data_5844 ####################### # Entry information # ####################### save_entry_information _Saveframe_category entry_information _Entry_title ; ZR18 Structure determination ; _BMRB_accession_number 5844 _BMRB_flat_file_name bmr5844.str _Entry_type original _Submission_date 2003-06-25 _Accession_date 2003-06-25 _Entry_origination author _NMR_STAR_version 2.1.1 _Experimental_method NMR _Details . loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Baran Michael C. . 2 Aramini James M. . 3 Huang Y. J. . 4 Xiao Rong . . 5 Acton Thomas B. . 6 Shih Liang-yu . . 7 Montelione Gaetano T. . stop_ loop_ _Saveframe_category_type _Saveframe_category_type_count assigned_chemical_shifts 1 coupling_constants 1 stop_ loop_ _Data_type _Data_type_count "1H chemical shifts" 507 "13C chemical shifts" 389 "15N chemical shifts" 89 "coupling constants" 60 stop_ loop_ _Revision_date _Revision_keyword _Revision_author _Revision_detail 2009-07-13 update BMRB 'added time domain data' 2008-07-01 update BMRB 'update entry citation' 2004-07-26 original author 'original release' stop_ save_ ############################# # Citation for this entry # ############################# save_entry_citation _Saveframe_category entry_citation _Citation_full . _Citation_title 'FAST-NMR: functional annotation screening technology using NMR spectroscopy' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 17117882 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Mercier Kelly A. . 2 Baran Michael . . 3 Ramanathan Viswanathan . . 4 Revesz Peter . . 5 Xiao Rong . . 6 Montelione Gaetano T. . 7 Powers Robert . . stop_ _Journal_abbreviation 'J. Am. Chem. Soc.' _Journal_volume 128 _Journal_issue 47 _Journal_CSD . _Book_chapter_title . _Book_volume . _Book_series . _Book_ISBN . _Conference_state_province . _Conference_abstract_number . _Page_first 15292 _Page_last 15299 _Year 2006 _Details . save_ ####################################### # Cited references within the entry # ####################################### save_ref-1 _Saveframe_category citation _Citation_full 'Kawarabayasi et al. (1998) DNA Res. 5, 55-76' _Citation_title 'Complete sequence and gene organization of the genome of a hyper-thermophilic archaebacterium, Pyrococcus horikoshii OT3.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 9679194 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Kawarabayasi Y. . . 2 Sawada M. . . 3 Horikawa H. . . 4 Haikawa Y. . . 5 Hino Y. . . 6 Yamamoto S. . . 7 Sekine M. . . 8 Baba S. . . 9 Kosugi H. . . 10 Hosoyama A. . . 11 Nagai Y. . . 12 Sakai M. . . 13 Ogura K. . . 14 Otsuka R. . . 15 Nakazawa H. . . 16 Takamiya M. . . 17 Ohfuku Y. . . 18 Funahashi T. . . 19 Tanaka T. . . 20 Kudoh Y. . . 21 Yamazaki J. . . 22 Kushida N. . . 23 Oguchi A. . . 24 Aoki K. . . 25 Kikuchi H. . . stop_ _Journal_abbreviation 'DNA Res.' _Journal_name_full 'DNA research : an international journal for rapid publication of reports on genes and genomes' _Journal_volume 5 _Journal_issue 2 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 55 _Page_last 76 _Year 1998 _Details ; The complete sequence of the genome of a hyper-thermophilic archaebacterium, Pyrococcus horikoshii OT3, has been determined by assembling the sequences of the physical map-based contigs of fosmid clones and of long polymerase chain reaction (PCR) products which were used for gap-filling. The entire length of the genome was 1,738,505 bp. The authenticity of the entire genome sequence was supported by restriction analysis of long PCR products, which were directly amplified from the genomic DNA. As the potential protein-coding regions, a total of 2061 open reading frames (ORFs) were assigned, and by similarity search against public databases, 406 (19.7%) were related to genes with putative function and 453 (22.0%) to the sequences registered but with unknown function. The remaining 1202 ORFs (58.3%) did not show any significant similarity to the sequences in the databases. Sequence comparison among the assigned ORFs in the genome provided evidence that a considerable number of ORFs were generated by sequence duplication. By similarity search, 11 ORFs were assumed to contain the intein elements. The RNA genes identified were a single 16S-23S rRNA operon, two 5S rRNA genes and 46 tRNA genes including two with the intron structure. All the assigned ORFs and RNA coding regions occupied 91.25% of the whole genome. The data presented in this paper are available on the internet at http:@www.nite.go.jp. ; save_ save_ref-2 _Saveframe_category citation _Citation_full ; Delaglio F., Grzesiek S., Vuister G.W., Zhu G., Pfeifer J., Bax A. J. Biomol. NMR. (1995) 6, 277-293. ; _Citation_title 'NMRPipe: a multidimensional spectral processing system based on UNIX pipes.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 8520220 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Delaglio F. . . 2 Grzesiek S. . . 3 Vuister 'G. W.' W. . 4 Zhu G. . . 5 Pfeifer J. . . 6 Bax A. . . stop_ _Journal_abbreviation 'J. Biomol. NMR' _Journal_name_full 'Journal of biomolecular NMR' _Journal_volume 6 _Journal_issue 3 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 277 _Page_last 293 _Year 1995 _Details ; The NMRPipe system is a UNIX software environment of processing, graphics, and analysis tools designed to meet current routine and research-oriented multidimensional processing requirements, and to anticipate and accommodate future demands and developments. The system is based on UNIX pipes, which allow programs running simultaneously to exchange streams of data under user control. In an NMRPipe processing scheme, a stream of spectral data flows through a pipeline of processing programs, each of which performs one component of the overall scheme, such as Fourier transformation or linear prediction. Complete multidimensional processing schemes are constructed as simple UNIX shell scripts. The processing modules themselves maintain and exploit accurate records of data sizes, detection modes, and calibration information in all dimensions, so that schemes can be constructed without the need to explicitly define or anticipate data sizes or storage details of real and imaginary channels during processing. The asynchronous pipeline scheme provides other substantial advantages, including high flexibility, favorable processing speeds, choice of both all-in-memory and disk-bound processing, easy adaptation to different data formats, simpler software development and maintenance, and the ability to distribute processing tasks on multi-CPU computers and computer networks. ; save_ save_ref-3 _Saveframe_category citation _Citation_full ; T. D. Goddard and D. G. Kneller, SPARKY 3, University of California, San Francisco. ; _Citation_title . _Citation_status . _Citation_type . _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID ? _Journal_abbreviation . _Journal_name_full . _Journal_volume . _Journal_issue . _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first . _Page_last . _Year . _Details . save_ save_ref-4 _Saveframe_category citation _Citation_full ; Zimmerman D.E., Kulikowski C.A., Huang Y., Feng W., Tashiro M., Shimotakahara S., Chien C., Powers R., Montelione G.T. J. Mol. Biol. (1997) 269, 592-610 ; _Citation_title 'Automated analysis of protein NMR assignments using methods from artificial intelligence.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 9217263 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Zimmerman 'D. E.' E. . 2 Kulikowski 'C. A.' A. . 3 Huang Y. . . 4 Feng W. . . 5 Tashiro M. . . 6 Shimotakahara S. . . 7 Chien C. . . 8 Powers R. . . 9 Montelione 'G. T.' T. . stop_ _Journal_abbreviation 'J. Mol. Biol.' _Journal_name_full 'Journal of molecular biology' _Journal_volume 269 _Journal_issue 4 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 592 _Page_last 610 _Year 1997 _Details ; An expert system for determining resonance assignments from NMR spectra of proteins is described. Given the amino acid sequence, a two-dimensional 15N-1H heteronuclear correlation spectrum and seven to eight three-dimensional triple-resonance NMR spectra for seven proteins, AUTOASSIGN obtained an average of 98% of sequence-specific spin-system assignments with an error rate of less than 0.5%. Execution times on a Sparc 10 workstation varied from 16 seconds for smaller proteins with simple spectra to one to nine minutes for medium size proteins exhibiting numerous extra spin systems attributed to conformational isomerization. AUTOASSIGN combines symbolic constraint satisfaction methods with a domain-specific knowledge base to exploit the logical structure of the sequential assignment problem, the specific features of the various NMR experiments, and the expected chemical shift frequencies of different amino acids. The current implementation specializes in the analysis of data derived from the most sensitive of the currently available triple-resonance experiments. Potential extensions of the system for analysis of additional types of protein NMR data are also discussed. ; save_ save_ref-5 _Saveframe_category citation _Citation_full ; Huang, Y.J. (2001). Automated determination of protein structures from NMR data by iterative analysis of self-consistent contact patterns, PhD thesis, Rutgers University, New Brunswick, NJ. ; _Citation_title . _Citation_status . _Citation_type . _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID ? _Journal_abbreviation . _Journal_name_full . _Journal_volume . _Journal_issue . _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first . _Page_last . _Year . _Details . save_ save_ref-6 _Saveframe_category citation _Citation_full ; Baran, M.; Moseley, H.N.B.; Sahota, G.; Montelione, G.T. J. Biomol. NMR 2002, 24: 113-121. SPINS: Standardized ProteIn NMR Storage. A data dictionary and object-oriented relational database for archiving protein NMR spectra. ; _Citation_title 'SPINS: standardized protein NMR storage. A data dictionary and object-oriented relational database for archiving protein NMR spectra.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 12495027 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Baran 'Michael C' C. . 2 Moseley 'Hunter N B' N. . 3 Sahota Gurmukh . . 4 Montelione 'Gaetano T' T. . stop_ _Journal_abbreviation 'J. Biomol. NMR' _Journal_name_full 'Journal of biomolecular NMR' _Journal_volume 24 _Journal_issue 2 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 113 _Page_last 121 _Year 2002 _Details ; Modern protein NMR spectroscopy laboratories have a rapidly growing need for an easily queried local archival system of raw experimental NMR datasets. SPINS (Standardized ProteIn Nmr Storage) is an object-oriented relational database that provides facilities for high-volume NMR data archival, organization of analyses, and dissemination of results to the public domain by automatic preparation of the header files required for submission of data to the BioMagResBank (BMRB). The current version of SPINS coordinates the process from data collection to BMRB deposition of raw NMR data by standardizing and integrating the storage and retrieval of these data in a local laboratory file system. Additional facilities include a data mining query tool, graphical database administration tools, and a NMRStar v2. 1.1 file generator. SPINS also includes a user-friendly internet-based graphical user interface, which is optionally integrated with Varian VNMR NMR data collection software. This paper provides an overview of the data model underlying the SPINS database system, a description of its implementation in Oracle, and an outline of future plans for the SPINS project. ; save_ save_ref-7 _Saveframe_category citation _Citation_full 'see: www-nmr.cabm.rutgers.edu/NMRsoftware/nmr_software.html' _Citation_title . _Citation_status . _Citation_type . _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID ? _Journal_abbreviation . _Journal_name_full . _Journal_volume . _Journal_issue . _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first . _Page_last . _Year . _Details . save_ save_ref-8 _Saveframe_category citation _Citation_full ; Cornilescu, G., Delaglio, F., Bax, A. (1999) J. Biomol. NMR 13, 289-302. ; _Citation_title 'Protein backbone angle restraints from searching a database for chemical shift and sequence homology.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 10212987 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Cornilescu G. . . 2 Delaglio F. . . 3 Bax A. . . stop_ _Journal_abbreviation 'J. Biomol. NMR' _Journal_name_full 'Journal of biomolecular NMR' _Journal_volume 13 _Journal_issue 3 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 289 _Page_last 302 _Year 1999 _Details ; Chemical shifts of backbone atoms in proteins are exquisitely sensitive to local conformation, and homologous proteins show quite similar patterns of secondary chemical shifts. The inverse of this relation is used to search a database for triplets of adjacent residues with secondary chemical shifts and sequence similarity which provide the best match to the query triplet of interest. The database contains 13C alpha, 13C beta, 13C', 1H alpha and 15N chemical shifts for 20 proteins for which a high resolution X-ray structure is available. The computer program TALOS was developed to search this database for strings of residues with chemical shift and residue type homology. The relative importance of the weighting factors attached to the secondary chemical shifts of the five types of resonances relative to that of sequence similarity was optimized empirically. TALOS yields the 10 triplets which have the closest similarity in secondary chemical shift and amino acid sequence to those of the query sequence. If the central residues in these 10 triplets exhibit similar phi and psi backbone angles, their averages can reliably be used as angular restraints for the protein whose structure is being studied. Tests carried out for proteins of known structure indicate that the root-mean-square difference (rmsd) between the output of TALOS and the X-ray derived backbone angles is about 15 degrees. Approximately 3% of the predictions made by TALOS are found to be in error. ; save_ save_ref-9 _Saveframe_category citation _Citation_full ; Guntert P, Mumenthaler C, Wuthrich K. (1997) J. Mol. Biol. 273, 283-98. ; _Citation_title 'Torsion angle dynamics for NMR structure calculation with the new program DYANA.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 9367762 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Guntert P. . . 2 Mumenthaler C. . . 3 Wuthrich K. . . stop_ _Journal_abbreviation 'J. Mol. Biol.' _Journal_name_full 'Journal of molecular biology' _Journal_volume 273 _Journal_issue 1 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 283 _Page_last 298 _Year 1997 _Details ; The new program DYANA (DYnamics Algorithm for Nmr Applications) for efficient calculation of three-dimensional protein and nucleic acid structures from distance constraints and torsion angle constraints collected by nuclear magnetic resonance (NMR) experiments performs simulated annealing by molecular dynamics in torsion angle space and uses a fast recursive algorithm to integrate the equations of motions. Torsion angle dynamics can be more efficient than molecular dynamics in Cartesian coordinate space because of the reduced number of degrees of freedom and the concomitant absence of high-frequency bond and angle vibrations, which allows for the use of longer time-steps and/or higher temperatures in the structure calculation. It also represents a significant advance over the variable target function method in torsion angle space with the REDAC strategy used by the predecessor program DIANA. DYANA computation times per accepted conformer in the "bundle" used to represent the NMR structure compare favorably with those of other presently available structure calculation algorithms, and are of the order of 160 seconds for a protein of 165 amino acid residues when using a DEC Alpha 8400 5/300 computer. Test calculations starting from conformers with random torsion angle values further showed that DYANA is capable of efficient calculation of high-quality protein structures with up to 400 amino acid residues, and of nucleic acid structures. ; save_ save_ref-10 _Saveframe_category citation _Citation_full 'see: www-nmr.cabm.rutgers.edu/NMRsoftware/nmr_software.html' _Citation_title . _Citation_status . _Citation_type . _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID ? _Journal_abbreviation . _Journal_name_full . _Journal_volume . _Journal_issue . _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first . _Page_last . _Year . _Details . save_ ################################## # Molecular system description # ################################## save_system_ZR18 _Saveframe_category molecular_system _Mol_system_name ZR18 _Abbreviation_common ZR18 _Enzyme_commission_number . loop_ _Mol_system_component_name _Mol_label ZR18 $ZR18 stop_ _System_molecular_weight . _System_physical_state native _System_oligomer_state monomer _System_paramagnetic no _System_thiol_state 'not present' _Database_query_date . _Details . save_ ######################## # Monomeric polymers # ######################## save_ZR18 _Saveframe_category monomeric_polymer _Mol_type polymer _Mol_polymer_class protein _Name_common ZR18 _Abbreviation_common ZR18 _Molecular_mass 9406.65 _Mol_thiol_state 'not present' _Details . ############################## # Polymer residue sequence # ############################## _Residue_count 91 _Mol_residue_sequence ; MKIISISETPNHNTMKITLS ESREGMTSDTYTKVDDSQPA FINDILKVEGVKSIFHVMDF ISVDKENDANWETVLPKVEA VFELEHHHHHH ; loop_ _Residue_seq_code _Residue_label 1 MET 2 LYS 3 ILE 4 ILE 5 SER 6 ILE 7 SER 8 GLU 9 THR 10 PRO 11 ASN 12 HIS 13 ASN 14 THR 15 MET 16 LYS 17 ILE 18 THR 19 LEU 20 SER 21 GLU 22 SER 23 ARG 24 GLU 25 GLY 26 MET 27 THR 28 SER 29 ASP 30 THR 31 TYR 32 THR 33 LYS 34 VAL 35 ASP 36 ASP 37 SER 38 GLN 39 PRO 40 ALA 41 PHE 42 ILE 43 ASN 44 ASP 45 ILE 46 LEU 47 LYS 48 VAL 49 GLU 50 GLY 51 VAL 52 LYS 53 SER 54 ILE 55 PHE 56 HIS 57 VAL 58 MET 59 ASP 60 PHE 61 ILE 62 SER 63 VAL 64 ASP 65 LYS 66 GLU 67 ASN 68 ASP 69 ALA 70 ASN 71 TRP 72 GLU 73 THR 74 VAL 75 LEU 76 PRO 77 LYS 78 VAL 79 GLU 80 ALA 81 VAL 82 PHE 83 GLU 84 LEU 85 GLU 86 HIS 87 HIS 88 HIS 89 HIS 90 HIS 91 HIS stop_ _Sequence_homology_query_date . _Sequence_homology_query_revised_last_date 2014-07-28 loop_ _Database_name _Database_accession_code _Database_entry_mol_name _Sequence_query_to_submitted_percentage _Sequence_subject_length _Sequence_identity _Sequence_positive _Sequence_homology_expectation_value PDB 1PQX "Solution Nmr Structure Of Staphylococcus Aureus Protein Sav1430. Northeast Strucutral Genomics Consortium Target Zr18." 100.00 91 100.00 100.00 3.08e-58 PDB 2M6Q "Refined Solution Nmr Structure Of Staphylococcus Aureus Protein Sav1430. Northeast Strucutral Genomics Consortium Target Zr18" 100.00 91 100.00 100.00 3.08e-58 PDB 2M8W "Restrained Cs-rosetta Solution Nmr Structure Of Staphylococcus Aureus Protein Sav1430. Northeast Structural Genomics Target Zr1" 100.00 91 100.00 100.00 3.08e-58 DBJ BAB42523 "conserved hypothetical protein [Staphylococcus aureus subsp. aureus N315]" 91.21 83 100.00 100.00 6.58e-52 DBJ BAB57592 "conserved hypothetical protein [Staphylococcus aureus subsp. aureus Mu50]" 91.21 83 100.00 100.00 6.58e-52 DBJ BAB95185 "conserved hypothetical protein [Staphylococcus aureus subsp. aureus MW2]" 91.21 83 100.00 100.00 6.58e-52 DBJ BAF67613 "conserved hypothetical protein [Staphylococcus aureus subsp. aureus str. Newman]" 91.21 83 100.00 100.00 6.58e-52 DBJ BAF78301 "conserved hypothetical protein [Staphylococcus aureus subsp. aureus Mu3]" 91.21 83 100.00 100.00 6.58e-52 EMBL CAG40440 "hypothetical protein SAR1443 [Staphylococcus aureus subsp. aureus MRSA252]" 91.21 83 98.80 100.00 1.75e-51 EMBL CAG43149 "hypothetical protein SAS1373 [Staphylococcus aureus subsp. aureus MSSA476]" 91.21 83 100.00 100.00 6.58e-52 EMBL CAI80974 "conserved hypothetical protein [Staphylococcus aureus RF122]" 91.21 83 98.80 100.00 1.75e-51 EMBL CAQ49855 "conserved virulence factor C [Staphylococcus aureus subsp. aureus ST398]" 91.21 83 98.80 100.00 1.75e-51 EMBL CBI49309 "hypothetical protein SATW20_14310 [Staphylococcus aureus subsp. aureus TW20]" 91.21 83 100.00 100.00 6.58e-52 GB AAW36666 "conserved domain protein [Staphylococcus aureus subsp. aureus COL]" 91.21 83 100.00 100.00 6.58e-52 GB ABD22863 "conserved hypothetical protein [Staphylococcus aureus subsp. aureus USA300_FPR3757]" 91.21 83 100.00 100.00 6.58e-52 GB ABD30530 "conserved hypothetical protein [Staphylococcus aureus subsp. aureus NCTC 8325]" 91.21 83 100.00 100.00 6.58e-52 GB ABQ49284 "hypothetical protein SaurJH9_1490 [Staphylococcus aureus subsp. aureus JH9]" 91.21 83 100.00 100.00 6.58e-52 GB ABR52368 "conserved hypothetical protein [Staphylococcus aureus subsp. aureus JH1]" 91.21 83 100.00 100.00 6.58e-52 REF NP_371954 "hypothetical protein SAV1430 [Staphylococcus aureus subsp. aureus Mu50]" 91.21 83 100.00 100.00 6.58e-52 REF NP_374544 "hypothetical protein SA1263 [Staphylococcus aureus subsp. aureus N315]" 91.21 83 100.00 100.00 6.58e-52 REF NP_646137 "hypothetical protein MW1320 [Staphylococcus aureus subsp. aureus MW2]" 91.21 83 100.00 100.00 6.58e-52 REF WP_000668809 "hypothetical protein [Staphylococcus aureus]" 91.21 83 98.80 98.80 3.48e-51 REF WP_000691941 "hypothetical protein [Staphylococcus aureus]" 91.21 83 98.80 98.80 3.11e-50 stop_ save_ #################### # Natural source # #################### save_natural_source _Saveframe_category natural_source loop_ _Mol_label _Organism_name_common _NCBI_taxonomy_ID _Superkingdom _Kingdom _Genus _Species _Strain _Gene_mnemonic $ZR18 'Staphylococcus aureus' 158878 Bacteria Firmicutes Bacillales Staphylococcus Mu50 SAV1430 stop_ save_ ######################### # Experimental source # ######################### save_experimental_source _Saveframe_category experimental_source loop_ _Mol_label _Production_method _Host_organism_name_common _Genus _Species _Strain _Vector_type _Vector_name $ZR18 'recombinat technology' E.coli Escherichia coli BL21pMgk plasmid PET21 stop_ save_ ##################################### # Sample contents and methodology # ##################################### ######################## # Sample description # ######################## save_sample_1 _Saveframe_category sample _Sample_type solution _Details . loop_ _Mol_label _Concentration_value _Concentration_value_units _Isotopic_labeling $ZR18 1.3 mM '[U-100% 15N; U-5% 13C]' MES 20 mM . NaCl 100 mM . CaCl2 5 mM . DTT 10 mM . NaN3 0.02 % . D2O 5 % . stop_ save_ save_sample_2 _Saveframe_category sample _Sample_type solution _Details . loop_ _Mol_label _Concentration_value _Concentration_value_units _Isotopic_labeling $ZR18 1.15 mM '[U-100% 15N; U-100% 13C]' MES 20 mM . NaCl 100 mM . CaCl2 5 mM . DTT 10 mM . NaN3 0.02 % . D2O 5 % . stop_ save_ ############################ # Computer software used # ############################ save_HYPER _Saveframe_category software _Name HYPER _Version 3.2 loop_ _Task 'data analysis' stop_ _Details ; In-house developed software for the determination of dihedral angle restraints from NMR data. ; _Citation_label $ref-7 save_ save_TALOS _Saveframe_category software _Name TALOS _Version 2.1 loop_ _Task 'data analysis' stop_ _Details ; Determination of torsion angle restraints based on chemical shift data and sequence homology. ; _Citation_label $ref-8 save_ save_DYANA _Saveframe_category software _Name DYANA _Version 1.5 loop_ _Task 'structure refinement' stop_ _Details 'Structure refinement using torsion angle dynamics.' _Citation_label $ref-9 save_ save_nmrPipe _Saveframe_category software _Name VNMR6.1C _Version . loop_ _Task 'data collection' stop_ _Details . _Citation_label $ref-1 save_ save_software _Saveframe_category software _Name nmrPipe _Version . loop_ _Task 'raw spectral data processing' stop_ _Details . _Citation_label $ref-2 save_ save_sparky _Saveframe_category software _Name Sparky _Version . loop_ _Task 'spectral visualization' stop_ _Details . _Citation_label $ref-3 save_ save_autoassign _Saveframe_category software _Name autoAssign _Version . loop_ _Task 'automated backbone assignments' stop_ _Details . _Citation_label $ref-4 save_ save_auotStructure _Saveframe_category software _Name AutoStructure _Version . loop_ _Task 'automated structural determination' stop_ _Details . _Citation_label $ref-5 save_ save_SPINS _Saveframe_category software _Name SPINS _Version . loop_ _Task 'integrated spectral analysus software' stop_ _Details . _Citation_label $ref-6 save_ ######################### # Experimental detail # ######################### ################################## # NMR Spectrometer definitions # ################################## save_NMR_spectrometer_1 _Saveframe_category NMR_spectrometer _Manufacturer Varian _Model 'UNITY Inova' _Field_strength 500 _Details . save_ save_NMR_spectrometer_2 _Saveframe_category NMR_spectrometer _Manufacturer Varian _Model 'UNITY Inova' _Field_strength 600 _Details . save_ ############################# # NMR applied experiments # ############################# save_NH_HSQC_1 _Saveframe_category NMR_applied_experiment _Experiment_name 'NH HSQC' _Sample_label $sample_1 save_ save_HNCO_2 _Saveframe_category NMR_applied_experiment _Experiment_name HNCO _Sample_label $sample_1 save_ save_HNCACB_3 _Saveframe_category NMR_applied_experiment _Experiment_name HNCACB _Sample_label $sample_1 save_ save_HNCOCACB_4 _Saveframe_category NMR_applied_experiment _Experiment_name HNCOCACB _Sample_label $sample_1 save_ save_HNCA_5 _Saveframe_category NMR_applied_experiment _Experiment_name HNCA _Sample_label $sample_1 save_ save_HNCOCA_6 _Saveframe_category NMR_applied_experiment _Experiment_name HNCOCA _Sample_label $sample_1 save_ save_HCC(CO)NH-TOCSY_7 _Saveframe_category NMR_applied_experiment _Experiment_name HCC(CO)NH-TOCSY _Sample_label $sample_1 save_ save_H(CCCO)NH-TOCSY_8 _Saveframe_category NMR_applied_experiment _Experiment_name H(CCCO)NH-TOCSY _Sample_label $sample_1 save_ save_HACACONH_9 _Saveframe_category NMR_applied_experiment _Experiment_name HACACONH _Sample_label $sample_1 save_ save_HACANH_10 _Saveframe_category NMR_applied_experiment _Experiment_name HACANH _Sample_label $sample_1 save_ save_CH_HSQC_11 _Saveframe_category NMR_applied_experiment _Experiment_name 'CH HSQC' _Sample_label $sample_1 save_ save_HCCH-COSY_12 _Saveframe_category NMR_applied_experiment _Experiment_name HCCH-COSY _Sample_label $sample_1 save_ save_13C_EDITED_NOESY_13 _Saveframe_category NMR_applied_experiment _Experiment_name '13C EDITED NOESY' _Sample_label $sample_1 save_ save_HBCBCGCDHD_(A)_14 _Saveframe_category NMR_applied_experiment _Experiment_name 'HBCBCGCDHD (A)' _Sample_label $sample_1 save_ save_AROMATICTOCSY_RD_15 _Saveframe_category NMR_applied_experiment _Experiment_name 'AROMATICTOCSY RD' _Sample_label $sample_1 save_ save_hetNOE_16 _Saveframe_category NMR_applied_experiment _Experiment_name hetNOE _Sample_label $sample_2 save_ save_HNHA_17 _Saveframe_category NMR_applied_experiment _Experiment_name HNHA _Sample_label $sample_2 save_ save_HBCBCGCDHD_(B)_18 _Saveframe_category NMR_applied_experiment _Experiment_name 'HBCBCGCDHD (B)' _Sample_label $sample_1 save_ save_CH_HSQC_19 _Saveframe_category NMR_applied_experiment _Experiment_name 'CH HSQC' _Sample_label $sample_2 save_ save_NMR_spectrometer_expt_1 _Saveframe_category NMR_applied_experiment _Experiment_name 'NH HSQC' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_2 _Saveframe_category NMR_applied_experiment _Experiment_name HNCO _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_3 _Saveframe_category NMR_applied_experiment _Experiment_name HNCACB _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_4 _Saveframe_category NMR_applied_experiment _Experiment_name HNCOCACB _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_5 _Saveframe_category NMR_applied_experiment _Experiment_name HNCA _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_6 _Saveframe_category NMR_applied_experiment _Experiment_name HNCOCA _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_7 _Saveframe_category NMR_applied_experiment _Experiment_name HCC(CO)NH-TOCSY _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_8 _Saveframe_category NMR_applied_experiment _Experiment_name H(CCCO)NH-TOCSY _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_9 _Saveframe_category NMR_applied_experiment _Experiment_name HACACONH _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_10 _Saveframe_category NMR_applied_experiment _Experiment_name HACANH _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_11 _Saveframe_category NMR_applied_experiment _Experiment_name 'CH HSQC' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_12 _Saveframe_category NMR_applied_experiment _Experiment_name HCCH-COSY _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_13 _Saveframe_category NMR_applied_experiment _Experiment_name '13C EDITED NOESY' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_14 _Saveframe_category NMR_applied_experiment _Experiment_name 'HBCBCGCDHD (A)' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_15 _Saveframe_category NMR_applied_experiment _Experiment_name 'AROMATICTOCSY RD' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_16 _Saveframe_category NMR_applied_experiment _Experiment_name hetNOE _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_17 _Saveframe_category NMR_applied_experiment _Experiment_name HNHA _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_18 _Saveframe_category NMR_applied_experiment _Experiment_name 'HBCBCGCDHD (B)' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_19 _Saveframe_category NMR_applied_experiment _Experiment_name 'CH HSQC' _BMRB_pulse_sequence_accession_number . _Details . save_ ####################### # Sample conditions # ####################### save_Ex-cond_1 _Saveframe_category sample_conditions _Details . loop_ _Variable_type _Variable_value _Variable_value_error _Variable_value_units pH 6.5 0.5 n/a temperature 298 0.1 K 'ionic strength' 0.1 . M stop_ save_ #################### # NMR parameters # #################### ############################## # Assigned chemical shifts # ############################## ################################ # Chemical shift referencing # ################################ save_chemical_shift_reference _Saveframe_category chemical_shift_reference _Details . loop_ _Mol_common_name _Atom_type _Atom_isotope_number _Atom_group _Chem_shift_units _Chem_shift_value _Reference_method _Reference_type _External_reference_sample_geometry _External_reference_location _External_reference_axis _Indirect_shift_ratio_citation_label DSS H 1 'methyl protons' ppm 0.00 internal direct cylindrical external parallel $ref-2 DSS C 13 'methyl protons' ppm 0.00 external indirect cylindrical external parallel $ref-2 DSS N 15 'methyl protons' ppm 0.00 external indirect cylindrical external parallel $ref-2 stop_ save_ ################################### # Assigned chemical shift lists # ################################### ################################################################### # Chemical Shift Ambiguity Index Value Definitions # # # # The values other than 1 are used for those atoms with different # # chemical shifts that cannot be assigned to stereospecific atoms # # or to specific residues or chains. # # # # Index Value Definition # # # # 1 Unique (including isolated methyl protons, # # geminal atoms, and geminal methyl # # groups with identical chemical shifts) # # (e.g. ILE HD11, HD12, HD13 protons) # # 2 Ambiguity of geminal atoms or geminal methyl # # proton groups (e.g. ASP HB2 and HB3 # # protons, LEU CD1 and CD2 carbons, or # # LEU HD11, HD12, HD13 and HD21, HD22, # # HD23 methyl protons) # # 3 Aromatic atoms on opposite sides of # # symmetrical rings (e.g. TYR HE1 and HE2 # # protons) # # 4 Intraresidue ambiguities (e.g. LYS HG and # # HD protons or TRP HZ2 and HZ3 protons) # # 5 Interresidue ambiguities (LYS 12 vs. LYS 27) # # 6 Intermolecular ambiguities (e.g. ASP 31 CA # # in monomer 1 and ASP 31 CA in monomer 2 # # of an asymmetrical homodimer, duplex # # DNA assignments, or other assignments # # that may apply to atoms in one or more # # molecule in the molecular assembly) # # 9 Ambiguous, specific ambiguity not defined # # # ################################################################### save_chemical_shift_ZR18_1 _Saveframe_category assigned_chemical_shifts _Details . loop_ _Sample_label $sample_1 $sample_2 stop_ _Sample_conditions_label $Ex-cond_1 _Chem_shift_reference_set_label $chemical_shift_reference _Mol_system_component_name ZR18 _Text_data_format . _Text_data . loop_ _Atom_shift_assign_ID _Residue_author_seq_code _Residue_seq_code _Residue_label _Atom_name _Atom_type _Chem_shift_value _Chem_shift_value_error _Chem_shift_ambiguity_code 1 . 1 MET HA H 3.823 0.02 1 2 . 1 MET HB2 H 1.956 0.02 2 3 . 1 MET HB3 H 1.976 0.02 2 4 . 1 MET HG2 H 2.151 0.02 2 5 . 1 MET HG3 H 2.036 0.02 2 6 . 1 MET C C 170.978 0.1 1 7 . 1 MET CA C 55.193 0.1 1 8 . 1 MET CB C 34.019 0.1 1 9 . 1 MET CG C 31.136 0.1 1 10 . 2 LYS H H 8.560 0.02 1 11 . 2 LYS HA H 4.620 0.02 1 12 . 2 LYS HB2 H 1.494 0.02 2 13 . 2 LYS HB3 H 1.329 0.02 2 14 . 2 LYS HG2 H 1.384 0.02 2 15 . 2 LYS HG3 H 1.223 0.02 2 16 . 2 LYS HD2 H 1.604 0.02 2 17 . 2 LYS HD3 H 1.651 0.02 2 18 . 2 LYS HE2 H 2.909 0.02 2 19 . 2 LYS C C 174.608 0.1 1 20 . 2 LYS CA C 54.206 0.1 1 21 . 2 LYS CB C 35.916 0.1 1 22 . 2 LYS CG C 24.011 0.1 1 23 . 2 LYS CD C 29.373 0.1 1 24 . 2 LYS CE C 42.086 0.1 1 25 . 2 LYS N N 122.783 0.1 1 26 . 3 ILE H H 8.373 0.02 1 27 . 3 ILE HA H 3.659 0.02 1 28 . 3 ILE HB H 1.486 0.02 1 29 . 3 ILE HG12 H 0.781 0.02 2 30 . 3 ILE HG13 H 0.060 0.02 2 31 . 3 ILE HG2 H 0.595 0.02 1 32 . 3 ILE HD1 H 0.775 0.02 1 33 . 3 ILE C C 176.569 0.1 1 34 . 3 ILE CA C 62.565 0.1 1 35 . 3 ILE CB C 38.792 0.1 1 36 . 3 ILE CG1 C 27.255 0.1 1 37 . 3 ILE CG2 C 17.200 0.1 1 38 . 3 ILE CD1 C 14.332 0.1 1 39 . 3 ILE N N 120.076 0.1 1 40 . 4 ILE H H 9.159 0.02 1 41 . 4 ILE HA H 4.135 0.02 1 42 . 4 ILE HB H 1.613 0.02 1 43 . 4 ILE HG12 H 1.164 0.02 2 44 . 4 ILE HG13 H 1.025 0.02 2 45 . 4 ILE HG2 H 0.802 0.02 1 46 . 4 ILE HD1 H 0.640 0.02 1 47 . 4 ILE C C 176.194 0.1 1 48 . 4 ILE CA C 60.586 0.1 1 49 . 4 ILE CB C 37.466 0.1 1 50 . 4 ILE CG1 C 26.368 0.1 1 51 . 4 ILE CG2 C 16.570 0.1 1 52 . 4 ILE CD1 C 10.304 0.1 1 53 . 4 ILE N N 127.239 0.1 1 54 . 5 SER H H 7.482 0.02 1 55 . 5 SER HA H 4.545 0.02 1 56 . 5 SER HB2 H 3.784 0.02 1 57 . 5 SER HB3 H 3.784 0.02 1 58 . 5 SER C C 171.580 0.1 1 59 . 5 SER CA C 57.655 0.1 1 60 . 5 SER CB C 65.178 0.1 1 61 . 5 SER N N 112.465 0.1 1 62 . 6 ILE H H 8.402 0.02 1 63 . 6 ILE HA H 4.683 0.02 1 64 . 6 ILE HB H 1.604 0.02 1 65 . 6 ILE HG12 H 1.557 0.02 2 66 . 6 ILE HG13 H 0.890 0.02 2 67 . 6 ILE HG2 H 0.702 0.02 1 68 . 6 ILE HD1 H 0.829 0.02 1 69 . 6 ILE C C 175.289 0.1 1 70 . 6 ILE CA C 61.373 0.1 1 71 . 6 ILE CB C 40.612 0.1 1 72 . 6 ILE CG1 C 28.113 0.1 1 73 . 6 ILE CG2 C 17.923 0.1 1 74 . 6 ILE CD1 C 13.730 0.1 1 75 . 6 ILE N N 122.071 0.1 1 76 . 7 SER H H 9.201 0.02 1 77 . 7 SER HA H 4.814 0.02 1 78 . 7 SER HB2 H 3.622 0.02 2 79 . 7 SER HB3 H 3.744 0.02 2 80 . 7 SER C C 172.681 0.1 1 81 . 7 SER CA C 56.896 0.1 1 82 . 7 SER CB C 66.053 0.1 1 83 . 7 SER N N 121.348 0.1 1 84 . 8 GLU H H 8.542 0.02 1 85 . 8 GLU HA H 4.669 0.02 1 86 . 8 GLU HB2 H 2.113 0.02 2 87 . 8 GLU HB3 H 1.938 0.02 2 88 . 8 GLU HG2 H 2.241 0.02 1 89 . 8 GLU HG3 H 2.241 0.02 1 90 . 8 GLU C C 176.388 0.1 1 91 . 8 GLU CA C 56.702 0.1 1 92 . 8 GLU CB C 30.736 0.1 1 93 . 8 GLU CG C 36.787 0.1 1 94 . 8 GLU N N 123.371 0.1 1 95 . 9 THR H H 8.663 0.02 1 96 . 9 THR HA H 4.958 0.02 1 97 . 9 THR HB H 4.516 0.02 1 98 . 9 THR HG2 H 1.108 0.02 1 99 . 9 THR CA C 60.316 0.1 1 100 . 9 THR CB C 69.478 0.1 1 101 . 9 THR CG2 C 21.130 0.1 1 102 . 9 THR N N 112.855 0.1 1 103 . 10 PRO HA H 4.376 0.02 1 104 . 10 PRO HB2 H 2.465 0.02 2 105 . 10 PRO HB3 H 1.842 0.02 2 106 . 10 PRO HG2 H 2.072 0.02 2 107 . 10 PRO HG3 H 1.915 0.02 2 108 . 10 PRO HD2 H 3.839 0.02 2 109 . 10 PRO HD3 H 3.643 0.02 2 110 . 10 PRO C C 176.126 0.1 1 111 . 10 PRO CA C 64.454 0.1 1 112 . 10 PRO CB C 32.008 0.1 1 113 . 10 PRO CG C 27.971 0.1 1 114 . 10 PRO CD C 51.341 0.1 1 115 . 11 ASN H H 7.621 0.02 1 116 . 11 ASN HA H 4.933 0.02 1 117 . 11 ASN HB2 H 2.860 0.02 2 118 . 11 ASN HB3 H 2.663 0.02 2 119 . 11 ASN HD21 H 7.634 0.02 1 120 . 11 ASN HD22 H 6.983 0.02 1 121 . 11 ASN CA C 51.559 0.1 1 122 . 11 ASN CB C 39.809 0.1 1 123 . 11 ASN N N 114.720 0.1 1 124 . 11 ASN ND2 N 113.599 0.1 1 125 . 12 HIS HA H 4.702 0.02 1 126 . 12 HIS HB2 H 3.491 0.02 2 127 . 12 HIS HB3 H 3.409 0.02 2 128 . 12 HIS HD2 H 7.311 0.02 1 129 . 12 HIS C C 175.663 0.1 1 130 . 12 HIS CA C 58.463 0.1 1 131 . 12 HIS CB C 28.533 0.1 1 132 . 12 HIS CD2 C 120.513 0.1 1 133 . 13 ASN H H 8.511 0.02 1 134 . 13 ASN HA H 5.018 0.02 1 135 . 13 ASN HB2 H 2.723 0.02 2 136 . 13 ASN HB3 H 3.330 0.02 2 137 . 13 ASN HD21 H 7.375 0.02 1 138 . 13 ASN HD22 H 7.222 0.02 1 139 . 13 ASN C C 174.367 0.1 1 140 . 13 ASN CA C 53.890 0.1 1 141 . 13 ASN CB C 38.854 0.1 1 142 . 13 ASN N N 115.359 0.1 1 143 . 13 ASN ND2 N 113.227 0.1 1 144 . 14 THR H H 8.234 0.02 1 145 . 14 THR HA H 5.980 0.02 1 146 . 14 THR HB H 3.824 0.02 1 147 . 14 THR HG2 H 1.213 0.02 1 148 . 14 THR C C 174.278 0.1 1 149 . 14 THR CA C 62.729 0.1 1 150 . 14 THR CB C 71.595 0.1 1 151 . 14 THR CG2 C 22.584 0.1 1 152 . 14 THR N N 117.676 0.1 1 153 . 15 MET H H 8.994 0.02 1 154 . 15 MET HA H 4.868 0.02 1 155 . 15 MET HB2 H 1.282 0.02 2 156 . 15 MET HB3 H 0.912 0.02 2 157 . 15 MET HG2 H 1.282 0.02 2 158 . 15 MET HG3 H 1.252 0.02 2 159 . 15 MET HE H 1.149 0.02 1 160 . 15 MET C C 173.748 0.1 1 161 . 15 MET CA C 53.076 0.1 1 162 . 15 MET CB C 34.692 0.1 1 163 . 15 MET CG C 31.698 0.1 1 164 . 15 MET CE C 15.886 0.1 1 165 . 15 MET N N 127.785 0.1 1 166 . 16 LYS H H 8.740 0.02 1 167 . 16 LYS HA H 5.017 0.02 1 168 . 16 LYS HB2 H 1.347 0.02 2 169 . 16 LYS HB3 H 1.672 0.02 2 170 . 16 LYS HG2 H 1.058 0.02 2 171 . 16 LYS HG3 H 0.877 0.02 2 172 . 16 LYS HD2 H 1.087 0.02 1 173 . 16 LYS HD3 H 1.087 0.02 1 174 . 16 LYS HE2 H 2.033 0.02 2 175 . 16 LYS HE3 H 1.431 0.02 2 176 . 16 LYS C C 175.183 0.1 1 177 . 16 LYS CA C 55.840 0.1 1 178 . 16 LYS CB C 34.524 0.1 1 179 . 16 LYS CG C 25.371 0.1 1 180 . 16 LYS CD C 29.625 0.1 1 181 . 16 LYS CE C 41.036 0.1 1 182 . 16 LYS N N 125.158 0.1 1 183 . 17 ILE H H 9.821 0.02 1 184 . 17 ILE HA H 4.738 0.02 1 185 . 17 ILE HB H 2.089 0.02 1 186 . 17 ILE HG12 H 0.993 0.02 2 187 . 17 ILE HG13 H 1.552 0.02 2 188 . 17 ILE HG2 H 0.706 0.02 1 189 . 17 ILE HD1 H 0.796 0.02 1 190 . 17 ILE C C 175.153 0.1 1 191 . 17 ILE CA C 60.903 0.1 1 192 . 17 ILE CB C 39.202 0.1 1 193 . 17 ILE CG1 C 27.425 0.1 1 194 . 17 ILE CG2 C 18.505 0.1 1 195 . 17 ILE CD1 C 13.630 0.1 1 196 . 17 ILE N N 131.726 0.1 1 197 . 18 THR H H 9.005 0.02 1 198 . 18 THR HA H 4.707 0.02 1 199 . 18 THR HB H 4.056 0.02 1 200 . 18 THR HG2 H 1.303 0.02 1 201 . 18 THR C C 174.158 0.1 1 202 . 18 THR CA C 63.777 0.1 1 203 . 18 THR CB C 68.945 0.1 1 204 . 18 THR CG2 C 21.426 0.1 1 205 . 18 THR N N 124.752 0.1 1 206 . 19 LEU H H 9.640 0.02 1 207 . 19 LEU HA H 5.008 0.02 1 208 . 19 LEU HB2 H 1.870 0.02 2 209 . 19 LEU HB3 H 1.622 0.02 2 210 . 19 LEU HG H 1.816 0.02 1 211 . 19 LEU HD1 H 0.871 0.02 1 212 . 19 LEU HD2 H 0.339 0.02 1 213 . 19 LEU C C 177.145 0.1 1 214 . 19 LEU CA C 53.302 0.1 1 215 . 19 LEU CB C 45.236 0.1 1 216 . 19 LEU CG C 27.274 0.1 1 217 . 19 LEU CD1 C 25.636 0.1 1 218 . 19 LEU CD2 C 23.644 0.1 1 219 . 19 LEU N N 128.781 0.1 1 220 . 20 SER H H 8.121 0.02 1 221 . 20 SER HA H 4.033 0.02 1 222 . 20 SER HB2 H 4.268 0.02 2 223 . 20 SER HB3 H 3.584 0.02 2 224 . 20 SER C C 173.483 0.1 1 225 . 20 SER CA C 59.557 0.1 1 226 . 20 SER CB C 63.159 0.1 1 227 . 20 SER N N 110.268 0.1 1 228 . 21 GLU H H 6.961 0.02 1 229 . 21 GLU HA H 4.734 0.02 1 230 . 21 GLU HB2 H 1.735 0.02 2 231 . 21 GLU HB3 H 2.082 0.02 2 232 . 21 GLU HG2 H 2.227 0.02 2 233 . 21 GLU HG3 H 2.265 0.02 2 234 . 21 GLU C C 174.805 0.1 1 235 . 21 GLU CA C 54.655 0.1 1 236 . 21 GLU CB C 33.366 0.1 1 237 . 21 GLU CG C 36.076 0.1 1 238 . 21 GLU N N 118.393 0.1 1 239 . 22 SER H H 8.623 0.02 1 240 . 22 SER HA H 4.670 0.02 1 241 . 22 SER HB2 H 3.678 0.02 2 242 . 22 SER HB3 H 3.679 0.02 2 243 . 22 SER C C 175.260 0.1 1 244 . 22 SER CA C 57.137 0.1 1 245 . 22 SER CB C 65.168 0.1 1 246 . 22 SER N N 115.935 0.1 1 247 . 23 ARG H H 8.191 0.02 1 248 . 23 ARG HA H 4.188 0.02 1 249 . 23 ARG HB2 H 1.625 0.02 2 250 . 23 ARG HB3 H 1.804 0.02 2 251 . 23 ARG HG2 H 1.535 0.02 2 252 . 23 ARG HG3 H 1.282 0.02 2 253 . 23 ARG HD2 H 2.422 0.02 2 254 . 23 ARG HD3 H 2.421 0.02 2 255 . 23 ARG C C 176.502 0.1 1 256 . 23 ARG CA C 56.683 0.1 1 257 . 23 ARG CB C 31.369 0.1 1 258 . 23 ARG CG C 27.264 0.1 1 259 . 23 ARG CD C 41.989 0.1 1 260 . 23 ARG N N 123.783 0.1 1 261 . 24 GLU H H 8.661 0.02 1 262 . 24 GLU HA H 4.203 0.02 1 263 . 24 GLU HB2 H 2.084 0.02 2 264 . 24 GLU HB3 H 1.987 0.02 2 265 . 24 GLU HG2 H 2.269 0.02 1 266 . 24 GLU HG3 H 2.269 0.02 1 267 . 24 GLU C C 177.273 0.1 1 268 . 24 GLU CA C 56.863 0.1 1 269 . 24 GLU CB C 29.913 0.1 1 270 . 24 GLU CG C 36.206 0.1 1 271 . 24 GLU N N 122.151 0.1 1 272 . 25 GLY H H 8.463 0.02 1 273 . 25 GLY HA2 H 3.981 0.02 2 274 . 25 GLY HA3 H 3.989 0.02 2 275 . 25 GLY C C 174.562 0.1 1 276 . 25 GLY CA C 45.348 0.1 1 277 . 25 GLY N N 111.861 0.1 1 278 . 26 MET H H 8.661 0.02 1 279 . 26 MET HA H 4.681 0.02 1 280 . 26 MET HB2 H 2.272 0.02 2 281 . 26 MET HB3 H 1.913 0.02 2 282 . 26 MET HG2 H 2.646 0.02 2 283 . 26 MET HG3 H 2.621 0.02 2 284 . 26 MET HE H 1.723 0.02 1 285 . 26 MET C C 176.411 0.1 1 286 . 26 MET CA C 54.635 0.1 1 287 . 26 MET CB C 32.103 0.1 1 288 . 26 MET CG C 32.262 0.1 1 289 . 26 MET CE C 17.385 0.1 1 290 . 26 MET N N 118.985 0.1 1 291 . 27 THR H H 7.601 0.02 1 292 . 27 THR HA H 4.276 0.02 1 293 . 27 THR HB H 4.234 0.02 1 294 . 27 THR HG2 H 1.233 0.02 1 295 . 27 THR C C 173.646 0.1 1 296 . 27 THR CA C 62.137 0.1 1 297 . 27 THR CB C 70.256 0.1 1 298 . 27 THR CG2 C 21.838 0.1 1 299 . 27 THR N N 112.356 0.1 1 300 . 28 SER H H 8.370 0.02 1 301 . 28 SER HA H 4.937 0.02 1 302 . 28 SER HB2 H 3.473 0.02 2 303 . 28 SER HB3 H 3.530 0.02 2 304 . 28 SER C C 172.911 0.1 1 305 . 28 SER CA C 56.309 0.1 1 306 . 28 SER CB C 67.031 0.1 1 307 . 28 SER N N 116.874 0.1 1 308 . 29 ASP H H 7.885 0.02 1 309 . 29 ASP HA H 4.823 0.02 1 310 . 29 ASP HB2 H 1.969 0.02 2 311 . 29 ASP HB3 H 1.723 0.02 2 312 . 29 ASP C C 173.762 0.1 1 313 . 29 ASP CA C 54.208 0.1 1 314 . 29 ASP CB C 47.234 0.1 1 315 . 29 ASP N N 117.074 0.1 1 316 . 30 THR H H 8.189 0.02 1 317 . 30 THR HA H 5.123 0.02 1 318 . 30 THR HB H 3.917 0.02 1 319 . 30 THR HG2 H 1.145 0.02 1 320 . 30 THR C C 173.612 0.1 1 321 . 30 THR CA C 61.941 0.1 1 322 . 30 THR CB C 70.143 0.1 1 323 . 30 THR CG2 C 21.130 0.1 1 324 . 30 THR N N 115.249 0.1 1 325 . 31 TYR H H 9.791 0.02 1 326 . 31 TYR HA H 5.153 0.02 1 327 . 31 TYR HB2 H 2.881 0.02 2 328 . 31 TYR HB3 H 2.635 0.02 2 329 . 31 TYR HD1 H 6.928 0.02 1 330 . 31 TYR HE1 H 6.727 0.02 1 331 . 31 TYR HD2 H 6.928 0.02 1 332 . 31 TYR HE2 H 6.727 0.02 1 333 . 31 TYR C C 175.531 0.1 1 334 . 31 TYR CA C 55.813 0.1 1 335 . 31 TYR CB C 41.157 0.1 1 336 . 31 TYR CD1 C 133.633 0.1 1 337 . 31 TYR CE1 C 117.584 0.1 1 338 . 31 TYR CD2 C 133.633 0.1 1 339 . 31 TYR CE2 C 117.584 0.1 1 340 . 31 TYR N N 127.894 0.1 1 341 . 32 THR H H 9.143 0.02 1 342 . 32 THR HA H 4.593 0.02 1 343 . 32 THR HB H 4.460 0.02 1 344 . 32 THR HG2 H 1.179 0.02 1 345 . 32 THR C C 173.565 0.1 1 346 . 32 THR CA C 61.611 0.1 1 347 . 32 THR CB C 71.109 0.1 1 348 . 32 THR CG2 C 22.032 0.1 1 349 . 32 THR N N 111.101 0.1 1 350 . 33 LYS H H 8.351 0.02 1 351 . 33 LYS HA H 4.717 0.02 1 352 . 33 LYS HB2 H 1.657 0.02 2 353 . 33 LYS HB3 H 1.337 0.02 2 354 . 33 LYS HG2 H 1.514 0.02 2 355 . 33 LYS HD2 H 1.677 0.02 2 356 . 33 LYS HD3 H 1.775 0.02 2 357 . 33 LYS HE2 H 2.966 0.02 2 358 . 33 LYS C C 174.595 0.1 1 359 . 33 LYS CA C 54.424 0.1 1 360 . 33 LYS CB C 35.335 0.1 1 361 . 33 LYS CG C 23.313 0.1 1 362 . 33 LYS CD C 29.126 0.1 1 363 . 33 LYS CE C 42.253 0.1 1 364 . 33 LYS N N 122.475 0.1 1 365 . 34 VAL H H 8.480 0.02 1 366 . 34 VAL HA H 3.618 0.02 1 367 . 34 VAL HB H 1.799 0.02 1 368 . 34 VAL HG1 H 0.714 0.02 1 369 . 34 VAL HG2 H 0.914 0.02 1 370 . 34 VAL C C 175.796 0.1 1 371 . 34 VAL CA C 63.644 0.1 1 372 . 34 VAL CB C 31.891 0.1 1 373 . 34 VAL CG1 C 21.249 0.1 1 374 . 34 VAL CG2 C 22.395 0.1 1 375 . 34 VAL N N 122.663 0.1 1 376 . 35 ASP H H 7.714 0.02 1 377 . 35 ASP HA H 4.705 0.02 1 378 . 35 ASP HB2 H 2.535 0.02 2 379 . 35 ASP HB3 H 2.194 0.02 2 380 . 35 ASP C C 176.718 0.1 1 381 . 35 ASP CA C 54.310 0.1 1 382 . 35 ASP CB C 46.385 0.1 1 383 . 35 ASP N N 125.352 0.1 1 384 . 36 ASP H H 9.090 0.02 1 385 . 36 ASP HA H 4.341 0.02 1 386 . 36 ASP HB2 H 2.686 0.02 2 387 . 36 ASP HB3 H 2.684 0.02 2 388 . 36 ASP C C 176.050 0.1 1 389 . 36 ASP CA C 57.092 0.1 1 390 . 36 ASP CB C 40.630 0.1 1 391 . 36 ASP N N 128.363 0.1 1 392 . 37 SER H H 8.950 0.02 1 393 . 37 SER HA H 4.370 0.02 1 394 . 37 SER HB2 H 3.945 0.02 2 395 . 37 SER HB3 H 4.008 0.02 2 396 . 37 SER C C 174.959 0.1 1 397 . 37 SER CA C 59.738 0.1 1 398 . 37 SER CB C 63.838 0.1 1 399 . 37 SER N N 114.863 0.1 1 400 . 38 GLN H H 7.631 0.02 1 401 . 38 GLN HA H 4.519 0.02 1 402 . 38 GLN HB2 H 2.012 0.02 2 403 . 38 GLN HB3 H 1.311 0.02 2 404 . 38 GLN HG2 H 2.390 0.02 2 405 . 38 GLN HG3 H 2.398 0.02 2 406 . 38 GLN HE21 H 7.284 0.02 1 407 . 38 GLN HE22 H 8.204 0.02 1 408 . 38 GLN CA C 53.582 0.1 1 409 . 38 GLN CB C 26.372 0.1 1 410 . 38 GLN CG C 35.863 0.1 1 411 . 38 GLN N N 121.850 0.1 1 412 . 38 GLN NE2 N 112.222 0.1 1 413 . 39 PRO HA H 4.310 0.02 1 414 . 39 PRO HB2 H 2.474 0.02 2 415 . 39 PRO HB3 H 1.134 0.02 2 416 . 39 PRO HG2 H 2.051 0.02 2 417 . 39 PRO HG3 H 1.956 0.02 2 418 . 39 PRO HD2 H 3.895 0.02 2 419 . 39 PRO HD3 H 2.667 0.02 2 420 . 39 PRO C C 177.152 0.1 1 421 . 39 PRO CA C 62.492 0.1 1 422 . 39 PRO CB C 32.913 0.1 1 423 . 39 PRO CG C 27.862 0.1 1 424 . 39 PRO CD C 50.001 0.1 1 425 . 40 ALA H H 8.729 0.02 1 426 . 40 ALA HA H 3.972 0.02 1 427 . 40 ALA HB H 1.426 0.02 1 428 . 40 ALA C C 179.843 0.1 1 429 . 40 ALA CA C 56.013 0.1 1 430 . 40 ALA CB C 17.680 0.1 1 431 . 40 ALA N N 127.083 0.1 1 432 . 41 PHE H H 8.059 0.02 1 433 . 41 PHE HA H 4.129 0.02 1 434 . 41 PHE HB2 H 2.491 0.02 2 435 . 41 PHE HB3 H 2.847 0.02 2 436 . 41 PHE HD1 H 7.092 0.02 1 437 . 41 PHE HD2 H 7.092 0.02 1 438 . 41 PHE HE1 H 6.749 0.02 1 439 . 41 PHE HE2 H 6.749 0.02 1 440 . 41 PHE HZ H 7.108 0.02 1 441 . 41 PHE C C 175.662 0.1 1 442 . 41 PHE CA C 59.819 0.1 1 443 . 41 PHE CB C 36.834 0.1 1 444 . 41 PHE CD1 C 132.191 0.1 1 445 . 41 PHE CD2 C 132.191 0.1 1 446 . 41 PHE CE1 C 128.727 0.1 1 447 . 41 PHE CE2 C 128.727 0.1 1 448 . 41 PHE CZ C 131.398 0.1 1 449 . 41 PHE N N 112.471 0.1 1 450 . 42 ILE H H 5.614 0.02 1 451 . 42 ILE HA H 3.098 0.02 1 452 . 42 ILE HB H 1.563 0.02 1 453 . 42 ILE HG12 H 0.310 0.02 2 454 . 42 ILE HG13 H -0.078 0.02 2 455 . 42 ILE HG2 H -0.131 0.02 1 456 . 42 ILE HD1 H 0.166 0.02 1 457 . 42 ILE C C 177.110 0.1 1 458 . 42 ILE CA C 59.822 0.1 1 459 . 42 ILE CB C 34.539 0.1 1 460 . 42 ILE CG1 C 24.886 0.1 1 461 . 42 ILE CG2 C 16.343 0.1 1 462 . 42 ILE CD1 C 9.941 0.1 1 463 . 42 ILE N N 120.594 0.1 1 464 . 43 ASN H H 7.082 0.02 1 465 . 43 ASN HA H 4.223 0.02 1 466 . 43 ASN HB2 H 2.484 0.02 2 467 . 43 ASN HB3 H 2.761 0.02 2 468 . 43 ASN HD21 H 7.386 0.02 1 469 . 43 ASN HD22 H 6.898 0.02 1 470 . 43 ASN C C 176.972 0.1 1 471 . 43 ASN CA C 55.562 0.1 1 472 . 43 ASN CB C 37.808 0.1 1 473 . 43 ASN N N 117.481 0.1 1 474 . 43 ASN ND2 N 114.020 0.1 1 475 . 44 ASP H H 8.379 0.02 1 476 . 44 ASP HA H 4.247 0.02 1 477 . 44 ASP HB2 H 2.500 0.02 2 478 . 44 ASP HB3 H 2.567 0.02 2 479 . 44 ASP C C 179.368 0.1 1 480 . 44 ASP CA C 57.538 0.1 1 481 . 44 ASP CB C 40.670 0.1 1 482 . 44 ASP N N 117.588 0.1 1 483 . 45 ILE H H 7.604 0.02 1 484 . 45 ILE HA H 3.687 0.02 1 485 . 45 ILE HB H 1.872 0.02 1 486 . 45 ILE HG12 H 2.358 0.02 2 487 . 45 ILE HG13 H 0.845 0.02 2 488 . 45 ILE HG2 H 0.974 0.02 1 489 . 45 ILE HD1 H 0.941 0.02 1 490 . 45 ILE C C 177.480 0.1 1 491 . 45 ILE CA C 65.907 0.1 1 492 . 45 ILE CB C 37.886 0.1 1 493 . 45 ILE CG1 C 30.284 0.1 1 494 . 45 ILE CG2 C 19.491 0.1 1 495 . 45 ILE CD1 C 14.733 0.1 1 496 . 45 ILE N N 121.473 0.1 1 497 . 46 LEU H H 7.863 0.02 1 498 . 46 LEU HA H 3.833 0.02 1 499 . 46 LEU HB2 H 1.838 0.02 2 500 . 46 LEU HB3 H 1.215 0.02 2 501 . 46 LEU HG H 1.632 0.02 1 502 . 46 LEU HD1 H 0.454 0.02 1 503 . 46 LEU HD2 H 0.550 0.02 1 504 . 46 LEU C C 178.165 0.1 1 505 . 46 LEU CA C 57.080 0.1 1 506 . 46 LEU CB C 41.967 0.1 1 507 . 46 LEU CG C 26.699 0.1 1 508 . 46 LEU CD1 C 27.035 0.1 1 509 . 46 LEU CD2 C 22.131 0.1 1 510 . 46 LEU N N 118.055 0.1 1 511 . 47 LYS H H 7.161 0.02 1 512 . 47 LYS HA H 4.044 0.02 1 513 . 47 LYS HB2 H 1.987 0.02 2 514 . 47 LYS HB3 H 1.732 0.02 2 515 . 47 LYS HG2 H 1.725 0.02 2 516 . 47 LYS HG3 H 1.357 0.02 2 517 . 47 LYS HD2 H 1.581 0.02 2 518 . 47 LYS HD3 H 1.709 0.02 2 519 . 47 LYS HE2 H 2.803 0.02 2 520 . 47 LYS HE3 H 2.792 0.02 2 521 . 47 LYS C C 177.017 0.1 1 522 . 47 LYS CA C 57.174 0.1 1 523 . 47 LYS CB C 33.031 0.1 1 524 . 47 LYS CG C 25.683 0.1 1 525 . 47 LYS CD C 29.714 0.1 1 526 . 47 LYS CE C 42.290 0.1 1 527 . 47 LYS N N 116.384 0.1 1 528 . 48 VAL H H 7.791 0.02 1 529 . 48 VAL HA H 3.626 0.02 1 530 . 48 VAL HB H 2.524 0.02 1 531 . 48 VAL HG1 H 1.011 0.02 1 532 . 48 VAL HG2 H 0.994 0.02 1 533 . 48 VAL C C 176.014 0.1 1 534 . 48 VAL CA C 63.747 0.1 1 535 . 48 VAL CB C 30.987 0.1 1 536 . 48 VAL CG1 C 22.915 0.1 1 537 . 48 VAL CG2 C 22.383 0.1 1 538 . 48 VAL N N 124.655 0.1 1 539 . 49 GLU H H 8.569 0.02 1 540 . 49 GLU HA H 3.941 0.02 1 541 . 49 GLU HB2 H 1.996 0.02 2 542 . 49 GLU HB3 H 1.911 0.02 2 543 . 49 GLU HG2 H 2.253 0.02 1 544 . 49 GLU HG3 H 2.253 0.02 1 545 . 49 GLU C C 176.461 0.1 1 546 . 49 GLU CA C 58.393 0.1 1 547 . 49 GLU CB C 29.169 0.1 1 548 . 49 GLU CG C 36.101 0.1 1 549 . 49 GLU N N 130.358 0.1 1 550 . 50 GLY H H 8.768 0.02 1 551 . 50 GLY HA2 H 4.185 0.02 2 552 . 50 GLY HA3 H 3.384 0.02 2 553 . 50 GLY C C 173.991 0.1 1 554 . 50 GLY CA C 44.705 0.1 1 555 . 50 GLY N N 114.068 0.1 1 556 . 51 VAL H H 7.751 0.02 1 557 . 51 VAL HA H 3.768 0.02 1 558 . 51 VAL HB H 2.306 0.02 1 559 . 51 VAL HG1 H 0.806 0.02 1 560 . 51 VAL HG2 H 0.754 0.02 1 561 . 51 VAL C C 175.262 0.1 1 562 . 51 VAL CA C 64.610 0.1 1 563 . 51 VAL CB C 31.534 0.1 1 564 . 51 VAL CG1 C 21.719 0.1 1 565 . 51 VAL CG2 C 22.636 0.1 1 566 . 51 VAL N N 120.498 0.1 1 567 . 52 LYS H H 9.379 0.02 1 568 . 52 LYS HA H 4.481 0.02 1 569 . 52 LYS HB2 H 1.512 0.02 2 570 . 52 LYS HB3 H 1.341 0.02 2 571 . 52 LYS HG2 H 1.434 0.02 2 572 . 52 LYS HG3 H 1.238 0.02 2 573 . 52 LYS HD2 H 1.666 0.02 2 574 . 52 LYS HE2 H 2.993 0.02 2 575 . 52 LYS C C 175.385 0.1 1 576 . 52 LYS CA C 57.163 0.1 1 577 . 52 LYS CB C 35.786 0.1 1 578 . 52 LYS CG C 24.515 0.1 1 579 . 52 LYS CD C 29.438 0.1 1 580 . 52 LYS CE C 41.825 0.1 1 581 . 52 LYS N N 129.475 0.1 1 582 . 53 SER H H 7.655 0.02 1 583 . 53 SER HA H 4.903 0.02 1 584 . 53 SER HB2 H 3.881 0.02 2 585 . 53 SER HB3 H 3.767 0.02 2 586 . 53 SER C C 172.396 0.1 1 587 . 53 SER CA C 57.730 0.1 1 588 . 53 SER CB C 64.653 0.1 1 589 . 53 SER N N 108.885 0.1 1 590 . 54 ILE H H 8.783 0.02 1 591 . 54 ILE HA H 5.054 0.02 1 592 . 54 ILE HB H 1.846 0.02 1 593 . 54 ILE HG12 H 1.660 0.02 2 594 . 54 ILE HG13 H 1.062 0.02 2 595 . 54 ILE HG2 H 1.021 0.02 1 596 . 54 ILE HD1 H 0.886 0.02 1 597 . 54 ILE C C 173.244 0.1 1 598 . 54 ILE CA C 60.602 0.1 1 599 . 54 ILE CB C 44.277 0.1 1 600 . 54 ILE CG1 C 27.818 0.1 1 601 . 54 ILE CG2 C 18.616 0.1 1 602 . 54 ILE CD1 C 18.297 0.1 1 603 . 54 ILE N N 119.458 0.1 1 604 . 55 PHE H H 9.142 0.02 1 605 . 55 PHE HA H 5.598 0.02 1 606 . 55 PHE HB2 H 3.256 0.02 2 607 . 55 PHE HB3 H 3.159 0.02 2 608 . 55 PHE HD1 H 7.333 0.02 1 609 . 55 PHE HD2 H 7.333 0.02 1 610 . 55 PHE HE1 H 7.264 0.02 1 611 . 55 PHE HE2 H 7.264 0.02 1 612 . 55 PHE HZ H 6.775 0.02 1 613 . 55 PHE C C 173.761 0.1 1 614 . 55 PHE CA C 55.938 0.1 1 615 . 55 PHE CB C 41.641 0.1 1 616 . 55 PHE CD1 C 131.916 0.1 1 617 . 55 PHE CD2 C 131.916 0.1 1 618 . 55 PHE CE1 C 131.172 0.1 1 619 . 55 PHE CE2 C 131.172 0.1 1 620 . 55 PHE CZ C 130.724 0.1 1 621 . 55 PHE N N 129.664 0.1 1 622 . 56 HIS H H 8.824 0.02 1 623 . 56 HIS HA H 5.531 0.02 1 624 . 56 HIS HB2 H 3.239 0.02 2 625 . 56 HIS HB3 H 2.670 0.02 2 626 . 56 HIS HD2 H 7.256 0.02 1 627 . 56 HIS C C 172.379 0.1 1 628 . 56 HIS CA C 52.836 0.1 1 629 . 56 HIS CB C 37.218 0.1 1 630 . 56 HIS CD2 C 118.543 0.1 1 631 . 56 HIS N N 129.160 0.1 1 632 . 57 VAL H H 8.072 0.02 1 633 . 57 VAL HA H 3.774 0.02 1 634 . 57 VAL HB H 1.217 0.02 1 635 . 57 VAL HG1 H 0.278 0.02 1 636 . 57 VAL HG2 H 0.787 0.02 1 637 . 57 VAL C C 169.848 0.1 1 638 . 57 VAL CA C 60.176 0.1 1 639 . 57 VAL CB C 34.140 0.1 1 640 . 57 VAL CG1 C 21.368 0.1 1 641 . 57 VAL CG2 C 22.132 0.1 1 642 . 57 VAL N N 127.671 0.1 1 643 . 58 MET H H 9.140 0.02 1 644 . 58 MET HA H 3.804 0.02 1 645 . 58 MET HB2 H 2.136 0.02 2 646 . 58 MET HB3 H 2.212 0.02 2 647 . 58 MET HG2 H 2.666 0.02 2 648 . 58 MET HG3 H 2.668 0.02 2 649 . 58 MET C C 175.156 0.1 1 650 . 58 MET CA C 57.730 0.1 1 651 . 58 MET CB C 31.555 0.1 1 652 . 58 MET CG C 32.834 0.1 1 653 . 58 MET N N 119.988 0.1 1 654 . 59 ASP H H 8.751 0.02 1 655 . 59 ASP HA H 4.938 0.02 1 656 . 59 ASP HB2 H 2.431 0.02 2 657 . 59 ASP HB3 H 3.354 0.02 2 658 . 59 ASP C C 174.038 0.1 1 659 . 59 ASP CA C 52.397 0.1 1 660 . 59 ASP CB C 39.908 0.1 1 661 . 59 ASP N N 122.637 0.1 1 662 . 60 PHE H H 8.971 0.02 1 663 . 60 PHE HA H 5.885 0.02 1 664 . 60 PHE HB2 H 2.981 0.02 2 665 . 60 PHE HB3 H 2.938 0.02 2 666 . 60 PHE HD1 H 7.217 0.02 1 667 . 60 PHE HD2 H 7.217 0.02 1 668 . 60 PHE HE1 H 7.320 0.02 1 669 . 60 PHE HE2 H 7.320 0.02 1 670 . 60 PHE HZ H 7.181 0.02 2 671 . 60 PHE C C 173.686 0.1 1 672 . 60 PHE CA C 56.469 0.1 1 673 . 60 PHE CB C 42.851 0.1 1 674 . 60 PHE CD1 C 133.198 0.1 1 675 . 60 PHE CD2 C 133.198 0.1 1 676 . 60 PHE CE1 C 130.678 0.1 1 677 . 60 PHE CE2 C 130.678 0.1 1 678 . 60 PHE CZ C 129.380 0.1 1 679 . 60 PHE N N 115.459 0.1 1 680 . 61 ILE H H 8.965 0.02 1 681 . 61 ILE HA H 5.780 0.02 1 682 . 61 ILE HB H 1.766 0.02 1 683 . 61 ILE HG12 H 2.033 0.02 2 684 . 61 ILE HG13 H 1.270 0.02 2 685 . 61 ILE HG2 H 0.792 0.02 1 686 . 61 ILE HD1 H 0.923 0.02 1 687 . 61 ILE C C 175.675 0.1 1 688 . 61 ILE CA C 58.280 0.1 1 689 . 61 ILE CB C 41.093 0.1 1 690 . 61 ILE CG1 C 25.725 0.1 1 691 . 61 ILE CG2 C 18.323 0.1 1 692 . 61 ILE CD1 C 14.183 0.1 1 693 . 61 ILE N N 109.286 0.1 1 694 . 62 SER H H 9.952 0.02 1 695 . 62 SER HA H 5.645 0.02 1 696 . 62 SER HB2 H 4.036 0.02 1 697 . 62 SER HB3 H 4.036 0.02 1 698 . 62 SER C C 175.117 0.1 1 699 . 62 SER CA C 56.894 0.1 1 700 . 62 SER CB C 64.262 0.1 1 701 . 62 SER N N 121.046 0.1 1 702 . 63 VAL H H 9.529 0.02 1 703 . 63 VAL HA H 4.699 0.02 1 704 . 63 VAL HB H 2.243 0.02 1 705 . 63 VAL HG1 H 1.170 0.02 1 706 . 63 VAL HG2 H 1.139 0.02 1 707 . 63 VAL C C 173.893 0.1 1 708 . 63 VAL CA C 61.707 0.1 1 709 . 63 VAL CB C 34.447 0.1 1 710 . 63 VAL CG1 C 22.012 0.1 1 711 . 63 VAL CG2 C 22.190 0.1 1 712 . 63 VAL N N 129.348 0.1 1 713 . 64 ASP H H 9.093 0.02 1 714 . 64 ASP HA H 6.215 0.02 1 715 . 64 ASP HB2 H 2.429 0.02 2 716 . 64 ASP HB3 H 2.828 0.02 2 717 . 64 ASP C C 176.649 0.1 1 718 . 64 ASP CA C 52.125 0.1 1 719 . 64 ASP CB C 41.773 0.1 1 720 . 64 ASP N N 127.869 0.1 1 721 . 65 LYS H H 9.071 0.02 1 722 . 65 LYS HA H 5.210 0.02 1 723 . 65 LYS HB2 H 1.118 0.02 2 724 . 65 LYS HB3 H 0.449 0.02 2 725 . 65 LYS HG2 H 0.968 0.02 2 726 . 65 LYS HG3 H 0.746 0.02 2 727 . 65 LYS HD2 H 0.173 0.02 2 728 . 65 LYS HD3 H -1.016 0.02 2 729 . 65 LYS HE2 H 2.639 0.02 2 730 . 65 LYS HE3 H 2.643 0.02 2 731 . 65 LYS C C 175.936 0.1 1 732 . 65 LYS CA C 52.981 0.1 1 733 . 65 LYS CB C 34.777 0.1 1 734 . 65 LYS CG C 22.321 0.1 1 735 . 65 LYS CD C 28.363 0.1 1 736 . 65 LYS CE C 42.792 0.1 1 737 . 65 LYS N N 120.964 0.1 1 738 . 66 GLU H H 8.282 0.02 1 739 . 66 GLU HA H 4.143 0.02 1 740 . 66 GLU HB2 H 2.186 0.02 2 741 . 66 GLU HB3 H 1.609 0.02 2 742 . 66 GLU HG2 H 2.300 0.02 2 743 . 66 GLU HG3 H 2.051 0.02 2 744 . 66 GLU C C 178.756 0.1 1 745 . 66 GLU CA C 55.751 0.1 1 746 . 66 GLU CB C 30.121 0.1 1 747 . 66 GLU CG C 35.198 0.1 1 748 . 66 GLU N N 118.741 0.1 1 749 . 67 ASN H H 9.071 0.02 1 750 . 67 ASN HA H 4.385 0.02 1 751 . 67 ASN HB2 H 2.780 0.02 2 752 . 67 ASN HB3 H 2.778 0.02 2 753 . 67 ASN HD21 H 7.719 0.02 1 754 . 67 ASN HD22 H 6.991 0.02 1 755 . 67 ASN C C 176.421 0.1 1 756 . 67 ASN CA C 56.903 0.1 1 757 . 67 ASN CB C 39.018 0.1 1 758 . 67 ASN N N 122.060 0.1 1 759 . 67 ASN ND2 N 114.356 0.1 1 760 . 68 ASP H H 8.322 0.02 1 761 . 68 ASP HA H 4.527 0.02 1 762 . 68 ASP HB2 H 2.660 0.02 2 763 . 68 ASP HB3 H 2.672 0.02 2 764 . 68 ASP C C 176.143 0.1 1 765 . 68 ASP CA C 53.915 0.1 1 766 . 68 ASP CB C 40.124 0.1 1 767 . 68 ASP N N 112.268 0.1 1 768 . 69 ALA H H 7.131 0.02 1 769 . 69 ALA HA H 4.433 0.02 1 770 . 69 ALA HB H 1.282 0.02 1 771 . 69 ALA C C 175.954 0.1 1 772 . 69 ALA CA C 51.014 0.1 1 773 . 69 ALA CB C 20.183 0.1 1 774 . 69 ALA N N 122.269 0.1 1 775 . 70 ASN H H 9.052 0.02 1 776 . 70 ASN HA H 5.067 0.02 1 777 . 70 ASN HB2 H 2.861 0.02 2 778 . 70 ASN HB3 H 2.952 0.02 2 779 . 70 ASN HD21 H 7.759 0.02 1 780 . 70 ASN HD22 H 7.019 0.02 1 781 . 70 ASN C C 176.728 0.1 1 782 . 70 ASN CA C 51.256 0.1 1 783 . 70 ASN CB C 41.143 0.1 1 784 . 70 ASN N N 118.796 0.1 1 785 . 70 ASN ND2 N 114.632 0.1 1 786 . 71 TRP H H 9.490 0.02 1 787 . 71 TRP HA H 4.647 0.02 1 788 . 71 TRP HB2 H 3.356 0.02 2 789 . 71 TRP HB3 H 3.273 0.02 2 790 . 71 TRP HD1 H 7.431 0.02 1 791 . 71 TRP HE1 H 9.956 0.02 1 792 . 71 TRP HZ2 H 7.494 0.02 1 793 . 71 TRP HH2 H 7.224 0.02 1 794 . 71 TRP HZ3 H 6.690 0.02 1 795 . 71 TRP HE3 H 7.477 0.02 1 796 . 71 TRP CZ2 C 115.95 0.1 1 797 . 71 TRP CH2 C 125.27 0.1 1 798 . 71 TRP CZ3 C 120.358 0.1 1 799 . 71 TRP CE3 C 120.27 0.1 1 800 . 71 TRP C C 177.891 0.1 1 801 . 71 TRP CA C 60.624 0.1 1 802 . 71 TRP CB C 30.141 0.1 1 803 . 71 TRP CD1 C 128.442 0.1 1 804 . 71 TRP N N 125.989 0.1 1 805 . 71 TRP NE1 N 127.607 0.1 1 806 . 72 GLU H H 9.323 0.02 1 807 . 72 GLU HA H 4.171 0.02 1 808 . 72 GLU HB2 H 2.135 0.02 2 809 . 72 GLU HB3 H 2.058 0.02 2 810 . 72 GLU HG2 H 2.416 0.02 1 811 . 72 GLU HG3 H 2.416 0.02 1 812 . 72 GLU C C 177.775 0.1 1 813 . 72 GLU CA C 59.758 0.1 1 814 . 72 GLU CB C 29.002 0.1 1 815 . 72 GLU CG C 36.943 0.1 1 816 . 72 GLU N N 117.581 0.1 1 817 . 73 THR H H 7.481 0.02 1 818 . 73 THR HA H 4.344 0.02 1 819 . 73 THR HB H 4.352 0.02 1 820 . 73 THR HG2 H 1.274 0.02 1 821 . 73 THR C C 176.175 0.1 1 822 . 73 THR CA C 63.769 0.1 1 823 . 73 THR CB C 69.156 0.1 1 824 . 73 THR CG2 C 22.043 0.1 1 825 . 73 THR N N 111.273 0.1 1 826 . 74 VAL H H 8.012 0.02 1 827 . 74 VAL HA H 3.707 0.02 1 828 . 74 VAL HB H 1.887 0.02 1 829 . 74 VAL HG1 H 0.862 0.02 1 830 . 74 VAL HG2 H 0.970 0.02 1 831 . 74 VAL C C 177.933 0.1 1 832 . 74 VAL CA C 66.293 0.1 1 833 . 74 VAL CB C 34.587 0.1 1 834 . 74 VAL CG1 C 22.438 0.1 1 835 . 74 VAL CG2 C 22.447 0.1 1 836 . 74 VAL N N 121.666 0.1 1 837 . 75 LEU H H 9.422 0.02 1 838 . 75 LEU HA H 4.364 0.02 1 839 . 75 LEU HB2 H 2.040 0.02 1 840 . 75 LEU HB3 H 2.040 0.02 1 841 . 75 LEU HG H 2.041 0.02 1 842 . 75 LEU HD1 H 0.868 0.02 1 843 . 75 LEU HD2 H 0.845 0.02 1 844 . 75 LEU CA C 60.234 0.1 1 845 . 75 LEU CB C 39.556 0.1 1 846 . 75 LEU CG C 27.248 0.1 1 847 . 75 LEU CD1 C 23.644 0.1 1 848 . 75 LEU CD2 C 24.254 0.1 1 849 . 75 LEU N N 118.983 0.1 1 850 . 76 PRO HA H 4.518 0.02 1 851 . 76 PRO HB2 H 2.434 0.02 2 852 . 76 PRO HB3 H 1.823 0.02 2 853 . 76 PRO HG2 H 2.235 0.02 2 854 . 76 PRO HG3 H 2.067 0.02 2 855 . 76 PRO HD2 H 3.771 0.02 2 856 . 76 PRO HD3 H 3.487 0.02 2 857 . 76 PRO C C 180.268 0.1 1 858 . 76 PRO CA C 66.204 0.1 1 859 . 76 PRO CB C 31.224 0.1 1 860 . 76 PRO CG C 28.727 0.1 1 861 . 76 PRO CD C 50.483 0.1 1 862 . 77 LYS H H 6.904 0.02 1 863 . 77 LYS HA H 4.158 0.02 1 864 . 77 LYS HB2 H 2.237 0.02 2 865 . 77 LYS HB3 H 1.970 0.02 2 866 . 77 LYS HG2 H 1.756 0.02 2 867 . 77 LYS HG3 H 1.512 0.02 2 868 . 77 LYS HD2 H 1.824 0.02 2 869 . 77 LYS HD3 H 1.835 0.02 2 870 . 77 LYS HE2 H 3.062 0.02 2 871 . 77 LYS HE3 H 3.059 0.02 2 872 . 77 LYS C C 178.997 0.1 1 873 . 77 LYS CA C 58.950 0.1 1 874 . 77 LYS CB C 33.671 0.1 1 875 . 77 LYS CG C 25.967 0.1 1 876 . 77 LYS CD C 29.728 0.1 1 877 . 77 LYS CE C 42.395 0.1 1 878 . 77 LYS N N 115.740 0.1 1 879 . 78 VAL H H 8.054 0.02 1 880 . 78 VAL HA H 3.664 0.02 1 881 . 78 VAL HB H 2.570 0.02 1 882 . 78 VAL HG1 H 1.060 0.02 1 883 . 78 VAL HG2 H 1.174 0.02 1 884 . 78 VAL C C 177.851 0.1 1 885 . 78 VAL CA C 66.980 0.1 1 886 . 78 VAL CB C 31.618 0.1 1 887 . 78 VAL CG1 C 21.172 0.1 1 888 . 78 VAL CG2 C 23.651 0.1 1 889 . 78 VAL N N 121.351 0.1 1 890 . 79 GLU H H 8.853 0.02 1 891 . 79 GLU HA H 3.968 0.02 1 892 . 79 GLU HB2 H 2.095 0.02 2 893 . 79 GLU HB3 H 2.126 0.02 2 894 . 79 GLU HG2 H 2.446 0.02 2 895 . 79 GLU HG3 H 2.040 0.02 2 896 . 79 GLU C C 179.769 0.1 1 897 . 79 GLU CA C 60.369 0.1 1 898 . 79 GLU CB C 29.786 0.1 1 899 . 79 GLU CG C 36.953 0.1 1 900 . 79 GLU N N 117.081 0.1 1 901 . 80 ALA H H 7.603 0.02 1 902 . 80 ALA HA H 4.192 0.02 1 903 . 80 ALA HB H 1.537 0.02 1 904 . 80 ALA C C 179.560 0.1 1 905 . 80 ALA CA C 54.425 0.1 1 906 . 80 ALA CB C 18.257 0.1 1 907 . 80 ALA N N 119.149 0.1 1 908 . 81 VAL H H 7.413 0.02 1 909 . 81 VAL HA H 3.604 0.02 1 910 . 81 VAL HB H 2.179 0.02 1 911 . 81 VAL HG1 H 0.654 0.02 1 912 . 81 VAL HG2 H 0.862 0.02 1 913 . 81 VAL C C 177.465 0.1 1 914 . 81 VAL CA C 65.286 0.1 1 915 . 81 VAL CB C 31.278 0.1 1 916 . 81 VAL CG1 C 21.069 0.1 1 917 . 81 VAL CG2 C 21.805 0.1 1 918 . 81 VAL N N 117.374 0.1 1 919 . 82 PHE H H 7.266 0.02 1 920 . 82 PHE HA H 4.310 0.02 1 921 . 82 PHE HB2 H 3.450 0.02 2 922 . 82 PHE HB3 H 2.908 0.02 2 923 . 82 PHE HD1 H 7.214 0.02 1 924 . 82 PHE HD2 H 7.214 0.02 1 925 . 82 PHE HE1 H 6.767 0.02 1 926 . 82 PHE HE2 H 6.767 0.02 1 927 . 82 PHE HZ H 6.915 0.02 1 928 . 82 PHE C C 176.057 0.1 1 929 . 82 PHE CA C 59.395 0.1 1 930 . 82 PHE CB C 39.404 0.1 1 931 . 82 PHE CD1 C 131.909 0.1 1 932 . 82 PHE CD2 C 131.909 0.1 1 933 . 82 PHE CE1 C 130.240 0.1 1 934 . 82 PHE CE2 C 130.240 0.1 1 935 . 82 PHE CZ C 128.924 0.1 1 936 . 82 PHE N N 115.771 0.1 1 937 . 83 GLU H H 7.681 0.02 1 938 . 83 GLU HA H 4.321 0.02 1 939 . 83 GLU HB2 H 2.187 0.02 2 940 . 83 GLU HB3 H 2.050 0.02 2 941 . 83 GLU HG2 H 2.350 0.02 1 942 . 83 GLU HG3 H 2.350 0.02 1 943 . 83 GLU C C 176.796 0.1 1 944 . 83 GLU CA C 56.783 0.1 1 945 . 83 GLU CB C 30.241 0.1 1 946 . 83 GLU CG C 36.147 0.1 1 947 . 83 GLU N N 119.191 0.1 1 948 . 84 LEU H H 7.903 0.02 1 949 . 84 LEU HA H 4.237 0.02 1 950 . 84 LEU HB2 H 1.657 0.02 2 951 . 84 LEU HB3 H 1.450 0.02 2 952 . 84 LEU HG H 1.680 0.02 1 953 . 84 LEU HD1 H 0.904 0.02 1 954 . 84 LEU HD2 H 0.861 0.02 1 955 . 84 LEU C C 177.692 0.1 1 956 . 84 LEU CA C 55.723 0.1 1 957 . 84 LEU CB C 42.338 0.1 1 958 . 84 LEU CG C 26.948 0.1 1 959 . 84 LEU CD1 C 24.950 0.1 1 960 . 84 LEU CD2 C 23.501 0.1 1 961 . 84 LEU N N 121.583 0.1 1 962 . 85 GLU H H 8.252 0.02 1 963 . 85 GLU HA H 4.123 0.02 1 964 . 85 GLU HB2 H 1.934 0.02 1 965 . 85 GLU HB3 H 1.934 0.02 1 966 . 85 GLU HG2 H 2.175 0.02 1 967 . 85 GLU HG3 H 2.175 0.02 1 968 . 85 GLU C C 176.561 0.1 1 969 . 85 GLU CA C 56.980 0.1 1 970 . 85 GLU CB C 30.050 0.1 1 971 . 85 GLU CG C 36.093 0.1 1 972 . 85 GLU N N 120.473 0.1 1 973 . 86 HIS H H 8.230 0.02 1 974 . 86 HIS HA H 4.587 0.02 1 975 . 86 HIS HB2 H 3.122 0.02 2 976 . 86 HIS HB3 H 3.127 0.02 2 977 . 86 HIS C C 173.902 0.1 1 978 . 86 HIS CA C 56.036 0.1 1 979 . 86 HIS CB C 29.924 0.1 1 980 . 86 HIS N N 118.888 0.1 1 981 . 87 HIS H H 8.163 0.02 1 982 . 87 HIS HA H 4.412 0.02 1 983 . 87 HIS CA C 57.230 0.1 1 984 . 87 HIS CB C 27.970 0.1 1 985 . 87 HIS N N 125.354 0.1 1 stop_ save_ ######################## # Coupling constants # ######################## save_coupling_constant_ZR18_JNH_1 _Saveframe_category coupling_constants _Details . loop_ _Sample_label $sample_1 stop_ _Sample_conditions_label $Ex-cond_1 _Spectrometer_frequency_1H 500 _Mol_system_component_name ZR18 _Text_data_format . _Text_data . loop_ _Coupling_constant_ID _Coupling_constant_code _Atom_one_residue_seq_code _Atom_one_residue_label _Atom_one_name _Atom_two_residue_seq_code _Atom_two_residue_label _Atom_two_name _Coupling_constant_value _Coupling_constant_min_value _Coupling_constant_max_value _Coupling_constant_value_error 1 3JHNHA 3 ILE H 3 ILE HA 7.161305 . . 1.5 2 3JHNHA 4 ILE H 4 ILE HA 9.441862988 . . 1.5 3 3JHNHA 5 SER H 5 SER HA 5.543632785 . . 1.5 4 3JHNHA 6 ILE H 6 ILE HA 8.332497114 . . 1.5 5 3JHNHA 7 SER H 7 SER HA 8.700376249 . . 1.5 6 3JHNHA 9 THR H 9 THR HA 8.886650437 . . 1.5 7 3JHNHA 11 ASN H 11 ASN HA 8.859041395 . . 1.5 8 3JHNHA 13 ASN H 13 ASN HA 7.715157136 . . 1.5 9 3JHNHA 14 THR H 14 THR HA 8.569546719 . . 1.5 10 3JHNHA 15 MET H 15 MET HA 9.492699302 . . 1.5 11 3JHNHA 16 LYS H 16 LYS HA 8.465546532 . . 1.5 12 3JHNHA 17 ILE H 17 ILE HA 8.762523283 . . 1.5 13 3JHNHA 18 THR H 18 THR HA 8.038368926 . . 1.5 14 3JHNHA 19 LEU H 19 LEU HA 8.905885455 . . 1.5 15 3JHNHA 20 SER H 20 SER HA 4.470084507 . . 1.5 16 3JHNHA 21 GLU H 21 GLU HA 8.226776808 . . 1.5 17 3JHNHA 22 SER H 22 SER HA 8.250998359 . . 1.5 18 3JHNHA 23 ARG H 23 ARG HA 5.677460333 . . 1.5 19 3JHNHA 24 GLU H 24 GLU HA 6.108120731 . . 1.5 20 3JHNHA 26 MET H 26 MET HA 8.515035135 . . 1.5 21 3JHNHA 27 THR H 27 THR HA 6.128236277 . . 1.5 22 3JHNHA 28 SER H 28 SER HA 7.107440415 . . 1.5 23 3JHNHA 30 THR H 30 THR HA 9.352278328 . . 1.5 24 3JHNHA 31 TYR H 31 TYR HA 9.245790152 . . 1.5 25 3JHNHA 32 THR H 32 THR HA 10.40293293 . . 1.5 26 3JHNHA 33 LYS H 33 LYS HA 7.297824647 . . 1.5 27 3JHNHA 34 VAL H 34 VAL HA 4.782008627 . . 1.5 28 3JHNHA 35 ASP H 35 ASP HA 6.938272585 . . 1.5 29 3JHNHA 40 ALA H 40 ALA HA 2.085276627 . . 1.5 30 3JHNHA 41 PHE H 41 PHE HA 2.749423709 . . 1.5 31 3JHNHA 43 ASN H 43 ASN HA 4.385856379 . . 1.5 32 3JHNHA 44 ASP H 44 ASP HA 3.167012744 . . 1.5 33 3JHNHA 47 LYS H 47 LYS HA 7.218113671 . . 1.5 34 3JHNHA 48 VAL H 48 VAL HA 6.41963834 . . 2.5 35 3JHNHA 49 GLU H 49 GLU HA 3.282963306 . . 2.5 36 3JHNHA 51 VAL H 51 VAL HA 7.15642709 . . 2.5 37 3JHNHA 52 LYS H 52 LYS HA 9.482170237 . . 2.5 38 3JHNHA 53 SER H 53 SER HA 5.932964586 . . 1.5 39 3JHNHA 54 ILE H 54 ILE HA 9.02177036 . . 1.5 40 3JHNHA 55 PHE H 55 PHE HA 9.19290177 . . 1.5 41 3JHNHA 56 HIS H 56 HIS HA 8.848052573 . . 1.5 42 3JHNHA 57 VAL H 57 VAL HA 6.682479509 . . 1.5 43 3JHNHA 58 MET H 58 MET HA 6.137393668 . . 1.5 44 3JHNHA 59 ASP H 59 ASP HA 8.942601396 . . 1.5 45 3JHNHA 61 ILE H 61 ILE HA 9.074134652 . . 1.5 46 3JHNHA 62 SER H 62 SER HA 9.253679216 . . 1.5 47 3JHNHA 63 VAL H 63 VAL HA 8.795792761 . . 1.5 48 3JHNHA 69 ALA H 69 ALA HA 8.127345558 . . 1.5 49 3JHNHA 70 ASN H 70 ASN HA 9.074244947 . . 1.5 50 3JHNHA 72 GLU H 72 GLU HA 3.686959119 . . 1.5 51 3JHNHA 73 THR H 73 THR HA 7.000978 . . 2.5 52 3JHNHA 77 LYS H 77 LYS HA 6.917335741 . . 2.5 53 3JHNHA 79 GLU H 79 GLU HA 3.297776798 . . 1.5 54 3JHNHA 80 ALA H 80 ALA HA 3.51270444 . . 1.5 55 3JHNHA 81 VAL H 81 VAL HA 4.440342804 . . 1.5 56 3JHNHA 82 PHE H 82 PHE HA 7.56036679 . . 1.5 57 3JHNHA 83 GLU H 83 GLU HA 6.82066062 . . 1.5 58 3JHNHA 84 LEU H 84 LEU HA 6.173641033 . . 1.5 59 3JHNHA 85 GLU H 85 GLU HA 5.902362366 . . 1.5 60 3JHNHA 87 HIS H 87 HIS HA 7.714874565 . . 1.5 stop_ save_