7888 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -12.579900 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -12.5799 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 453.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 21.088091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 21.0881 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 15.273273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 15.2733 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -12.593364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -12.5934 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 468.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = 17.629526 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 17.6295 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = 9.922526 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 9.92253 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = -13.013789 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -13.0138 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 489.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = 21.391111 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 21.3911 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = 8.479611 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 8.47961 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -9.787500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.78750 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 509.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = 23.136125 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 23.1361 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = 11.910375 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 11.9104 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = -6.194625 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.19462 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 523.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1677 SHOW: average of selected elements = 26.111286 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 26.1113 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1677 SHOW: average of selected elements = 9.560714 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 9.56071 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1677 SHOW: average of selected elements = -4.914000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -4.91400 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 533.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = 28.672375 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 28.6724 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = 8.392250 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 8.39225 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = -2.663250 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.66325 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 547.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = 33.689278 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 33.6893 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = 8.517722 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 8.51772 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -2.602444 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.60244 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 567.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = 32.092375 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 32.0924 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = 4.030625 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 4.03063 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = -4.793000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -4.79300 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 581.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 35.448636 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 35.4486 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 1.651545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.65155 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -3.079818 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.07982 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 600.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 34.211000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 34.2110 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -1.410455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.41045 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -5.434545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -5.43455 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 614.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 31.241300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 31.2413 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -1.907900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.90790 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -8.534600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -8.53460 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 630.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 29.026600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 29.0266 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -5.909500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.90950 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -8.915500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -8.91550 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 642.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 28.697364 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 28.6974 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -5.868455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.86845 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -12.837727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -12.8377 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 661.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 25.439455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 25.4395 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -9.069909 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.06991 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -12.524636 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -12.5246 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 680.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 25.980900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 25.9809 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -11.036400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -11.0364 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -17.086500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -17.0865 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 692.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = 24.054211 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 24.0542 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = -12.624737 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -12.6247 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = -20.798842 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -20.7988 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 713.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = 25.571556 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 25.5716 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -16.469000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -16.4690 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -17.486111 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -17.4861 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 724.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = 26.237200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 26.2372 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -15.802000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -15.8020 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -13.853000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -13.8530 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 731.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = 31.170714 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 31.1707 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = -15.325643 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -15.3256 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = -14.083286 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -14.0833 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 755.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = 30.307778 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 30.3078 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -11.709889 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -11.7099 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -11.333111 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.3331 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 766.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1677 SHOW: average of selected elements = 31.894682 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 31.8947 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1677 SHOW: average of selected elements = -10.493045 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.4930 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1677 SHOW: average of selected elements = -15.085364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -15.0854 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 790.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 34.380636 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 34.3806 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -6.329091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -6.32909 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -10.073636 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -10.0736 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 804.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 33.511200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 33.5112 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -2.478900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.47890 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -11.823300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.8233 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 820.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = 37.729071 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 37.7291 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = 0.413214 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.413214 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = -9.437643 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.43764 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 844.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 32.241000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 32.2410 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 3.905400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 3.90540 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -9.546300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.54630 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 861.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 35.438545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 35.4385 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 7.528182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 7.52818 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -8.562727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -8.56273 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 883.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 31.160636 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 31.1606 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 10.800091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 10.8001 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -7.986818 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.98682 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 905.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = 35.234500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 35.2345 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = 14.673357 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 14.6734 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = -10.320786 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -10.3208 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 929.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = 30.955800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 30.9558 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = 15.826800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 15.8268 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -8.352600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -8.35260 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 936.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 28.991818 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 28.9918 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 17.659091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 17.6591 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -11.682182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.6822 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 951.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 31.689273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 31.6893 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 14.864182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 14.8642 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -14.445182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -14.4452 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 973.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 30.710700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 30.7107 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 10.378700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 10.3787 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -13.198600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -13.1986 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 989.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = 33.837389 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 33.8374 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = 10.124278 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 10.1243 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -16.206278 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -16.2063 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1009.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 33.337545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 33.3375 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 3.889727 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 3.88973 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -15.073818 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -15.0738 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1028.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 37.530000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 37.5300 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 3.548182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 3.54818 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -13.481909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -13.4819 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1042.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 39.952000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 39.9520 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 0.186200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.186200 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -13.975300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -13.9753 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1058.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = 37.338200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 37.3382 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -2.887600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.88760 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -14.862200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -14.8622 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1065.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1677 SHOW: average of selected elements = 32.914182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 32.9142 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1677 SHOW: average of selected elements = -1.374182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.37418 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1677 SHOW: average of selected elements = -18.744091 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -18.7441 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1089.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 38.284727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 38.2847 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -3.724182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.72418 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -19.176273 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -19.1763 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1104.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 37.295000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 37.2950 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -6.833700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -6.83370 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -16.599300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -16.5993 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1118.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = 31.039778 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 31.0398 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -6.810889 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -6.81089 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -18.891833 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -18.8918 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1138.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 34.091600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 34.0916 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -4.992800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.99280 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -21.575700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -21.5757 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1154.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 38.038273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 38.0383 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -8.012909 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -8.01291 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -21.701364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -21.7014 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1176.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 34.415900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 34.4159 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -10.935100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.9351 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -20.651200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -20.6512 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1188.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 31.245600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 31.2456 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -9.518400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.51840 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -23.225900 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -23.2259 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1202.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 34.307900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 34.3079 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -8.877000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -8.87700 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -26.662200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -26.6622 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1216.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 31.781727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 31.7817 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -5.961818 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.96182 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -26.423091 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -26.4231 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1235.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 33.095182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 33.0952 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -3.438455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.43845 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -30.513182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -30.5132 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1250.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 31.883500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 31.8835 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 0.646000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.646000 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -31.585200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -31.5852 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1262.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = 27.811800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 27.8118 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -0.608800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.608800 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -31.900600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -31.9006 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1269.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 26.794273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 26.7943 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -3.259091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.25909 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -30.754727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -30.7547 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1291.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = 22.933947 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 22.9339 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = -0.020842 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.208421E-01 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = -29.678842 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -29.6788 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1312.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 24.708727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 24.7087 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -1.743182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.74318 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -23.980364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -23.9804 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1331.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 19.781000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 19.7810 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -1.056182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.05618 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -21.390273 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -21.3903 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1348.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = 23.851444 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 23.8514 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = 0.417556 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.417556 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -18.469889 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -18.4699 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1368.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 18.822727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 18.8227 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -1.898364 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.89836 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -15.477182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -15.4772 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1387.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = 20.236895 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 20.2369 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = 1.859632 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.85963 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = -9.958579 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.95858 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1408.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 17.056800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 17.0568 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -1.105400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.10540 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -8.833400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -8.83340 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1420.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = 16.720214 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 16.7202 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = 3.682571 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 3.68257 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = -6.526786 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.52679 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1444.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 21.262000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 21.2620 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -0.509000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.509000 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -4.883300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -4.88330 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1456.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = 25.667286 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 25.6673 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = 0.139500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.139500 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = -3.807143 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.80714 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1480.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 23.656545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 23.6565 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -3.758182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.75818 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -8.049727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -8.04973 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1494.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = 24.381722 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 24.3817 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -0.580222 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.580222 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -12.038833 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -12.0388 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1514.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = 20.688684 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 20.6887 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = -6.557737 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -6.55774 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = -16.174421 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -16.1744 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1535.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 24.124400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 24.1244 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -5.454800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.45480 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -18.507400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -18.5074 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1551.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 20.874000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 20.8740 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -5.631000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.63100 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -21.616727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -21.6167 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1570.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 23.288000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 23.2880 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -6.705091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -6.70509 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -24.945273 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -24.9453 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1589.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = 19.025316 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 19.0253 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = -4.513316 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.51332 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = -26.608053 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -26.6081 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1610.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = 20.252000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 20.2520 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -9.347800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.34780 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -30.139200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -30.1392 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1617.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1677 SHOW: average of selected elements = 20.068467 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 20.0685 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1677 SHOW: average of selected elements = -12.584733 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -12.5847 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1677 SHOW: average of selected elements = -33.064200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -33.0642 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1635.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 23.875900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 23.8759 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -14.561100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.5611 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -29.718100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -29.7181 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1649.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 28.543100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 28.5431 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -13.140300 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -13.1403 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -28.866800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -28.8668 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1666.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = 28.665750 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 28.6658 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = -16.534500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -16.5345 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = -26.881125 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -26.8811 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) CNSsolve> evaluate ($ave_x=$result) CNSsolve> show ave(y) (byres(id $id) and known) CNSsolve> evaluate ($ave_y=$result) CNSsolve> show ave(z) (byres(id $id) and known) CNSsolve> evaluate ($ave_z=$result) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) CNSsolve> do (y=$ave_y) (byres(id $id) and store1) CNSsolve> do (z=$ave_z) (byres(id $id) and store1) CNSsolve> CNSsolve> end loop avco CNSsolve> CNSsolve> do (x=x+random(2.0)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> do (y=y+random(2.0)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> do (z=z+random(2.0)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> CNSsolve> {- start parameter for the side chain building -} CNSsolve> parameter PARRDR> nbonds NBDSET> rcon=20. nbxmod=-2 repel=0.9 wmin=0.1 tolerance=1. NBDSET> rexp=2 irexp=2 inhibit=0.25 NBDSET> end PARRDR> end CNSsolve> CNSsolve> {- Friction coefficient, in 1/ps. -} CNSsolve> do (fbeta=100) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> CNSsolve> evaluate ($bath=300.0) EVALUATE: symbol $BATH set to 300.000 (real) CNSsolve> evaluate ($nstep=500) EVALUATE: symbol $NSTEP set to 500.000 (real) CNSsolve> evaluate ($timestep=0.0005) EVALUATE: symbol $TIMESTEP set to 0.500000E-03 (real) CNSsolve> CNSsolve> do (refy=mass) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> CNSsolve> do (mass=20) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> CNSsolve> igroup interaction SELRPN> (store1) (store1 or known) SELRPN: 830 atoms have been selected out of 1677 SELRPN: 1677 atoms have been selected out of 1677 IGROup> end CNSsolve> CNSsolve> {- turn on initial energy terms -} CNSsolve> flags exclude * include bond angle vdw end CNSsolve> CNSsolve> minimize powell nstep=50 nprint=10 end POWELL: number of degrees of freedom= 2490 NBONDS: generating intra-molecular exclusion list with mode=-2 MAKINB: mode -2 found 830 exclusions and 0 interactions(1-4) %atoms " -9 -PHE -HD2 " and " -9 -PHE -HZ " only 0.10 A apart %atoms " -11 -LYS -HA " and " -11 -LYS -HZ1 " only 0.05 A apart %atoms " -22 -LEU -HD11" and " -22 -LEU -HD22" only 0.06 A apart %atoms " -28 -PHE -HE1 " and " -28 -PHE -HE2 " only 0.09 A apart %atoms " -48 -ARG -HD2 " and " -48 -ARG -HH11" only 0.09 A apart %atoms " -55 -LYS -HD1 " and " -55 -LYS -HE1 " only 0.08 A apart %atoms " -68 -GLU -HN " and " -68 -GLU -HG2 " only 0.07 A apart %atoms " -85 -ILE -HG11" and " -85 -ILE -HG23" only 0.07 A apart %atoms " -88 -ARG -HH12" and " -88 -ARG -HH22" only 0.07 A apart %atoms " -93 -TYR -HD2 " and " -93 -TYR -HE1 " only 0.07 A apart %atoms " -94 -VAL -HN " and " -94 -VAL -HG21" only 0.07 A apart NBONDS: found 106149 intra-atom interactions NBONDS: found 11 nonbonded violations %atoms " -23 -GLU -HN " and " -23 -GLU -HG1 " only 0.08 A apart %atoms " -53 -ARG -HH12" and " -53 -ARG -HH21" only 0.03 A apart NBONDS: found 104954 intra-atom interactions NBONDS: found 2 nonbonded violations %atoms " -47 -GLY -HN " and " -47 -GLY -HA2 " only 0.07 A apart NBONDS: found 100480 intra-atom interactions NBONDS: found 1 nonbonded violations NBONDS: found 97503 intra-atom interactions NBONDS: found 97423 intra-atom interactions --------------- cycle= 10 ------ stepsize= 0.0000 ----------------------- | Etotal =446525.681 grad(E)=599.977 E(BOND)=78262.593 E(ANGL)=207579.502 | | E(VDW )=160683.587 | ------------------------------------------------------------------------------- NBONDS: found 97591 intra-atom interactions NBONDS: found 97529 intra-atom interactions NBONDS: found 97569 intra-atom interactions --------------- cycle= 20 ------ stepsize= 0.0000 ----------------------- | Etotal =153583.416 grad(E)=336.680 E(BOND)=24154.478 E(ANGL)=52136.301 | | E(VDW )=77292.636 | ------------------------------------------------------------------------------- NBONDS: found 97440 intra-atom interactions NBONDS: found 97421 intra-atom interactions NBONDS: found 97456 intra-atom interactions --------------- cycle= 30 ------ stepsize= 0.0000 ----------------------- | Etotal =129468.895 grad(E)=314.153 E(BOND)=21259.050 E(ANGL)=39209.113 | | E(VDW )=69000.733 | ------------------------------------------------------------------------------- --------------- cycle= 40 ------ stepsize= 0.0000 ----------------------- | Etotal =128418.221 grad(E)=311.575 E(BOND)=21020.297 E(ANGL)=38602.415 | | E(VDW )=68795.509 | ------------------------------------------------------------------------------- --------------- cycle= 50 ------ stepsize= -0.0001 ----------------------- | Etotal =128230.732 grad(E)=311.520 E(BOND)=21139.038 E(ANGL)=38585.272 | | E(VDW )=68506.423 | ------------------------------------------------------------------------------- POWELL: STEP number limit. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> CNSsolve> flags exclude vdw include impr end CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=50 Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=507994.848 E(kin)=768.346 temperature=310.562 | | Etotal =507226.502 grad(E)=735.699 E(BOND)=21139.038 E(ANGL)=38585.272 | | E(IMPR)=447502.193 | ------------------------------------------------------------------------------- -------------------- final step= 50 at 0.02500 ps --------------------- | E(kin)+E(total)=317254.765 E(kin)=58034.915 temperature=23457.428 | | Etotal =259219.849 grad(E)=415.362 E(BOND)=37189.868 E(ANGL)=96548.685 | | E(IMPR)=125481.297 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 27.79799 0.60829 -16.33315 velocity [A/ps] : 0.13172 -0.56823 -0.87863 ang. mom. [amu A/ps] :-289610.79518 320908.40836 93215.69605 kin. ener. [Kcal/mol] : 22.06383 CNSsolve> CNSsolve> flags include vdw end CNSsolve> CNSsolve> minimize powell nstep=50 nprint=10 end POWELL: number of degrees of freedom= 2490 NBONDS: found 97109 intra-atom interactions NBONDS: found 96735 intra-atom interactions NBONDS: found 96939 intra-atom interactions NBONDS: found 96965 intra-atom interactions NBONDS: found 97077 intra-atom interactions NBONDS: found 97034 intra-atom interactions --------------- cycle= 10 ------ stepsize= 0.0002 ----------------------- | Etotal =229262.970 grad(E)=385.454 E(BOND)=39781.857 E(ANGL)=57734.296 | | E(IMPR)=89115.242 E(VDW )=42631.575 | ------------------------------------------------------------------------------- NBONDS: found 97234 intra-atom interactions NBONDS: found 97213 intra-atom interactions NBONDS: found 97216 intra-atom interactions NBONDS: found 97211 intra-atom interactions --------------- cycle= 20 ------ stepsize= 0.0004 ----------------------- | Etotal =148447.830 grad(E)=265.538 E(BOND)=21774.279 E(ANGL)=22285.534 | | E(IMPR)=62538.961 E(VDW )=41849.055 | ------------------------------------------------------------------------------- NBONDS: found 97175 intra-atom interactions NBONDS: found 97196 intra-atom interactions NBONDS: found 97223 intra-atom interactions --------------- cycle= 30 ------ stepsize= 0.0005 ----------------------- | Etotal =133370.711 grad(E)=263.977 E(BOND)=18932.483 E(ANGL)=19166.404 | | E(IMPR)=53704.988 E(VDW )=41566.835 | ------------------------------------------------------------------------------- NBONDS: found 97200 intra-atom interactions NBONDS: found 97187 intra-atom interactions --------------- cycle= 40 ------ stepsize= 0.0005 ----------------------- | Etotal =125101.538 grad(E)=259.623 E(BOND)=18285.992 E(ANGL)=16654.658 | | E(IMPR)=48890.247 E(VDW )=41270.641 | ------------------------------------------------------------------------------- NBONDS: found 97193 intra-atom interactions NBONDS: found 97219 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0003 ----------------------- | Etotal =120743.272 grad(E)=261.645 E(BOND)=18375.874 E(ANGL)=16286.853 | | E(IMPR)=44729.351 E(VDW )=41351.194 | ------------------------------------------------------------------------------- POWELL: STEP number limit. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=50 Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=121502.907 E(kin)=759.635 temperature=307.041 | | Etotal =120743.272 grad(E)=261.645 E(BOND)=18375.874 E(ANGL)=16286.853 | | E(IMPR)=44729.351 E(VDW )=41351.194 | ------------------------------------------------------------------------------- NBONDS: found 97222 intra-atom interactions NBONDS: found 97263 intra-atom interactions -------------------- final step= 50 at 0.02500 ps --------------------- | E(kin)+E(total)=117983.375 E(kin)=3241.923 temperature=1310.369 | | Etotal =114741.452 grad(E)=267.177 E(BOND)=18988.173 E(ANGL)=15521.600 | | E(IMPR)=38971.644 E(VDW )=41260.034 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 27.80884 0.61256 -16.29594 velocity [A/ps] : -0.01524 0.27773 0.07440 ang. mom. [amu A/ps] : 25691.02926 -1837.04108 -26858.85078 kin. ener. [Kcal/mol] : 1.64452 CNSsolve> CNSsolve> parameter PARRDR> nbonds NBDSET> rcon=2. nbxmod=-3 repel=0.75 NBDSET> end PARRDR> end CNSsolve> CNSsolve> minimize powell nstep=100 nprint=25 end POWELL: number of degrees of freedom= 2490 NBONDS: generating intra-molecular exclusion list with mode=-3 MAKINB: mode -3 found 2719 exclusions and 0 interactions(1-4) NBONDS: found 95335 intra-atom interactions NBONDS: found 95949 intra-atom interactions NBONDS: found 95954 intra-atom interactions NBONDS: found 96036 intra-atom interactions --------------- cycle= 25 ------ stepsize= 0.0004 ----------------------- | Etotal =53067.875 grad(E)=313.456 E(BOND)=1565.572 E(ANGL)=9179.561 | | E(IMPR)=42321.255 E(VDW )=1.487 | ------------------------------------------------------------------------------- --------------- cycle= 50 ------ stepsize= 0.0000 ----------------------- | Etotal =40955.026 grad(E)=71.131 E(BOND)=1835.017 E(ANGL)=11883.689 | | E(IMPR)=27235.247 E(VDW )=1.072 | ------------------------------------------------------------------------------- --------------- cycle= 75 ------ stepsize= 0.0000 ----------------------- | Etotal =43245.296 grad(E)=254.982 E(BOND)=1835.017 E(ANGL)=11883.685 | | E(IMPR)=29525.522 E(VDW )=1.072 | ------------------------------------------------------------------------------- POWELL: Line search terminated POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=$nstep Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=41698.779 E(kin)=743.757 temperature=300.623 | | Etotal =40955.023 grad(E)=71.131 E(BOND)=1835.017 E(ANGL)=11883.685 | | E(IMPR)=27235.248 E(VDW )=1.072 | ------------------------------------------------------------------------------- NBONDS: found 96064 intra-atom interactions NBONDS: found 96107 intra-atom interactions NBONDS: found 96066 intra-atom interactions NBONDS: found 96033 intra-atom interactions NBONDS: found 96107 intra-atom interactions NBONDS: found 96057 intra-atom interactions NBONDS: found 96022 intra-atom interactions NBONDS: found 96039 intra-atom interactions NBONDS: found 95954 intra-atom interactions NBONDS: found 95870 intra-atom interactions NBONDS: found 95882 intra-atom interactions NBONDS: found 95980 intra-atom interactions NBONDS: found 96008 intra-atom interactions NBONDS: found 96013 intra-atom interactions NBONDS: found 96037 intra-atom interactions NBONDS: found 96093 intra-atom interactions NBONDS: found 96093 intra-atom interactions NBONDS: found 96031 intra-atom interactions NBONDS: found 95993 intra-atom interactions NBONDS: found 95961 intra-atom interactions NBONDS: found 95959 intra-atom interactions NBONDS: found 95969 intra-atom interactions NBONDS: found 95920 intra-atom interactions NBONDS: found 95907 intra-atom interactions NBONDS: found 95905 intra-atom interactions NBONDS: found 95925 intra-atom interactions NBONDS: found 95961 intra-atom interactions NBONDS: found 95997 intra-atom interactions NBONDS: found 96032 intra-atom interactions NBONDS: found 96040 intra-atom interactions NBONDS: found 96030 intra-atom interactions NBONDS: found 96028 intra-atom interactions NBONDS: found 96004 intra-atom interactions NBONDS: found 95991 intra-atom interactions NBONDS: found 95977 intra-atom interactions NBONDS: found 95993 intra-atom interactions NBONDS: found 96034 intra-atom interactions NBONDS: found 96043 intra-atom interactions NBONDS: found 96048 intra-atom interactions NBONDS: found 96007 intra-atom interactions NBONDS: found 96004 intra-atom interactions NBONDS: found 95996 intra-atom interactions NBONDS: found 96015 intra-atom interactions NBONDS: found 96037 intra-atom interactions NBONDS: found 96062 intra-atom interactions -------------------- final step= 500 at 0.25000 ps --------------------- | E(kin)+E(total)=7474.647 E(kin)=1759.744 temperature=711.280 | | Etotal =5714.903 grad(E)=85.937 E(BOND)=832.426 E(ANGL)=2566.663 | | E(IMPR)=2305.138 E(VDW )=10.676 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 27.80254 0.61146 -16.30130 velocity [A/ps] : -0.13209 -0.08981 -0.05746 ang. mom. [amu A/ps] : -27464.74820 -14412.51597 70840.61628 kin. ener. [Kcal/mol] : 0.57162 CNSsolve> CNSsolve> {- turn on all energy terms -} CNSsolve> flags include dihe ? end EFLAGS: the following energy flags are set EFLAGS: BOND ANGL DIHE IMPR VDW CNSsolve> CNSsolve> {- set repel to ~vdw radii -} CNSsolve> parameter PARRDR> nbonds NBDSET> repel=0.89 NBDSET> end PARRDR> end CNSsolve> CNSsolve> minimize powell nstep=500 nprint=50 end POWELL: number of degrees of freedom= 2490 NBONDS: generating intra-molecular exclusion list with mode=-3 MAKINB: mode -3 found 2719 exclusions and 0 interactions(1-4) NBONDS: found 96050 intra-atom interactions NBONDS: found 96024 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0000 ----------------------- | Etotal =3968.433 grad(E)=70.574 E(BOND)=10.961 E(ANGL)=1583.029 | | E(DIHE)=69.118 E(IMPR)=2217.502 E(VDW )=87.823 | ------------------------------------------------------------------------------- --------------- cycle= 100 ------ stepsize= 0.0000 ----------------------- | Etotal =3968.433 grad(E)=70.574 E(BOND)=10.961 E(ANGL)=1583.029 | | E(DIHE)=69.118 E(IMPR)=2217.502 E(VDW )=87.823 | ------------------------------------------------------------------------------- --------------- cycle= 150 ------ stepsize= 0.0000 ----------------------- | Etotal =3968.433 grad(E)=70.574 E(BOND)=10.961 E(ANGL)=1583.029 | | E(DIHE)=69.118 E(IMPR)=2217.502 E(VDW )=87.823 | ------------------------------------------------------------------------------- --------------- cycle= 200 ------ stepsize= 0.0000 ----------------------- | Etotal =3968.433 grad(E)=70.574 E(BOND)=10.961 E(ANGL)=1583.029 | | E(DIHE)=69.118 E(IMPR)=2217.502 E(VDW )=87.823 | ------------------------------------------------------------------------------- --------------- cycle= 250 ------ stepsize= 0.0000 ----------------------- | Etotal =3968.433 grad(E)=70.574 E(BOND)=10.961 E(ANGL)=1583.029 | | E(DIHE)=69.118 E(IMPR)=2217.502 E(VDW )=87.823 | ------------------------------------------------------------------------------- --------------- cycle= 300 ------ stepsize= 0.0000 ----------------------- | Etotal =3968.433 grad(E)=70.574 E(BOND)=10.961 E(ANGL)=1583.029 | | E(DIHE)=69.118 E(IMPR)=2217.502 E(VDW )=87.823 | ------------------------------------------------------------------------------- --------------- cycle= 350 ------ stepsize= 0.0000 ----------------------- | Etotal =3968.433 grad(E)=70.574 E(BOND)=10.961 E(ANGL)=1583.029 | | E(DIHE)=69.118 E(IMPR)=2217.502 E(VDW )=87.823 | ------------------------------------------------------------------------------- --------------- cycle= 400 ------ stepsize= 0.0000 ----------------------- | Etotal =3968.433 grad(E)=70.574 E(BOND)=10.961 E(ANGL)=1583.029 | | E(DIHE)=69.118 E(IMPR)=2217.502 E(VDW )=87.823 | ------------------------------------------------------------------------------- --------------- cycle= 450 ------ stepsize= 0.0000 ----------------------- | Etotal =3968.433 grad(E)=70.574 E(BOND)=10.961 E(ANGL)=1583.029 | | E(DIHE)=69.118 E(IMPR)=2217.502 E(VDW )=87.823 | ------------------------------------------------------------------------------- --------------- cycle= 500 ------ stepsize= 0.0000 ----------------------- | Etotal =3968.433 grad(E)=70.574 E(BOND)=10.961 E(ANGL)=1583.029 | | E(DIHE)=69.118 E(IMPR)=2217.502 E(VDW )=87.823 | ------------------------------------------------------------------------------- POWELL: STEP number limit. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> flags exclude * include bond angl impr dihe vdw end CNSsolve> CNSsolve> {- return masses to something sensible -} CNSsolve> do (mass=refy) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=$nstep Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=4693.948 E(kin)=725.515 temperature=293.250 | | Etotal =3968.433 grad(E)=70.574 E(BOND)=10.961 E(ANGL)=1583.029 | | E(DIHE)=69.118 E(IMPR)=2217.502 E(VDW )=87.823 | ------------------------------------------------------------------------------- NBONDS: found 95990 intra-atom interactions NBONDS: found 95972 intra-atom interactions NBONDS: found 95977 intra-atom interactions NBONDS: found 96035 intra-atom interactions NBONDS: found 96039 intra-atom interactions NBONDS: found 96051 intra-atom interactions NBONDS: found 96074 intra-atom interactions NBONDS: found 96108 intra-atom interactions NBONDS: found 96078 intra-atom interactions NBONDS: found 95994 intra-atom interactions NBONDS: found 96022 intra-atom interactions NBONDS: found 96041 intra-atom interactions NBONDS: found 96012 intra-atom interactions NBONDS: found 96006 intra-atom interactions NBONDS: found 95994 intra-atom interactions NBONDS: found 95979 intra-atom interactions NBONDS: found 96003 intra-atom interactions NBONDS: found 96021 intra-atom interactions NBONDS: found 96057 intra-atom interactions NBONDS: found 96108 intra-atom interactions NBONDS: found 96138 intra-atom interactions NBONDS: found 96104 intra-atom interactions NBONDS: found 96076 intra-atom interactions NBONDS: found 96041 intra-atom interactions NBONDS: found 96021 intra-atom interactions NBONDS: found 96018 intra-atom interactions NBONDS: found 96038 intra-atom interactions NBONDS: found 96055 intra-atom interactions NBONDS: found 96057 intra-atom interactions NBONDS: found 96065 intra-atom interactions NBONDS: found 96065 intra-atom interactions NBONDS: found 96046 intra-atom interactions NBONDS: found 96058 intra-atom interactions NBONDS: found 96058 intra-atom interactions NBONDS: found 96017 intra-atom interactions NBONDS: found 96000 intra-atom interactions NBONDS: found 96019 intra-atom interactions NBONDS: found 96025 intra-atom interactions NBONDS: found 96046 intra-atom interactions NBONDS: found 96025 intra-atom interactions NBONDS: found 96003 intra-atom interactions NBONDS: found 95976 intra-atom interactions NBONDS: found 95972 intra-atom interactions NBONDS: found 95974 intra-atom interactions NBONDS: found 95969 intra-atom interactions NBONDS: found 95977 intra-atom interactions NBONDS: found 95992 intra-atom interactions NBONDS: found 96016 intra-atom interactions NBONDS: found 96017 intra-atom interactions NBONDS: found 96016 intra-atom interactions NBONDS: found 96015 intra-atom interactions NBONDS: found 96009 intra-atom interactions NBONDS: found 96013 intra-atom interactions NBONDS: found 96027 intra-atom interactions NBONDS: found 96046 intra-atom interactions NBONDS: found 96088 intra-atom interactions NBONDS: found 96094 intra-atom interactions NBONDS: found 96094 intra-atom interactions NBONDS: found 96075 intra-atom interactions NBONDS: found 96062 intra-atom interactions NBONDS: found 96064 intra-atom interactions NBONDS: found 96043 intra-atom interactions NBONDS: found 96008 intra-atom interactions NBONDS: found 95971 intra-atom interactions NBONDS: found 95960 intra-atom interactions NBONDS: found 95950 intra-atom interactions NBONDS: found 95947 intra-atom interactions NBONDS: found 95954 intra-atom interactions NBONDS: found 95977 intra-atom interactions NBONDS: found 95984 intra-atom interactions NBONDS: found 95994 intra-atom interactions NBONDS: found 95983 intra-atom interactions NBONDS: found 95977 intra-atom interactions NBONDS: found 95982 intra-atom interactions NBONDS: found 95992 intra-atom interactions NBONDS: found 95995 intra-atom interactions NBONDS: found 95977 intra-atom interactions NBONDS: found 95977 intra-atom interactions NBONDS: found 95975 intra-atom interactions NBONDS: found 96003 intra-atom interactions NBONDS: found 95982 intra-atom interactions NBONDS: found 95955 intra-atom interactions NBONDS: found 95962 intra-atom interactions NBONDS: found 95979 intra-atom interactions NBONDS: found 95971 intra-atom interactions NBONDS: found 95985 intra-atom interactions NBONDS: found 96010 intra-atom interactions NBONDS: found 96005 intra-atom interactions NBONDS: found 96010 intra-atom interactions NBONDS: found 96010 intra-atom interactions NBONDS: found 96036 intra-atom interactions NBONDS: found 96034 intra-atom interactions NBONDS: found 96023 intra-atom interactions NBONDS: found 96023 intra-atom interactions NBONDS: found 96026 intra-atom interactions NBONDS: found 96030 intra-atom interactions NBONDS: found 96008 intra-atom interactions NBONDS: found 96002 intra-atom interactions NBONDS: found 95990 intra-atom interactions NBONDS: found 95991 intra-atom interactions NBONDS: found 95982 intra-atom interactions NBONDS: found 95996 intra-atom interactions NBONDS: found 96009 intra-atom interactions NBONDS: found 96017 intra-atom interactions NBONDS: found 96005 intra-atom interactions NBONDS: found 96016 intra-atom interactions NBONDS: found 96023 intra-atom interactions NBONDS: found 96017 intra-atom interactions NBONDS: found 96013 intra-atom interactions NBONDS: found 96023 intra-atom interactions NBONDS: found 96040 intra-atom interactions NBONDS: found 96057 intra-atom interactions NBONDS: found 96031 intra-atom interactions NBONDS: found 95995 intra-atom interactions NBONDS: found 95976 intra-atom interactions NBONDS: found 95947 intra-atom interactions NBONDS: found 95945 intra-atom interactions NBONDS: found 95948 intra-atom interactions NBONDS: found 95934 intra-atom interactions NBONDS: found 95925 intra-atom interactions NBONDS: found 95922 intra-atom interactions NBONDS: found 95941 intra-atom interactions NBONDS: found 95977 intra-atom interactions NBONDS: found 96004 intra-atom interactions NBONDS: found 96047 intra-atom interactions NBONDS: found 96066 intra-atom interactions NBONDS: found 96066 intra-atom interactions NBONDS: found 96039 intra-atom interactions NBONDS: found 96021 intra-atom interactions NBONDS: found 95992 intra-atom interactions NBONDS: found 95980 intra-atom interactions NBONDS: found 95952 intra-atom interactions NBONDS: found 95952 intra-atom interactions NBONDS: found 95933 intra-atom interactions NBONDS: found 95922 intra-atom interactions NBONDS: found 95919 intra-atom interactions NBONDS: found 95935 intra-atom interactions NBONDS: found 95954 intra-atom interactions NBONDS: found 95999 intra-atom interactions NBONDS: found 96046 intra-atom interactions NBONDS: found 96091 intra-atom interactions NBONDS: found 96098 intra-atom interactions NBONDS: found 96080 intra-atom interactions NBONDS: found 96056 intra-atom interactions NBONDS: found 96026 intra-atom interactions NBONDS: found 95983 intra-atom interactions NBONDS: found 95953 intra-atom interactions NBONDS: found 95946 intra-atom interactions NBONDS: found 95915 intra-atom interactions NBONDS: found 95905 intra-atom interactions NBONDS: found 95908 intra-atom interactions NBONDS: found 95963 intra-atom interactions NBONDS: found 96006 intra-atom interactions NBONDS: found 96032 intra-atom interactions NBONDS: found 96048 intra-atom interactions NBONDS: found 96047 intra-atom interactions NBONDS: found 96023 intra-atom interactions NBONDS: found 95975 intra-atom interactions NBONDS: found 95968 intra-atom interactions NBONDS: found 95961 intra-atom interactions NBONDS: found 95945 intra-atom interactions NBONDS: found 95936 intra-atom interactions NBONDS: found 95936 intra-atom interactions NBONDS: found 95937 intra-atom interactions NBONDS: found 95957 intra-atom interactions NBONDS: found 95961 intra-atom interactions NBONDS: found 95981 intra-atom interactions NBONDS: found 96005 intra-atom interactions NBONDS: found 96006 intra-atom interactions NBONDS: found 96004 intra-atom interactions NBONDS: found 95988 intra-atom interactions NBONDS: found 95961 intra-atom interactions NBONDS: found 95938 intra-atom interactions NBONDS: found 95901 intra-atom interactions NBONDS: found 95927 intra-atom interactions NBONDS: found 96003 intra-atom interactions NBONDS: found 96085 intra-atom interactions NBONDS: found 96145 intra-atom interactions NBONDS: found 96118 intra-atom interactions NBONDS: found 96051 intra-atom interactions NBONDS: found 95982 intra-atom interactions NBONDS: found 95942 intra-atom interactions NBONDS: found 95902 intra-atom interactions NBONDS: found 95874 intra-atom interactions NBONDS: found 95890 intra-atom interactions NBONDS: found 95932 intra-atom interactions NBONDS: found 95998 intra-atom interactions NBONDS: found 96056 intra-atom interactions NBONDS: found 96092 intra-atom interactions NBONDS: found 96108 intra-atom interactions NBONDS: found 96105 intra-atom interactions NBONDS: found 96079 intra-atom interactions NBONDS: found 96036 intra-atom interactions NBONDS: found 95988 intra-atom interactions NBONDS: found 95937 intra-atom interactions NBONDS: found 95909 intra-atom interactions NBONDS: found 95888 intra-atom interactions NBONDS: found 95889 intra-atom interactions NBONDS: found 95900 intra-atom interactions NBONDS: found 95926 intra-atom interactions NBONDS: found 95958 intra-atom interactions NBONDS: found 95985 intra-atom interactions NBONDS: found 96066 intra-atom interactions NBONDS: found 96091 intra-atom interactions NBONDS: found 96083 intra-atom interactions NBONDS: found 96074 intra-atom interactions NBONDS: found 96042 intra-atom interactions NBONDS: found 96025 intra-atom interactions NBONDS: found 95987 intra-atom interactions NBONDS: found 95981 intra-atom interactions NBONDS: found 95987 intra-atom interactions NBONDS: found 95994 intra-atom interactions NBONDS: found 95997 intra-atom interactions NBONDS: found 96009 intra-atom interactions NBONDS: found 96030 intra-atom interactions NBONDS: found 96051 intra-atom interactions NBONDS: found 96053 intra-atom interactions NBONDS: found 96072 intra-atom interactions NBONDS: found 96061 intra-atom interactions NBONDS: found 96048 intra-atom interactions NBONDS: found 96036 intra-atom interactions NBONDS: found 95994 intra-atom interactions NBONDS: found 95960 intra-atom interactions NBONDS: found 95974 intra-atom interactions NBONDS: found 95992 intra-atom interactions NBONDS: found 96038 intra-atom interactions NBONDS: found 96072 intra-atom interactions NBONDS: found 96098 intra-atom interactions NBONDS: found 96083 intra-atom interactions NBONDS: found 96074 intra-atom interactions NBONDS: found 96047 intra-atom interactions NBONDS: found 96014 intra-atom interactions NBONDS: found 95982 intra-atom interactions NBONDS: found 95960 intra-atom interactions NBONDS: found 95952 intra-atom interactions NBONDS: found 95960 intra-atom interactions NBONDS: found 95981 intra-atom interactions NBONDS: found 96029 intra-atom interactions NBONDS: found 96080 intra-atom interactions NBONDS: found 96119 intra-atom interactions NBONDS: found 96140 intra-atom interactions NBONDS: found 96132 intra-atom interactions NBONDS: found 96116 intra-atom interactions NBONDS: found 96121 intra-atom interactions NBONDS: found 96123 intra-atom interactions NBONDS: found 96108 intra-atom interactions NBONDS: found 96082 intra-atom interactions NBONDS: found 96041 intra-atom interactions NBONDS: found 96018 intra-atom interactions NBONDS: found 95964 intra-atom interactions NBONDS: found 95961 intra-atom interactions NBONDS: found 95979 intra-atom interactions NBONDS: found 96014 intra-atom interactions NBONDS: found 96041 intra-atom interactions NBONDS: found 96088 intra-atom interactions NBONDS: found 96125 intra-atom interactions NBONDS: found 96139 intra-atom interactions NBONDS: found 96106 intra-atom interactions NBONDS: found 96069 intra-atom interactions NBONDS: found 96031 intra-atom interactions NBONDS: found 96030 intra-atom interactions NBONDS: found 96072 intra-atom interactions NBONDS: found 96101 intra-atom interactions NBONDS: found 96073 intra-atom interactions NBONDS: found 96043 intra-atom interactions NBONDS: found 96020 intra-atom interactions NBONDS: found 95995 intra-atom interactions NBONDS: found 95979 intra-atom interactions NBONDS: found 96012 intra-atom interactions NBONDS: found 96062 intra-atom interactions NBONDS: found 96078 intra-atom interactions NBONDS: found 96093 intra-atom interactions NBONDS: found 96076 intra-atom interactions NBONDS: found 96052 intra-atom interactions NBONDS: found 96037 intra-atom interactions NBONDS: found 96040 intra-atom interactions NBONDS: found 96041 intra-atom interactions NBONDS: found 96034 intra-atom interactions NBONDS: found 96026 intra-atom interactions NBONDS: found 96032 intra-atom interactions NBONDS: found 96059 intra-atom interactions NBONDS: found 96077 intra-atom interactions NBONDS: found 96055 intra-atom interactions NBONDS: found 96047 intra-atom interactions NBONDS: found 96023 intra-atom interactions NBONDS: found 96014 intra-atom interactions NBONDS: found 96025 intra-atom interactions NBONDS: found 96030 intra-atom interactions NBONDS: found 96036 intra-atom interactions NBONDS: found 96061 intra-atom interactions NBONDS: found 96073 intra-atom interactions NBONDS: found 96066 intra-atom interactions NBONDS: found 96071 intra-atom interactions NBONDS: found 96082 intra-atom interactions NBONDS: found 96069 intra-atom interactions NBONDS: found 96054 intra-atom interactions NBONDS: found 96057 intra-atom interactions NBONDS: found 96055 intra-atom interactions NBONDS: found 96015 intra-atom interactions NBONDS: found 96003 intra-atom interactions NBONDS: found 96012 intra-atom interactions NBONDS: found 96035 intra-atom interactions NBONDS: found 96043 intra-atom interactions NBONDS: found 96036 intra-atom interactions NBONDS: found 96038 intra-atom interactions NBONDS: found 96049 intra-atom interactions NBONDS: found 96063 intra-atom interactions NBONDS: found 96049 intra-atom interactions NBONDS: found 96030 intra-atom interactions NBONDS: found 96024 intra-atom interactions NBONDS: found 96005 intra-atom interactions NBONDS: found 95996 intra-atom interactions NBONDS: found 95941 intra-atom interactions NBONDS: found 95913 intra-atom interactions NBONDS: found 95891 intra-atom interactions NBONDS: found 95916 intra-atom interactions NBONDS: found 95948 intra-atom interactions NBONDS: found 95999 intra-atom interactions NBONDS: found 96007 intra-atom interactions NBONDS: found 96030 intra-atom interactions NBONDS: found 96038 intra-atom interactions NBONDS: found 96028 intra-atom interactions NBONDS: found 96017 intra-atom interactions NBONDS: found 96008 intra-atom interactions NBONDS: found 96026 intra-atom interactions NBONDS: found 96045 intra-atom interactions NBONDS: found 96047 intra-atom interactions NBONDS: found 96027 intra-atom interactions NBONDS: found 96030 intra-atom interactions NBONDS: found 96032 intra-atom interactions NBONDS: found 96028 intra-atom interactions NBONDS: found 95990 intra-atom interactions NBONDS: found 95941 intra-atom interactions NBONDS: found 95924 intra-atom interactions NBONDS: found 95899 intra-atom interactions NBONDS: found 95908 intra-atom interactions NBONDS: found 95915 intra-atom interactions NBONDS: found 95955 intra-atom interactions NBONDS: found 95997 intra-atom interactions NBONDS: found 95974 intra-atom interactions NBONDS: found 95956 intra-atom interactions NBONDS: found 95946 intra-atom interactions NBONDS: found 95953 intra-atom interactions NBONDS: found 95988 intra-atom interactions NBONDS: found 96026 intra-atom interactions NBONDS: found 96026 intra-atom interactions NBONDS: found 96032 intra-atom interactions NBONDS: found 96020 intra-atom interactions NBONDS: found 95968 intra-atom interactions NBONDS: found 95966 intra-atom interactions NBONDS: found 95979 intra-atom interactions NBONDS: found 95999 intra-atom interactions NBONDS: found 96026 intra-atom interactions NBONDS: found 96026 intra-atom interactions NBONDS: found 96022 intra-atom interactions NBONDS: found 96038 intra-atom interactions NBONDS: found 96082 intra-atom interactions NBONDS: found 96079 intra-atom interactions NBONDS: found 96062 intra-atom interactions NBONDS: found 96046 intra-atom interactions -------------------- final step= 500 at 0.25000 ps --------------------- | E(kin)+E(total)=21672.449 E(kin)=11399.854 temperature=4607.765 | | Etotal =10272.595 grad(E)=165.377 E(BOND)=3314.425 E(ANGL)=2247.565 | | E(DIHE)=9.310 E(IMPR)=4625.760 E(VDW )=75.535 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 27.92069 0.04288 -16.68615 velocity [A/ps] : 1.28338 1.44891 -1.91523 ang. mom. [amu A/ps] : 12303.35872 43315.29293 14141.44898 kin. ener. [Kcal/mol] : 7.67874 CNSsolve> CNSsolve> {- some final minimisation -} CNSsolve> minimize powell POWELL> nstep=500 POWELL> drop=40.0 POWELL> nprint=50 POWELL> end POWELL: number of degrees of freedom= 2490 NBONDS: found 96029 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0000 ----------------------- | Etotal =5150.312 grad(E)=98.393 E(BOND)=737.394 E(ANGL)=934.900 | | E(DIHE)=9.309 E(IMPR)=3410.357 E(VDW )=58.351 | ------------------------------------------------------------------------------- POWELL: Line search terminated POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> print thres=0.02 bonds (atom-i |atom-j ) dist. equil. delta energy const. ( 48 NE | 48 HE ) 1.624 0.980 0.644 414.248 1000.000 ( 53 NE | 53 HE ) 1.357 0.980 0.377 142.224 1000.000 ( 57 NE | 57 HE ) 1.353 0.980 0.373 138.839 1000.000 ( 88 NE | 88 HE ) 1.155 0.980 0.175 30.746 1000.000 ( 90 NE | 90 HE ) 0.879 0.980 -0.101 10.120 1000.000 Number of violations greater 0.020: 5 RMS deviation= 0.030 CNSsolve> print thres=5. angles (atom-i |atom-j |atom-k ) angle equil. delta energy const. ( 48 CD | 48 NE | 48 HE ) 96.418 118.099 -21.681 71.594 500.000 ( 48 HE | 48 NE | 48 CZ ) 103.291 119.249 -15.958 38.787 500.000 ( 53 CD | 53 NE | 53 HE ) 124.292 118.099 6.193 5.842 500.000 ( 53 HE | 53 NE | 53 CZ ) 81.649 119.249 -37.600 215.327 500.000 ( 57 CD | 57 NE | 57 HE ) 90.826 118.099 -27.272 113.284 500.000 ( 57 HE | 57 NE | 57 CZ ) 110.427 119.249 -8.822 11.853 500.000 ( 88 CD | 88 NE | 88 HE ) 97.505 118.099 -20.594 64.594 500.000 ( 88 HE | 88 NE | 88 CZ ) 138.227 119.249 18.978 54.855 500.000 ( 90 CD | 90 NE | 90 HE ) 76.820 118.099 -41.279 259.526 500.000 Number of violations greater 5.000: 9 RMS deviation= 1.803 CNSsolve> CNSsolve> end if CNSsolve> CNSsolve> fix selection=( none ) end SELRPN: 0 atoms have been selected out of 1677 CNSsolve> CNSsolve> end if CNSsolve> CNSsolve> set echo=false end SELRPN: 0 atoms have been selected out of 1677 SHOW: zero atoms selected NEXTCD: condition evaluated as true SELRPN: 0 atoms have been selected out of 1677 CNSsolve> CNSsolve> if (&set_bfactor=true) then NEXTCD: condition evaluated as false CNSsolve> do (b=&bfactor) ( all ) CNSsolve> else CNSsolve> show ave(b) (known and not(store1)) SELRPN: 847 atoms have been selected out of 1677 SHOW: average of selected elements = 0.000000 CNSsolve> do (b=$result) (store1 and (attr b < 0.01)) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> end if CNSsolve> CNSsolve> if (&set_occupancy=true) then NEXTCD: condition evaluated as false CNSsolve> do (q=&occupancy) ( all ) CNSsolve> end if CNSsolve> CNSsolve> set echo=false end SELRPN: 830 atoms have been selected out of 1677 SHOW: sum over selected elements = 830.000000 NEXTCD: condition evaluated as false CNSsolve> CNSsolve> set remarks=reset end CNSsolve> CNSsolve> buffer message BUFFER> to=remarks BUFFER> dump BUFFER> end CNSsolve> CNSsolve> write coordinates output=&coordinate_outfile end ASSFIL: file 1xxx_19_cns.pdb opened. CNSsolve> CNSsolve>stop HEAP: maximum use = 1110308 current use = 0 bytes HEAP: maximum overhead = 952 current overhead = 64 bytes ============================================================ Maximum dynamic memory allocation: 1110308 bytes Maximum dynamic memory overhead: 952 bytes Program started at: 02:03:04 on 28-Dec-04 Program stopped at: 02:03:48 on 28-Dec-04 CPU time used: 28.7900 seconds ============================================================