data_5596 ####################### # Entry information # ####################### save_entry_information _Saveframe_category entry_information _Entry_title ; Solution Structure of the hypothetical protein yggU from E. coli. Northeast Structural Genomics Consortium Target ER14. ; _BMRB_accession_number 5596 _BMRB_flat_file_name bmr5596.str _Entry_type original _Submission_date 2002-11-21 _Accession_date 2002-11-21 _Entry_origination author _NMR_STAR_version 2.1.1 _Experimental_method NMR _Details . loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Aramini James M. . 2 Xiao Rong . . 3 Huang Y. J. . 4 Acton Thomas B. . 5 Wu Maggie J. . 6 Mills Jeffrey L. . 7 Tejero Roberto T. . 8 Szyperski Thomas . . 9 Montelione Gaetano T. . stop_ loop_ _Saveframe_category_type _Saveframe_category_type_count assigned_chemical_shifts 1 coupling_constants 1 stop_ loop_ _Data_type _Data_type_count "1H chemical shifts" 608 "13C chemical shifts" 454 "15N chemical shifts" 108 "coupling constants" 27 stop_ loop_ _Revision_date _Revision_keyword _Revision_author _Revision_detail 2009-07-15 update BMRB 'added time domain data' 2003-09-05 original author 'original release' stop_ save_ ############################# # Citation for this entry # ############################# save_entry_citation _Saveframe_category entry_citation _Citation_full . _Citation_title ; Letter to the Editor: Resonance assignments for the hypothetical protein yggU from Escherichia coli ; _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID ? loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Aramini James M. . 2 Mills Jeffrey L. . 3 Xiao Rong . . 4 Acton Thomas B. . 5 Wu Maggie J. . 6 Szyperski Thomas . . 7 Montelione Gaetano T. . stop_ _Journal_abbreviation 'J. Biomol. NMR' _Journal_volume 27 _Journal_issue 3 _Journal_CSD . _Book_chapter_title . _Book_volume . _Book_series . _Book_ISBN . _Conference_state_province . _Conference_abstract_number . _Page_first 285 _Page_last 286 _Year 2003 _Details . loop_ _Keyword 'structural genomics' 'Northeast Structural Genomics Consortium' ER14 'E. coli' stop_ save_ ####################################### # Cited references within the entry # ####################################### save_ref_1 _Saveframe_category citation _Citation_full ; Szyperski T., Yeh D.C., Sukumaran D.K., Moseley H.N., Montelione G.T. Proc. Natl. Acad. Sci. USA (2002) 99, 8009-14 ; _Citation_title 'Reduced-dimensionality NMR spectroscopy for high-throughput protein resonance assignment.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 12060747 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Szyperski Thomas . . 2 Yeh 'Deok C' C. . 3 Sukumaran 'Dinesh K' K. . 4 Moseley 'Hunter N B' N. . 5 Montelione 'Gaetano T' T. . stop_ _Journal_abbreviation 'Proc. Natl. Acad. Sci. U.S.A.' _Journal_name_full 'Proceedings of the National Academy of Sciences of the United States of America' _Journal_volume 99 _Journal_issue 12 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 8009 _Page_last 8014 _Year 2002 _Details ; A suite of reduced-dimensionality (13)C,(15)N,(1)H-triple-resonance NMR experiments is presented for rapid and complete protein resonance assignment. Even when using short measurement times, these experiments allow one to retain the high spectral resolution required for efficient automated analysis. "Sampling limited" and "sensitivity limited" data collection regimes are defined, respectively, depending on whether the sampling of the indirect dimensions or the sensitivity of a multidimensional NMR experiments per se determines the minimally required measurement time. We show that reduced-dimensionality NMR spectroscopy is a powerful approach to avoid the "sampling limited regime"--i.e., a standard set of ten experiments proposed here allows one to effectively adapt minimal measurement times to sensitivity requirements. This is of particular interest in view of the greatly increased sensitivity of NMR spectrometers equipped with cryogenic probes. As a step toward fully automated analysis, the program AUTOASSIGN has been extended to provide sequential backbone and (13)C(beta) resonance assignments from these reduced-dimensionality NMR data. ; save_ save_ref_2 _Saveframe_category citation _Citation_full ; Delaglio F., Grzesiek S., Vuister G.W., Zhu G., Pfeifer J., Bax A. J. Biomol. NMR. (1995) 6, 277-293. ; _Citation_title 'NMRPipe: a multidimensional spectral processing system based on UNIX pipes.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 8520220 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Delaglio F. . . 2 Grzesiek S. . . 3 Vuister 'G. W.' W. . 4 Zhu G. . . 5 Pfeifer J. . . 6 Bax A. . . stop_ _Journal_abbreviation 'J. Biomol. NMR' _Journal_name_full 'Journal of biomolecular NMR' _Journal_volume 6 _Journal_issue 3 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 277 _Page_last 293 _Year 1995 _Details ; The NMRPipe system is a UNIX software environment of processing, graphics, and analysis tools designed to meet current routine and research-oriented multidimensional processing requirements, and to anticipate and accommodate future demands and developments. The system is based on UNIX pipes, which allow programs running simultaneously to exchange streams of data under user control. In an NMRPipe processing scheme, a stream of spectral data flows through a pipeline of processing programs, each of which performs one component of the overall scheme, such as Fourier transformation or linear prediction. Complete multidimensional processing schemes are constructed as simple UNIX shell scripts. The processing modules themselves maintain and exploit accurate records of data sizes, detection modes, and calibration information in all dimensions, so that schemes can be constructed without the need to explicitly define or anticipate data sizes or storage details of real and imaginary channels during processing. The asynchronous pipeline scheme provides other substantial advantages, including high flexibility, favorable processing speeds, choice of both all-in-memory and disk-bound processing, easy adaptation to different data formats, simpler software development and maintenance, and the ability to distribute processing tasks on multi-CPU computers and computer networks. ; save_ save_ref_3 _Saveframe_category citation _Citation_full ; T. D. Goddard and D. G. Kneller, SPARKY 3, 3, University of California, San Francisco ; _Citation_title . _Citation_status . _Citation_type . _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID ? _Journal_abbreviation . _Journal_name_full . _Journal_volume . _Journal_issue . _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first . _Page_last . _Year . _Details . save_ save_ref_4 _Saveframe_category citation _Citation_full ; Zimmerman D.E., Kulikowski C.A., Huang Y., Feng W., Tashiro M., Shimotakahara S., Chien C., Powers R., Montelione G.T. J. Mol. Biol. (1997) 269, 592-610 ; _Citation_title 'Automated analysis of protein NMR assignments using methods from artificial intelligence.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 9217263 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Zimmerman 'D. E.' E. . 2 Kulikowski 'C. A.' A. . 3 Huang Y. . . 4 Feng W. . . 5 Tashiro M. . . 6 Shimotakahara S. . . 7 Chien C. . . 8 Powers R. . . 9 Montelione 'G. T.' T. . stop_ _Journal_abbreviation 'J. Mol. Biol.' _Journal_name_full 'Journal of molecular biology' _Journal_volume 269 _Journal_issue 4 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 592 _Page_last 610 _Year 1997 _Details ; An expert system for determining resonance assignments from NMR spectra of proteins is described. Given the amino acid sequence, a two-dimensional 15N-1H heteronuclear correlation spectrum and seven to eight three-dimensional triple-resonance NMR spectra for seven proteins, AUTOASSIGN obtained an average of 98% of sequence-specific spin-system assignments with an error rate of less than 0.5%. Execution times on a Sparc 10 workstation varied from 16 seconds for smaller proteins with simple spectra to one to nine minutes for medium size proteins exhibiting numerous extra spin systems attributed to conformational isomerization. AUTOASSIGN combines symbolic constraint satisfaction methods with a domain-specific knowledge base to exploit the logical structure of the sequential assignment problem, the specific features of the various NMR experiments, and the expected chemical shift frequencies of different amino acids. The current implementation specializes in the analysis of data derived from the most sensitive of the currently available triple-resonance experiments. Potential extensions of the system for analysis of additional types of protein NMR data are also discussed. ; save_ save_ref_5 _Saveframe_category citation _Citation_full ; Huang, Y.J. (2001). Automated determination of protein structures from NMR data by iterative analysis of self-consistent contact patterns, PhD thesis, Rutgers University, New Brunswick, NJ. ; _Citation_title . _Citation_status . _Citation_type . _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID ? _Journal_abbreviation . _Journal_name_full . _Journal_volume . _Journal_issue . _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first . _Page_last . _Year . _Details . save_ save_ref_6 _Saveframe_category citation _Citation_full 'see: www_nmr.cabm.rutgers.edu/NMRsoftware/nmr-software.html' _Citation_title . _Citation_status . _Citation_type . _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID ? _Journal_abbreviation . _Journal_name_full . _Journal_volume . _Journal_issue . _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first . _Page_last . _Year . _Details . save_ save_ref_7 _Saveframe_category citation _Citation_full ; Cornilescu, G., Delaglio, F., Bax, A. (1999) J. Biomol. NMR 13, 289-302. ; _Citation_title 'Protein backbone angle restraints from searching a database for chemical shift and sequence homology.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 10212987 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Cornilescu G. . . 2 Delaglio F. . . 3 Bax A. . . stop_ _Journal_abbreviation 'J. Biomol. NMR' _Journal_name_full 'Journal of biomolecular NMR' _Journal_volume 13 _Journal_issue 3 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 289 _Page_last 302 _Year 1999 _Details ; Chemical shifts of backbone atoms in proteins are exquisitely sensitive to local conformation, and homologous proteins show quite similar patterns of secondary chemical shifts. The inverse of this relation is used to search a database for triplets of adjacent residues with secondary chemical shifts and sequence similarity which provide the best match to the query triplet of interest. The database contains 13C alpha, 13C beta, 13C', 1H alpha and 15N chemical shifts for 20 proteins for which a high resolution X-ray structure is available. The computer program TALOS was developed to search this database for strings of residues with chemical shift and residue type homology. The relative importance of the weighting factors attached to the secondary chemical shifts of the five types of resonances relative to that of sequence similarity was optimized empirically. TALOS yields the 10 triplets which have the closest similarity in secondary chemical shift and amino acid sequence to those of the query sequence. If the central residues in these 10 triplets exhibit similar phi and psi backbone angles, their averages can reliably be used as angular restraints for the protein whose structure is being studied. Tests carried out for proteins of known structure indicate that the root-mean-square difference (rmsd) between the output of TALOS and the X-ray derived backbone angles is about 15 degrees. Approximately 3% of the predictions made by TALOS are found to be in error. ; save_ save_ref_8 _Saveframe_category citation _Citation_full ; Guntert P, Mumenthaler C, Wuthrich K. (1997) J. Mol. Biol. 273, 283-98. ; _Citation_title 'Torsion angle dynamics for NMR structure calculation with the new program DYANA.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 9367762 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Guntert P. . . 2 Mumenthaler C. . . 3 Wuthrich K. . . stop_ _Journal_abbreviation 'J. Mol. Biol.' _Journal_name_full 'Journal of molecular biology' _Journal_volume 273 _Journal_issue 1 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 283 _Page_last 298 _Year 1997 _Details ; The new program DYANA (DYnamics Algorithm for Nmr Applications) for efficient calculation of three-dimensional protein and nucleic acid structures from distance constraints and torsion angle constraints collected by nuclear magnetic resonance (NMR) experiments performs simulated annealing by molecular dynamics in torsion angle space and uses a fast recursive algorithm to integrate the equations of motions. Torsion angle dynamics can be more efficient than molecular dynamics in Cartesian coordinate space because of the reduced number of degrees of freedom and the concomitant absence of high-frequency bond and angle vibrations, which allows for the use of longer time-steps and/or higher temperatures in the structure calculation. It also represents a significant advance over the variable target function method in torsion angle space with the REDAC strategy used by the predecessor program DIANA. DYANA computation times per accepted conformer in the "bundle" used to represent the NMR structure compare favorably with those of other presently available structure calculation algorithms, and are of the order of 160 seconds for a protein of 165 amino acid residues when using a DEC Alpha 8400 5/300 computer. Test calculations starting from conformers with random torsion angle values further showed that DYANA is capable of efficient calculation of high-quality protein structures with up to 400 amino acid residues, and of nucleic acid structures. ; save_ save_ref_9 _Saveframe_category citation _Citation_full 'see: nmr.cit.nih.gov/xplor_nih/' _Citation_title . _Citation_status . _Citation_type . _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID ? _Journal_abbreviation . _Journal_name_full . _Journal_volume . _Journal_issue . _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first . _Page_last . _Year . _Details . save_ save_ref_10 _Saveframe_category citation _Citation_full 'see: www_nmr.cabm.rutgers.edu/NMRsoftware/nmr-software.html"' _Citation_title . _Citation_status . _Citation_type . _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID ? _Journal_abbreviation . _Journal_name_full . _Journal_volume . _Journal_issue . _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first . _Page_last . _Year . _Details . save_ ################################## # Molecular system description # ################################## save_yggu_ecoli _Saveframe_category molecular_system _Mol_system_name yggu _Abbreviation_common yggu_ecoli _Enzyme_commission_number . loop_ _Mol_system_component_name _Mol_label ER14 $ER14 stop_ _System_molecular_weight . _System_physical_state native _System_oligomer_state monomer _System_paramagnetic no _System_thiol_state 'not present' _Database_query_date . _Details . save_ ######################## # Monomeric polymers # ######################## save_ER14 _Saveframe_category monomeric_polymer _Mol_type polymer _Mol_polymer_class protein _Name_common yggu_ecoli _Abbreviation_common ER14 _Molecular_mass 11883 _Mol_thiol_state 'not present' _Details '8 residue C-term tag.' ############################## # Polymer residue sequence # ############################## _Residue_count 108 _Mol_residue_sequence ; MDGVMSAVTVNDDGLVLRLY IQPKASRDSIVGLHGDEVKV AITAPPVDGQANSHLVKFLG KQFRVAKSQVVIEKGELGRH KQIKIINPQQIPPEVAALIN LEHHHHHH ; loop_ _Residue_seq_code _Residue_label 1 MET 2 ASP 3 GLY 4 VAL 5 MET 6 SER 7 ALA 8 VAL 9 THR 10 VAL 11 ASN 12 ASP 13 ASP 14 GLY 15 LEU 16 VAL 17 LEU 18 ARG 19 LEU 20 TYR 21 ILE 22 GLN 23 PRO 24 LYS 25 ALA 26 SER 27 ARG 28 ASP 29 SER 30 ILE 31 VAL 32 GLY 33 LEU 34 HIS 35 GLY 36 ASP 37 GLU 38 VAL 39 LYS 40 VAL 41 ALA 42 ILE 43 THR 44 ALA 45 PRO 46 PRO 47 VAL 48 ASP 49 GLY 50 GLN 51 ALA 52 ASN 53 SER 54 HIS 55 LEU 56 VAL 57 LYS 58 PHE 59 LEU 60 GLY 61 LYS 62 GLN 63 PHE 64 ARG 65 VAL 66 ALA 67 LYS 68 SER 69 GLN 70 VAL 71 VAL 72 ILE 73 GLU 74 LYS 75 GLY 76 GLU 77 LEU 78 GLY 79 ARG 80 HIS 81 LYS 82 GLN 83 ILE 84 LYS 85 ILE 86 ILE 87 ASN 88 PRO 89 GLN 90 GLN 91 ILE 92 PRO 93 PRO 94 GLU 95 VAL 96 ALA 97 ALA 98 LEU 99 ILE 100 ASN 101 LEU 102 GLU 103 HIS 104 HIS 105 HIS 106 HIS 107 HIS 108 HIS stop_ _Sequence_homology_query_date . _Sequence_homology_query_revised_last_date 2015-01-28 loop_ _Database_name _Database_accession_code _Database_entry_mol_name _Sequence_query_to_submitted_percentage _Sequence_subject_length _Sequence_identity _Sequence_positive _Sequence_homology_expectation_value PDB 1N91 "Solution Nmr Structure Of Protein Yggu From Escherichia Coli. Northeast Structural Genomics Consortium Target Er14." 100.00 108 100.00 100.00 5.42e-70 PDB 1YH5 "Solution Nmr Structure Of Protein Yggu From Escherichia Coli. Northeast Structural Genomics Consortium Target Er14" 100.00 108 100.00 100.00 5.42e-70 DBJ BAB37252 "hypothetical protein [Escherichia coli O157:H7 str. Sakai]" 92.59 100 100.00 100.00 1.18e-63 DBJ BAE77016 "conserved hypothetical protein [Escherichia coli str. K-12 substr. W3110]" 88.89 96 97.92 100.00 1.17e-59 DBJ BAG66691 "predicted protein [Escherichia coli O111:H-]" 92.59 100 99.00 100.00 1.89e-63 DBJ BAG78745 "conserved hypothetical protein [Escherichia coli SE11]" 88.89 96 98.96 100.00 2.72e-60 DBJ BAI27237 "conserved predicted protein [Escherichia coli O26:H11 str. 11368]" 88.89 96 98.96 100.00 2.72e-60 EMBL CAP77390 "UPF0235 protein yggU [Escherichia coli LF82]" 88.89 96 98.96 100.00 2.72e-60 EMBL CAQ33263 "conserved protein [Escherichia coli BL21(DE3)]" 88.89 96 98.96 100.00 2.72e-60 EMBL CAQ90385 "conserved hypothetical protein [Escherichia fergusonii ATCC 35469]" 88.89 96 98.96 100.00 2.72e-60 EMBL CAQ99901 "conserved hypothetical protein [Escherichia coli IAI1]" 88.89 96 98.96 100.00 2.72e-60 EMBL CAR04470 "conserved hypothetical protein [Escherichia coli S88]" 88.89 96 98.96 100.00 2.72e-60 GB AAA69120 "ORF_o100 [Escherichia coli str. K-12 substr. MG1655]" 92.59 100 98.00 100.00 9.39e-63 GB AAC75990 "UPF0235 family protein [Escherichia coli str. K-12 substr. MG1655]" 88.89 96 97.92 100.00 1.17e-59 GB AAG58084 "orf, hypothetical protein [Escherichia coli O157:H7 str. EDL933]" 92.59 100 100.00 100.00 1.18e-63 GB AAN44425 "conserved hypothetical protein [Shigella flexneri 2a str. 301]" 92.59 100 99.00 100.00 1.89e-63 GB AAN81987 "Hypothetical protein yggU [Escherichia coli CFT073]" 92.59 100 99.00 100.00 1.89e-63 REF NP_289525 "hypothetical protein Z4298 [Escherichia coli O157:H7 str. EDL933]" 88.89 96 100.00 100.00 1.83e-60 REF NP_311856 "hypothetical protein ECs3829 [Escherichia coli O157:H7 str. Sakai]" 88.89 96 100.00 100.00 1.83e-60 REF NP_417428 "UPF0235 family protein [Escherichia coli str. K-12 substr. MG1655]" 88.89 96 97.92 100.00 1.17e-59 REF NP_708718 "hypothetical protein SF2944 [Shigella flexneri 2a str. 301]" 92.59 100 99.00 100.00 1.89e-63 REF NP_755414 "hypothetical protein c3539 [Escherichia coli CFT073]" 88.89 96 98.96 100.00 2.72e-60 SP A1AFD9 "RecName: Full=UPF0235 protein YggU [Escherichia coli APEC O1]" 88.89 96 98.96 100.00 2.72e-60 SP B1IT54 "RecName: Full=UPF0235 protein YggU [Escherichia coli ATCC 8739]" 88.89 96 98.96 100.00 2.72e-60 SP B1LDG2 "RecName: Full=UPF0235 protein YggU [Escherichia coli SMS-3-5]" 88.89 96 98.96 100.00 2.72e-60 SP B1XFB3 "RecName: Full=UPF0235 protein YggU [Escherichia coli str. K-12 substr. DH10B]" 88.89 96 97.92 100.00 1.17e-59 SP B5YQF1 "RecName: Full=UPF0235 protein YggU [Escherichia coli O157:H7 str. EC4115]" 88.89 96 100.00 100.00 1.83e-60 stop_ save_ #################### # Natural source # #################### save_natural_source _Saveframe_category natural_source loop_ _Mol_label _Organism_name_common _NCBI_taxonomy_ID _Superkingdom _Kingdom _Genus _Species _Gene_mnemonic $ER14 'E. Coli' 562 Eubacteria . Escherichia coli yggU stop_ save_ ######################### # Experimental source # ######################### save_experimental_source _Saveframe_category experimental_source loop_ _Mol_label _Production_method _Host_organism_name_common _Genus _Species _Strain _Vector_type _Vector_name $ER14 'recombinant technology' 'E. coli' Escherichia coli BL21pMgk plasmid pET21 stop_ save_ ##################################### # Sample contents and methodology # ##################################### ######################## # Sample description # ######################## save_sample_1 _Saveframe_category sample _Sample_type solution _Details 'Two identical samples were run at two different sites' loop_ _Mol_label _Concentration_value _Concentration_value_units _Isotopic_labeling $ER14 1.0 mM '[U-100% 13C; U-100% 15N]' MES 20 mM . NaCL 50 mM . DTT 5 mM . D2O 5 % . stop_ save_ ############################ # Computer software used # ############################ save_VNMR _Saveframe_category software _Name VNMR _Version 6.1B loop_ _Task spectrometer acquisition stop_ _Details . save_ save_NMRPipe _Saveframe_category software _Name NMRPipe _Version 2.1 loop_ _Task 'data processing' stop_ _Details . _Citation_label $ref_2 save_ save_Sparky _Saveframe_category software _Name Sparky _Version 3.106 loop_ _Task 'peak picking' stop_ _Details . _Citation_label $ref_3 save_ save_AUTOASSIGN _Saveframe_category software _Name AUTOASSIGN _Version . loop_ _Task 'automated assignment of backbone 1H, 13C, 15N chemical shifts' stop_ _Details 'In-house developed software for automating the peak assignment process' _Citation_label $ref_4 save_ save_AUTOSTRUCTURE _Saveframe_category software _Name AUTOSTRUCTURE _Version 1.1.2 loop_ _Task 'automated NOESY assignment and structure determination' stop_ _Details ; In-house developed software for automating the NOESY assignment and structure determination process. Structure calculations were performed using DYANA ; _Citation_label $ref_5 save_ save_HYPER _Saveframe_category software _Name HYPER _Version 2.70 loop_ _Task 'data analysis' stop_ _Details ; In-house developed software for the determination of dihedral angle restraints from NMR data ; _Citation_label $ref_6 save_ save_TALOS _Saveframe_category software _Name TALOS _Version 2.1 loop_ _Task 'data analysis' stop_ _Details ; Determination of torsion angle restraints based on chemical shift data and sequence homology ; _Citation_label $ref_7 save_ save_DYANA _Saveframe_category software _Name DYANA _Version 1.5 loop_ _Task 'structure refinement' stop_ _Details 'Initial structure refinement using torsion angle dynamics' _Citation_label $ref_8 save_ save_XPLOR _Saveframe_category software _Name XPLOR _Version '2.0.4 (NIH)' loop_ _Task 'structure refinement' stop_ _Details 'Refinement of final structures from AUTOSTRUCTURE (DYANA)' _Citation_label $ref_9 save_ save_PDBStat _Saveframe_category software _Name PDBStat _Version 3.27 loop_ _Task 'structure analysis' stop_ _Details 'In-house software for the analysis and superposition of the PDB structures.' _Citation_label $ref_10 save_ ######################### # Experimental detail # ######################### ################################## # NMR Spectrometer definitions # ################################## save_NMR_spectrometer1 _Saveframe_category NMR_spectrometer _Manufacturer Varian _Model INOVA _Field_strength 500 _Details CABM save_ save_NMR_spectrometer2 _Saveframe_category NMR_spectrometer _Manufacturer Varian _Model INOVA _Field_strength 600 _Details CABM save_ save_NMR_spectrometer3 _Saveframe_category NMR_spectrometer _Manufacturer Varian _Model INOVA _Field_strength 600 _Details 'SUNY Buffalo' save_ save_NMR_spectrometer4 _Saveframe_category NMR_spectrometer _Manufacturer Varian _Model INOVA _Field_strength 750 _Details 'SUNY Buffalo' save_ ############################# # NMR applied experiments # ############################# save_1H-15N-HSQC_(regular)_1 _Saveframe_category NMR_applied_experiment _Experiment_name '1H-15N-HSQC (regular)' _Sample_label $sample_1 save_ save_1H-13C-HSQC_(aliphatic)_2 _Saveframe_category NMR_applied_experiment _Experiment_name '1H-13C-HSQC (aliphatic)' _Sample_label $sample_1 save_ save_3D_1H-15N_NOESY_3 _Saveframe_category NMR_applied_experiment _Experiment_name '3D 1H-15N NOESY' _Sample_label $sample_1 save_ save_3D_1H-13C_NOESY_(aliphatic)_4 _Saveframe_category NMR_applied_experiment _Experiment_name '3D 1H-13C NOESY (aliphatic)' _Sample_label $sample_1 save_ save_HNCO_5 _Saveframe_category NMR_applied_experiment _Experiment_name HNCO _Sample_label $sample_1 save_ save_HNCA_6 _Saveframe_category NMR_applied_experiment _Experiment_name HNCA _Sample_label $sample_1 save_ save_HN(CO)CA_7 _Saveframe_category NMR_applied_experiment _Experiment_name HN(CO)CA _Sample_label $sample_1 save_ save_HN(CO)CACB_8 _Saveframe_category NMR_applied_experiment _Experiment_name HN(CO)CACB _Sample_label $sample_1 save_ save_HNCACB_9 _Saveframe_category NMR_applied_experiment _Experiment_name HNCACB _Sample_label $sample_1 save_ save_HA(CA)NH_10 _Saveframe_category NMR_applied_experiment _Experiment_name HA(CA)NH _Sample_label $sample_1 save_ save_HA(CACO)NH_11 _Saveframe_category NMR_applied_experiment _Experiment_name HA(CACO)NH _Sample_label $sample_1 save_ save_(H)CC(CO)NH_TOCSY_12 _Saveframe_category NMR_applied_experiment _Experiment_name '(H)CC(CO)NH TOCSY' _Sample_label $sample_1 save_ save_H(CCCO)NH_TOCSY_13 _Saveframe_category NMR_applied_experiment _Experiment_name 'H(CCCO)NH TOCSY' _Sample_label $sample_1 save_ save_HCCH_COSY_RD_(sub1)_14 _Saveframe_category NMR_applied_experiment _Experiment_name 'HCCH COSY RD (sub1)' _Sample_label $sample_1 save_ save_HN_RD_15 _Saveframe_category NMR_applied_experiment _Experiment_name 'HN RD' _Sample_label $sample_1 save_ save_HACA(CO)NH_RD_(sub1)_16 _Saveframe_category NMR_applied_experiment _Experiment_name 'HACA(CO)NH RD (sub1)' _Sample_label $sample_1 save_ save_HBCBHACA(CO)NH_RD_(sub1)_17 _Saveframe_category NMR_applied_experiment _Experiment_name 'HBCBHACA(CO)NH RD (sub1)' _Sample_label $sample_1 save_ save_HBCBHACACOHA_RD_(sub1)_18 _Saveframe_category NMR_applied_experiment _Experiment_name 'HBCBHACACOHA RD (sub1)' _Sample_label $sample_1 save_ save_HBCBcgcdHD_RD_(sub1)_19 _Saveframe_category NMR_applied_experiment _Experiment_name 'HBCBcgcdHD RD (sub1)' _Sample_label $sample_1 save_ save_H-TOCSY-CH-COSY_RD_20 _Saveframe_category NMR_applied_experiment _Experiment_name 'H-TOCSY-CH-COSY RD' _Sample_label $sample_1 save_ save_1H-15N_HSQC-J_J=40ms_21 _Saveframe_category NMR_applied_experiment _Experiment_name '1H-15N HSQC-J J=40ms' _Sample_label $sample_1 save_ save_1H-15N-HSQC_(NH2_only)_22 _Saveframe_category NMR_applied_experiment _Experiment_name '1H-15N-HSQC (NH2 only)' _Sample_label $sample_1 save_ save_1H-15N-HSQC_(full_SW)_23 _Saveframe_category NMR_applied_experiment _Experiment_name '1H-15N-HSQC (full SW)' _Sample_label $sample_1 save_ save_1H-15N-HSQC_(MEXICO)_24 _Saveframe_category NMR_applied_experiment _Experiment_name '1H-15N-HSQC (MEXICO)' _Sample_label $sample_1 save_ save_1H-13C-HSQC_(aromatic)_25 _Saveframe_category NMR_applied_experiment _Experiment_name '1H-13C-HSQC (aromatic)' _Sample_label $sample_1 save_ save_3D_1H-13C_NOESY_(aromatic)_26 _Saveframe_category NMR_applied_experiment _Experiment_name '3D 1H-13C NOESY (aromatic)' _Sample_label $sample_1 save_ save_HCCH_COSY_RD_(sub2)_27 _Saveframe_category NMR_applied_experiment _Experiment_name 'HCCH COSY RD (sub2)' _Sample_label $sample_1 save_ save_HACA(CO)NH_RD_(sub2)_28 _Saveframe_category NMR_applied_experiment _Experiment_name 'HACA(CO)NH RD (sub2)' _Sample_label $sample_1 save_ save_HBCBHACA(CO)NH_RD_(sub2)_29 _Saveframe_category NMR_applied_experiment _Experiment_name 'HBCBHACA(CO)NH RD (sub2)' _Sample_label $sample_1 save_ save_HCCH_COSY_(regular)_30 _Saveframe_category NMR_applied_experiment _Experiment_name 'HCCH COSY (regular)' _Sample_label $sample_1 save_ save_HBCBcgcdHD_RD_(sub2)_31 _Saveframe_category NMR_applied_experiment _Experiment_name 'HBCBcgcdHD RD (sub2)' _Sample_label $sample_1 save_ save_HBCBHACACOHA_RD_(sub2)_32 _Saveframe_category NMR_applied_experiment _Experiment_name 'HBCBHACACOHA RD (sub2)' _Sample_label $sample_1 save_ save_1H-15N_HSQC-J_J=56ms_33 _Saveframe_category NMR_applied_experiment _Experiment_name '1H-15N HSQC-J J=56ms' _Sample_label $sample_1 save_ save_1H-15N_HSQC-J_tauJ=33ms_34 _Saveframe_category NMR_applied_experiment _Experiment_name '1H-15N HSQC-J tauJ=33ms' _Sample_label $sample_1 save_ save_1H-15N_HSQC-J_tauJ=50ms_35 _Saveframe_category NMR_applied_experiment _Experiment_name '1H-15N HSQC-J tauJ=50ms' _Sample_label $sample_1 save_ save_1H-15N_HSQC-J_tauJ=70ms_36 _Saveframe_category NMR_applied_experiment _Experiment_name '1H-15N HSQC-J tauJ=70ms' _Sample_label $sample_1 save_ save_1H-15N_HSQC-J_tauJ=83ms_37 _Saveframe_category NMR_applied_experiment _Experiment_name '1H-15N HSQC-J tauJ=83ms' _Sample_label $sample_1 save_ save_1H-15N_HSQC-J_tauJ=100ms_38 _Saveframe_category NMR_applied_experiment _Experiment_name '1H-15N HSQC-J tauJ=100ms' _Sample_label $sample_1 save_ save_1H-15N_HSQC-J_tauJ=125ms_39 _Saveframe_category NMR_applied_experiment _Experiment_name '1H-15N HSQC-J tauJ=125ms' _Sample_label $sample_1 save_ save_NMR_spectrometer_expt_1 _Saveframe_category NMR_applied_experiment _Experiment_name '1H-15N-HSQC (regular)' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_2 _Saveframe_category NMR_applied_experiment _Experiment_name '1H-13C-HSQC (aliphatic)' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_3 _Saveframe_category NMR_applied_experiment _Experiment_name '3D 1H-15N NOESY' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_4 _Saveframe_category NMR_applied_experiment _Experiment_name '3D 1H-13C NOESY (aliphatic)' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_5 _Saveframe_category NMR_applied_experiment _Experiment_name HNCO _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_6 _Saveframe_category NMR_applied_experiment _Experiment_name HNCA _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_7 _Saveframe_category NMR_applied_experiment _Experiment_name HN(CO)CA _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_8 _Saveframe_category NMR_applied_experiment _Experiment_name HN(CO)CACB _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_9 _Saveframe_category NMR_applied_experiment _Experiment_name HNCACB _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_10 _Saveframe_category NMR_applied_experiment _Experiment_name HA(CA)NH _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_11 _Saveframe_category NMR_applied_experiment _Experiment_name '(H)CC(CO)NH TOCSY' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_12 _Saveframe_category NMR_applied_experiment _Experiment_name 'H(CCCO)NH TOCSY' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_13 _Saveframe_category NMR_applied_experiment _Experiment_name 'HCCH COSY RD (sub1)' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_14 _Saveframe_category NMR_applied_experiment _Experiment_name 'HN RD' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_15 _Saveframe_category NMR_applied_experiment _Experiment_name 'HACA(CO)NH RD (sub1)' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_16 _Saveframe_category NMR_applied_experiment _Experiment_name 'HBCBHACA(CO)NH RD (sub1)' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_17 _Saveframe_category NMR_applied_experiment _Experiment_name 'HBCBHACACOHA RD (sub1)' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_18 _Saveframe_category NMR_applied_experiment _Experiment_name 'HBCBcgcdHD RD (sub1)' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_19 _Saveframe_category NMR_applied_experiment _Experiment_name 'H-TOCSY-CH-COSY RD' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_20 _Saveframe_category NMR_applied_experiment _Experiment_name '1H-15N HSQC-J J=40ms' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_21 _Saveframe_category NMR_applied_experiment _Experiment_name '1H-15N-HSQC (NH2 only)' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_22 _Saveframe_category NMR_applied_experiment _Experiment_name '1H-15N-HSQC (full SW)' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_23 _Saveframe_category NMR_applied_experiment _Experiment_name '1H-15N-HSQC (MEXICO)' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_24 _Saveframe_category NMR_applied_experiment _Experiment_name '1H-13C-HSQC (aromatic)' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_25 _Saveframe_category NMR_applied_experiment _Experiment_name '3D 1H-13C NOESY (aromatic)' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_26 _Saveframe_category NMR_applied_experiment _Experiment_name 'HCCH COSY RD (sub2)' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_27 _Saveframe_category NMR_applied_experiment _Experiment_name 'HACA(CO)NH RD (sub2)' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_28 _Saveframe_category NMR_applied_experiment _Experiment_name 'HBCBHACA(CO)NH RD (sub2)' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_29 _Saveframe_category NMR_applied_experiment _Experiment_name 'HCCH COSY (regular)' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_30 _Saveframe_category NMR_applied_experiment _Experiment_name 'HBCBcgcdHD RD (sub2)' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_31 _Saveframe_category NMR_applied_experiment _Experiment_name 'HBCBHACACOHA RD (sub2)' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_32 _Saveframe_category NMR_applied_experiment _Experiment_name '1H-15N HSQC-J J=56ms' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_33 _Saveframe_category NMR_applied_experiment _Experiment_name '1H-15N HSQC-J tauJ=33ms' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_34 _Saveframe_category NMR_applied_experiment _Experiment_name '1H-15N HSQC-J tauJ=50ms' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_35 _Saveframe_category NMR_applied_experiment _Experiment_name '1H-15N HSQC-J tauJ=70ms' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_36 _Saveframe_category NMR_applied_experiment _Experiment_name '1H-15N HSQC-J tauJ=83ms' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_37 _Saveframe_category NMR_applied_experiment _Experiment_name '1H-15N HSQC-J tauJ=100ms' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spectrometer_expt_38 _Saveframe_category NMR_applied_experiment _Experiment_name '1H-15N HSQC-J tauJ=125ms' _BMRB_pulse_sequence_accession_number . _Details . save_ ####################### # Sample conditions # ####################### save_sample_conditions_1 _Saveframe_category sample_conditions _Details . loop_ _Variable_type _Variable_value _Variable_value_error _Variable_value_units pH 6.5 0.05 n/a temperature 293 0.1 K stop_ save_ #################### # NMR parameters # #################### ############################## # Assigned chemical shifts # ############################## ################################ # Chemical shift referencing # ################################ save_chemical_shift_reference _Saveframe_category chemical_shift_reference _Details . loop_ _Mol_common_name _Atom_type _Atom_isotope_number _Atom_group _Chem_shift_units _Chem_shift_value _Reference_method _Reference_type _External_reference_sample_geometry _External_reference_location _External_reference_axis _Indirect_shift_ratio DSS H 1 'methyl protons' ppm 0.0 internal direct . . . 1.0 DSS N 15 'methyl protons' ppm 0.0 . indirect . . . 0.101329118 DSS C 13 'methyl protons' ppm 0.0 . indirect . . . 0.251449530 stop_ save_ ################################### # Assigned chemical shift lists # ################################### ################################################################### # Chemical Shift Ambiguity Index Value Definitions # # # # The values other than 1 are used for those atoms with different # # chemical shifts that cannot be assigned to stereospecific atoms # # or to specific residues or chains. # # # # Index Value Definition # # # # 1 Unique (including isolated methyl protons, # # geminal atoms, and geminal methyl # # groups with identical chemical shifts) # # (e.g. ILE HD11, HD12, HD13 protons) # # 2 Ambiguity of geminal atoms or geminal methyl # # proton groups (e.g. ASP HB2 and HB3 # # protons, LEU CD1 and CD2 carbons, or # # LEU HD11, HD12, HD13 and HD21, HD22, # # HD23 methyl protons) # # 3 Aromatic atoms on opposite sides of # # symmetrical rings (e.g. TYR HE1 and HE2 # # protons) # # 4 Intraresidue ambiguities (e.g. LYS HG and # # HD protons or TRP HZ2 and HZ3 protons) # # 5 Interresidue ambiguities (LYS 12 vs. LYS 27) # # 6 Intermolecular ambiguities (e.g. ASP 31 CA # # in monomer 1 and ASP 31 CA in monomer 2 # # of an asymmetrical homodimer, duplex # # DNA assignments, or other assignments # # that may apply to atoms in one or more # # molecule in the molecular assembly) # # 9 Ambiguous, specific ambiguity not defined # # # ################################################################### save_ER14_set_1 _Saveframe_category assigned_chemical_shifts _Details . loop_ _Sample_label $sample_1 stop_ _Sample_conditions_label $sample_conditions_1 _Chem_shift_reference_set_label $chemical_shift_reference _Mol_system_component_name ER14 _Text_data_format . _Text_data . loop_ _Atom_shift_assign_ID _Residue_author_seq_code _Residue_seq_code _Residue_label _Atom_name _Atom_type _Chem_shift_value _Chem_shift_value_error _Chem_shift_ambiguity_code 1 . 2 ASP HA H 4.667 0.02 1 2 . 2 ASP HB2 H 2.733 0.02 2 3 . 2 ASP HB3 H 2.613 0.02 2 4 . 2 ASP CA C 54.944 0.1 1 5 . 2 ASP CB C 41.552 0.1 1 6 . 2 ASP C C 176.268 0.1 1 7 . 3 GLY H H 8.501 0.02 1 8 . 3 GLY HA2 H 3.938 0.02 2 9 . 3 GLY HA3 H 3.95 0.02 2 10 . 3 GLY CA C 45.512 0.1 1 11 . 3 GLY C C 173.833 0.1 1 12 . 3 GLY N N 109.522 0.1 1 13 . 4 VAL H H 7.974 0.02 1 14 . 4 VAL HA H 4.113 0.02 1 15 . 4 VAL HB H 2.042 0.02 1 16 . 4 VAL HG1 H 0.896 0.02 1 17 . 4 VAL HG2 H 0.896 0.02 1 18 . 4 VAL CA C 62.429 0.1 1 19 . 4 VAL CB C 33.067 0.1 1 20 . 4 VAL CG1 C 21.122 0.1 2 21 . 4 VAL CG2 C 21.099 0.1 2 22 . 4 VAL C C 176.195 0.1 1 23 . 4 VAL N N 119.582 0.1 1 24 . 5 MET H H 8.629 0.02 1 25 . 5 MET HA H 4.562 0.02 1 26 . 5 MET HB2 H 1.959 0.02 2 27 . 5 MET HB3 H 1.972 0.02 2 28 . 5 MET HG2 H 2.548 0.02 2 29 . 5 MET HG3 H 2.527 0.02 2 30 . 5 MET CA C 55.278 0.1 1 31 . 5 MET CB C 33.596 0.1 1 32 . 5 MET CG C 32.365 0.1 1 33 . 5 MET C C 175.72 0.1 1 34 . 5 MET N N 125.178 0.1 1 35 . 6 SER H H 8.367 0.02 1 36 . 6 SER HA H 4.585 0.02 1 37 . 6 SER HB2 H 3.853 0.02 2 38 . 6 SER HB3 H 3.767 0.02 2 39 . 6 SER CA C 57.926 0.1 1 40 . 6 SER CB C 64.585 0.1 1 41 . 6 SER C C 174.337 0.1 1 42 . 6 SER N N 117.145 0.1 1 43 . 7 ALA H H 8.843 0.02 1 44 . 7 ALA HA H 4.255 0.02 1 45 . 7 ALA HB H 1.318 0.02 1 46 . 7 ALA CA C 55.954 0.1 1 47 . 7 ALA CB C 19.494 0.1 1 48 . 7 ALA C C 176.908 0.1 1 49 . 7 ALA N N 128.324 0.1 1 50 . 8 VAL H H 7.715 0.02 1 51 . 8 VAL HA H 4.804 0.02 1 52 . 8 VAL HB H 1.879 0.02 1 53 . 8 VAL HG1 H 0.781 0.02 2 54 . 8 VAL HG2 H 0.865 0.02 2 55 . 8 VAL CA C 60.922 0.1 1 56 . 8 VAL CB C 34.673 0.1 1 57 . 8 VAL CG1 C 22.117 0.1 2 58 . 8 VAL CG2 C 21.872 0.1 2 59 . 8 VAL C C 174.703 0.1 1 60 . 8 VAL N N 112.566 0.1 1 61 . 9 THR H H 8.905 0.02 1 62 . 9 THR HA H 4.569 0.02 1 63 . 9 THR HB H 3.943 0.02 1 64 . 9 THR HG2 H 1.187 0.02 1 65 . 9 THR CA C 61.714 0.1 1 66 . 9 THR CB C 71.524 0.1 1 67 . 9 THR CG2 C 21.603 0.1 1 68 . 9 THR C C 172.891 0.1 1 69 . 9 THR N N 122.897 0.1 1 70 . 10 VAL H H 8.897 0.02 1 71 . 10 VAL HA H 4.306 0.02 1 72 . 10 VAL HB H 1.97 0.02 1 73 . 10 VAL HG1 H 0.878 0.02 2 74 . 10 VAL HG2 H 0.911 0.02 2 75 . 10 VAL CA C 62.579 0.1 1 76 . 10 VAL CB C 32.811 0.1 1 77 . 10 VAL CG1 C 21.422 0.1 2 78 . 10 VAL CG2 C 21.476 0.1 2 79 . 10 VAL C C 175.121 0.1 1 80 . 10 VAL N N 126.558 0.1 1 81 . 11 ASN H H 8.696 0.02 1 82 . 11 ASN HA H 5.107 0.02 1 83 . 11 ASN HB2 H 2.895 0.02 2 84 . 11 ASN HB3 H 2.829 0.02 2 85 . 11 ASN HD21 H 6.628 0.02 2 86 . 11 ASN HD22 H 7.467 0.02 2 87 . 11 ASN CA C 51.609 0.1 1 88 . 11 ASN CB C 41.576 0.1 1 89 . 11 ASN C C 175.299 0.1 1 90 . 11 ASN N N 126.004 0.1 1 91 . 11 ASN ND2 N 110.809 0.1 1 92 . 12 ASP H H 8.7 0.02 1 93 . 12 ASP HA H 4.343 0.02 1 94 . 12 ASP HB2 H 2.7 0.02 2 95 . 12 ASP HB3 H 2.597 0.02 2 96 . 12 ASP CA C 57.437 0.1 1 97 . 12 ASP CB C 40.556 0.1 1 98 . 12 ASP C C 176.915 0.1 1 99 . 12 ASP N N 118.623 0.1 1 100 . 13 ASP H H 8.227 0.02 1 101 . 13 ASP HA H 4.732 0.02 1 102 . 13 ASP HB2 H 2.842 0.02 2 103 . 13 ASP HB3 H 2.576 0.02 2 104 . 13 ASP CA C 53.378 0.1 1 105 . 13 ASP CB C 41.126 0.1 1 106 . 13 ASP C C 175.905 0.1 1 107 . 13 ASP N N 114.525 0.1 1 108 . 14 GLY H H 7.317 0.02 1 109 . 14 GLY HA2 H 4.944 0.02 2 110 . 14 GLY HA3 H 3.795 0.02 2 111 . 14 GLY CA C 46.015 0.1 1 112 . 14 GLY C C 171.324 0.1 1 113 . 14 GLY N N 106.841 0.1 1 114 . 15 LEU H H 8.502 0.02 1 115 . 15 LEU HA H 5.277 0.02 1 116 . 15 LEU HB2 H 1.329 0.02 2 117 . 15 LEU HB3 H 1.339 0.02 2 118 . 15 LEU HG H 1.543 0.02 1 119 . 15 LEU HD1 H 0.849 0.02 2 120 . 15 LEU HD2 H 0.846 0.02 2 121 . 15 LEU CA C 53.153 0.1 1 122 . 15 LEU CB C 47.062 0.1 1 123 . 15 LEU CG C 27.417 0.1 1 124 . 15 LEU CD1 C 25.783 0.1 2 125 . 15 LEU CD2 C 25.722 0.1 2 126 . 15 LEU C C 175.612 0.1 1 127 . 15 LEU N N 120.752 0.1 1 128 . 16 VAL H H 9.076 0.02 1 129 . 16 VAL HA H 4.719 0.02 1 130 . 16 VAL HB H 1.826 0.02 1 131 . 16 VAL HG1 H 0.784 0.02 2 132 . 16 VAL HG2 H 0.812 0.02 2 133 . 16 VAL CA C 62.214 0.1 1 134 . 16 VAL CB C 33.663 0.1 1 135 . 16 VAL CG1 C 21.596 0.1 2 136 . 16 VAL CG2 C 21.633 0.1 2 137 . 16 VAL C C 175.701 0.1 1 138 . 16 VAL N N 121.814 0.1 1 139 . 17 LEU H H 9.707 0.02 1 140 . 17 LEU HA H 5.292 0.02 1 141 . 17 LEU HB2 H 1.718 0.02 2 142 . 17 LEU HB3 H 1.401 0.02 2 143 . 17 LEU HG H 1.644 0.02 1 144 . 17 LEU CA C 53.457 0.1 1 145 . 17 LEU CB C 45.209 0.1 1 146 . 17 LEU CG C 27.662 0.1 1 147 . 17 LEU CD1 C 26.799 0.1 2 148 . 17 LEU CD2 C 25.957 0.1 2 149 . 17 LEU HD1 H 0.81 0.02 2 150 . 17 LEU HD2 H 0.922 0.02 2 151 . 17 LEU C C 175.933 0.1 1 152 . 17 LEU N N 128.058 0.1 1 153 . 18 ARG H H 9.015 0.02 1 154 . 18 ARG HA H 4.921 0.02 1 155 . 18 ARG HB2 H 2.173 0.02 2 156 . 18 ARG HB3 H 2.094 0.02 2 157 . 18 ARG HG2 H 1.78 0.02 2 158 . 18 ARG HG3 H 1.63 0.02 2 159 . 18 ARG HD2 H 3.325 0.02 2 160 . 18 ARG HD3 H 3.265 0.02 2 161 . 18 ARG CA C 56.437 0.1 1 162 . 18 ARG CB C 30.782 0.1 1 163 . 18 ARG CG C 28.348 0.1 1 164 . 18 ARG CD C 43.578 0.1 1 165 . 18 ARG C C 175.148 0.1 1 166 . 18 ARG N N 124.606 0.1 1 167 . 18 ARG HE H 6.922 0.02 1 168 . 18 ARG NE N 82.893 0.1 1 169 . 19 LEU H H 9.206 0.02 1 170 . 19 LEU HA H 5.655 0.02 1 171 . 19 LEU HB2 H 1.654 0.02 2 172 . 19 LEU HB3 H 1.417 0.02 2 173 . 19 LEU HG H 1.691 0.02 1 174 . 19 LEU HD1 H 0.897 0.02 2 175 . 19 LEU HD2 H 0.886 0.02 2 176 . 19 LEU CA C 53.309 0.1 1 177 . 19 LEU CB C 46.725 0.1 1 178 . 19 LEU CG C 26.744 0.1 1 179 . 19 LEU CD1 C 25.223 0.1 2 180 . 19 LEU CD2 C 28.116 0.1 2 181 . 19 LEU C C 175.251 0.1 1 182 . 19 LEU N N 121.636 0.1 1 183 . 20 TYR H H 8.787 0.02 1 184 . 20 TYR HA H 5.255 0.02 1 185 . 20 TYR HB2 H 3.069 0.02 2 186 . 20 TYR HB3 H 2.38 0.02 2 187 . 20 TYR HD1 H 6.295 0.02 2 188 . 20 TYR HD2 H 6.293 0.02 2 189 . 20 TYR HE1 H 6.431 0.02 1 190 . 20 TYR HE2 H 6.431 0.02 1 191 . 20 TYR CA C 55.095 0.1 1 192 . 20 TYR CB C 40.372 0.1 1 193 . 20 TYR CD1 C 132 0.1 1 194 . 20 TYR CD2 C 132 0.1 1 195 . 20 TYR CE1 C 117.4 0.1 1 196 . 20 TYR CE2 C 117.4 0.1 1 197 . 20 TYR C C 174.404 0.1 1 198 . 20 TYR N N 123.637 0.1 1 199 . 21 ILE H H 8.631 0.02 1 200 . 21 ILE HA H 4.763 0.02 1 201 . 21 ILE HB H 1.76 0.02 1 202 . 21 ILE HG12 H 1.473 0.02 2 203 . 21 ILE HG13 H 1.125 0.02 2 204 . 21 ILE HG2 H 0.701 0.02 1 205 . 21 ILE HD1 H 0.686 0.02 1 206 . 21 ILE CA C 58.298 0.1 1 207 . 21 ILE CB C 38.072 0.1 1 208 . 21 ILE CG1 C 27.693 0.1 1 209 . 21 ILE CG2 C 18.542 0.1 1 210 . 21 ILE CD1 C 13.072 0.1 1 211 . 21 ILE C C 174.211 0.1 1 212 . 21 ILE N N 125.642 0.1 1 213 . 22 GLN H H 8.733 0.02 1 214 . 22 GLN HA H 4.677 0.02 1 215 . 22 GLN HB2 H 1.666 0.02 2 216 . 22 GLN HB3 H 1.943 0.02 2 217 . 22 GLN HG2 H 2.197 0.02 2 218 . 22 GLN HG3 H 2.2 0.02 2 219 . 22 GLN HE21 H 6.658 0.02 2 220 . 22 GLN HE22 H 7.404 0.02 2 221 . 22 GLN CA C 51.693 0.1 1 222 . 22 GLN CB C 30.555 0.1 1 223 . 22 GLN CG C 33.55 0.1 1 224 . 22 GLN C C 172.335 0.1 1 225 . 22 GLN N N 126.849 0.1 1 226 . 22 GLN NE2 N 111.45 0.1 1 227 . 23 PRO HA H 4.811 0.02 1 228 . 23 PRO HB2 H 1.899 0.02 2 229 . 23 PRO HB3 H 1.818 0.02 2 230 . 23 PRO HG2 H 1.757 0.02 2 231 . 23 PRO HG3 H 1.678 0.02 2 232 . 23 PRO HD2 H 3.563 0.02 2 233 . 23 PRO HD3 H 3.566 0.02 2 234 . 23 PRO CA C 62.164 0.1 1 235 . 23 PRO CB C 32.563 0.1 1 236 . 23 PRO CG C 26.704 0.1 1 237 . 23 PRO CD C 50.457 0.1 1 238 . 23 PRO C C 175.21 0.1 1 239 . 24 LYS H H 8.428 0.02 1 240 . 24 LYS HA H 3.516 0.02 1 241 . 24 LYS HB2 H 2.135 0.02 2 242 . 24 LYS HB3 H 1.576 0.02 2 243 . 24 LYS HG2 H 1.401 0.02 2 244 . 24 LYS HG3 H 1.385 0.02 2 245 . 24 LYS HD2 H 1.642 0.02 2 246 . 24 LYS HD3 H 1.631 0.02 2 247 . 24 LYS HE2 H 2.955 0.02 2 248 . 24 LYS HE3 H 2.933 0.02 2 249 . 24 LYS CA C 57.039 0.1 1 250 . 24 LYS CB C 30.924 0.1 1 251 . 24 LYS CG C 26.451 0.1 1 252 . 24 LYS CD C 29.081 0.1 1 253 . 24 LYS CE C 41.972 0.1 1 254 . 24 LYS C C 175.123 0.1 1 255 . 24 LYS N N 116.472 0.1 1 256 . 25 ALA H H 8.527 0.02 1 257 . 25 ALA HA H 4.339 0.02 1 258 . 25 ALA HB H 1.208 0.02 1 259 . 25 ALA CA C 51.255 0.1 1 260 . 25 ALA CB C 21.525 0.1 1 261 . 25 ALA C C 177.626 0.1 1 262 . 25 ALA N N 122.039 0.1 1 263 . 26 SER H H 8.572 0.02 1 264 . 26 SER HA H 4.142 0.02 1 265 . 26 SER HB2 H 3.85 0.02 2 266 . 26 SER HB3 H 3.851 0.02 2 267 . 26 SER CA C 60.292 0.1 1 268 . 26 SER CB C 63.552 0.1 1 269 . 26 SER C C 174.418 0.1 1 270 . 26 SER N N 113.249 0.1 1 271 . 27 ARG H H 7.086 0.02 1 272 . 27 ARG HA H 4.183 0.02 1 273 . 27 ARG HB2 H 1.679 0.02 2 274 . 27 ARG HB3 H 1.587 0.02 2 275 . 27 ARG HG2 H 1.462 0.02 2 276 . 27 ARG HG3 H 1.28 0.02 2 277 . 27 ARG HD2 H 3.119 0.02 2 278 . 27 ARG HD3 H 3.118 0.02 2 279 . 27 ARG CA C 54.58 0.1 1 280 . 27 ARG CB C 33.209 0.1 1 281 . 27 ARG CG C 26.373 0.1 1 282 . 27 ARG CD C 43.566 0.1 1 283 . 27 ARG C C 173.856 0.1 1 284 . 27 ARG N N 116.786 0.1 1 285 . 28 ASP H H 8.299 0.02 1 286 . 28 ASP HA H 5.031 0.02 1 287 . 28 ASP HB2 H 2.097 0.02 2 288 . 28 ASP HB3 H 1.213 0.02 2 289 . 28 ASP CA C 53.479 0.1 1 290 . 28 ASP CB C 41.0 0.1 1 291 . 28 ASP C C 176.738 0.1 1 292 . 28 ASP N N 122.769 0.1 1 293 . 29 SER H H 9.295 0.02 1 294 . 29 SER HA H 4.598 0.02 1 295 . 29 SER HB2 H 3.63 0.02 2 296 . 29 SER HB3 H 3.555 0.02 2 297 . 29 SER CA C 58.725 0.1 1 298 . 29 SER CB C 65.73 0.1 1 299 . 29 SER C C 173.315 0.1 1 300 . 29 SER N N 117.68 0.1 1 301 . 30 ILE H H 9.109 0.02 1 302 . 30 ILE HA H 4.259 0.02 1 303 . 30 ILE HB H 1.887 0.02 1 304 . 30 ILE HG12 H 1.909 0.02 2 305 . 30 ILE HG13 H 0.967 0.02 2 306 . 30 ILE HG2 H 0.666 0.02 1 307 . 30 ILE HD1 H 0.723 0.02 1 308 . 30 ILE CA C 62.829 0.1 1 309 . 30 ILE CB C 36.792 0.1 1 310 . 30 ILE CG1 C 28.332 0.1 1 311 . 30 ILE CG2 C 17.651 0.1 1 312 . 30 ILE CD1 C 12.946 0.1 1 313 . 30 ILE C C 174.747 0.1 1 314 . 30 ILE N N 125.585 0.1 1 315 . 31 VAL H H 8.564 0.02 1 316 . 31 VAL HA H 3.857 0.02 1 317 . 31 VAL HB H 1.806 0.02 1 318 . 31 VAL HG1 H 0.917 0.02 2 319 . 31 VAL HG2 H 0.936 0.02 2 320 . 31 VAL CA C 65.205 0.1 1 321 . 31 VAL CB C 32.799 0.1 1 322 . 31 VAL CG1 C 22.048 0.1 2 323 . 31 VAL CG2 C 21.444 0.1 2 324 . 31 VAL C C 176.882 0.1 1 325 . 31 VAL N N 128.704 0.1 1 326 . 32 GLY H H 7.125 0.02 1 327 . 32 GLY HA2 H 4.671 0.02 2 328 . 32 GLY HA3 H 3.678 0.02 2 329 . 32 GLY CA C 44.256 0.1 1 330 . 32 GLY C C 171.731 0.1 1 331 . 32 GLY N N 101.844 0.1 1 332 . 33 LEU H H 8.963 0.02 1 333 . 33 LEU HA H 4.578 0.02 1 334 . 33 LEU HB2 H 1.766 0.02 2 335 . 33 LEU HB3 H 1.59 0.02 2 336 . 33 LEU HG H 1.647 0.02 1 337 . 33 LEU HD1 H 0.897 0.02 2 338 . 33 LEU HD2 H 0.895 0.02 2 339 . 33 LEU CA C 56.143 0.1 1 340 . 33 LEU CB C 43.5 0.1 1 341 . 33 LEU CG C 27.08 0.1 1 342 . 33 LEU CD1 C 25.15 0.1 2 343 . 33 LEU CD2 C 24.404 0.1 2 344 . 33 LEU C C 176.973 0.1 1 345 . 33 LEU N N 122.36 0.1 1 346 . 34 HIS H H 9.516 0.02 1 347 . 34 HIS HA H 4.756 0.02 1 348 . 34 HIS HB2 H 3.045 0.02 2 349 . 34 HIS HB3 H 2.759 0.02 2 350 . 34 HIS HD2 H 6.737 0.02 1 351 . 34 HIS CA C 55.964 0.1 1 352 . 34 HIS CB C 32.819 0.1 1 353 . 34 HIS CD2 C 120.3 0.1 1 354 . 34 HIS C C 174.918 0.1 1 355 . 34 HIS N N 127.834 0.1 1 356 . 35 GLY H H 8.92 0.02 1 357 . 35 GLY HA2 H 3.914 0.02 2 358 . 35 GLY HA3 H 3.509 0.02 2 359 . 35 GLY CA C 47.611 0.1 1 360 . 35 GLY C C 173.715 0.1 1 361 . 35 GLY N N 117.234 0.1 1 362 . 36 ASP H H 8.384 0.02 1 363 . 36 ASP HA H 4.77 0.02 1 364 . 36 ASP HB2 H 2.906 0.02 2 365 . 36 ASP HB3 H 2.589 0.02 2 366 . 36 ASP CA C 53.382 0.1 1 367 . 36 ASP CB C 40.718 0.1 1 368 . 36 ASP C C 174.205 0.1 1 369 . 36 ASP N N 128.049 0.1 1 370 . 37 GLU H H 7.665 0.02 1 371 . 37 GLU HA H 4.786 0.02 1 372 . 37 GLU HB2 H 2.127 0.02 2 373 . 37 GLU HB3 H 1.947 0.02 2 374 . 37 GLU HG2 H 2.076 0.02 2 375 . 37 GLU HG3 H 2.474 0.02 2 376 . 37 GLU CA C 54.485 0.1 1 377 . 37 GLU CB C 35.952 0.1 1 378 . 37 GLU CG C 37.586 0.1 1 379 . 37 GLU C C 174.702 0.1 1 380 . 37 GLU N N 115.674 0.1 1 381 . 38 VAL H H 9.498 0.02 1 382 . 38 VAL HA H 4.231 0.02 1 383 . 38 VAL HB H 2.11 0.02 1 384 . 38 VAL HG1 H 0.714 0.02 2 385 . 38 VAL HG2 H 0.853 0.02 2 386 . 38 VAL CA C 62.143 0.1 1 387 . 38 VAL CB C 32.586 0.1 1 388 . 38 VAL CG1 C 22.01 0.1 2 389 . 38 VAL CG2 C 22.685 0.1 2 390 . 38 VAL C C 175.725 0.1 1 391 . 38 VAL N N 120.755 0.1 1 392 . 39 LYS H H 9.365 0.02 1 393 . 39 LYS HA H 5.403 0.02 1 394 . 39 LYS HB2 H 1.875 0.02 2 395 . 39 LYS HB3 H 1.63 0.02 2 396 . 39 LYS HG2 H 1.297 0.02 2 397 . 39 LYS HG3 H 1.116 0.02 2 398 . 39 LYS HD2 H 1.544 0.02 2 399 . 39 LYS HD3 H 1.51 0.02 2 400 . 39 LYS HE2 H 2.598 0.02 2 401 . 39 LYS HE3 H 2.692 0.02 2 402 . 39 LYS CA C 56.042 0.1 1 403 . 39 LYS CB C 33.756 0.1 1 404 . 39 LYS CG C 25.475 0.1 1 405 . 39 LYS CD C 29.879 0.1 1 406 . 39 LYS CE C 42.035 0.1 1 407 . 39 LYS C C 175.23 0.1 1 408 . 39 LYS N N 129.953 0.1 1 409 . 40 VAL H H 8.965 0.02 1 410 . 40 VAL HA H 4.726 0.02 1 411 . 40 VAL HB H 1.89 0.02 1 412 . 40 VAL HG1 H 0.856 0.02 2 413 . 40 VAL HG2 H 1.026 0.02 2 414 . 40 VAL CA C 61.296 0.1 1 415 . 40 VAL CB C 35.179 0.1 1 416 . 40 VAL CG1 C 21.86 0.1 2 417 . 40 VAL CG2 C 23.688 0.1 2 418 . 40 VAL C C 173.1 0.1 1 419 . 40 VAL N N 128.487 0.1 1 420 . 41 ALA H H 9.255 0.02 1 421 . 41 ALA HA H 5.113 0.02 1 422 . 41 ALA HB H 1.232 0.02 1 423 . 41 ALA CA C 50.268 0.1 1 424 . 41 ALA CB C 20.327 0.1 1 425 . 41 ALA C C 176.004 0.1 1 426 . 41 ALA N N 132.493 0.1 1 427 . 42 ILE H H 8.209 0.02 1 428 . 42 ILE HA H 5.602 0.02 1 429 . 42 ILE HB H 1.67 0.02 1 430 . 42 ILE HG12 H 1.367 0.02 2 431 . 42 ILE HG13 H 0.853 0.02 2 432 . 42 ILE HG2 H 0.728 0.02 1 433 . 42 ILE HD1 H 0.75 0.02 1 434 . 42 ILE CA C 57.81 0.1 1 435 . 42 ILE CB C 43.479 0.1 1 436 . 42 ILE CG1 C 25.009 0.1 1 437 . 42 ILE CG2 C 17.91 0.1 1 438 . 42 ILE CD1 C 14.865 0.1 1 439 . 42 ILE C C 176.459 0.1 1 440 . 42 ILE N N 111.855 0.1 1 441 . 43 THR H H 8.307 0.02 1 442 . 43 THR HA H 4.257 0.02 1 443 . 43 THR HB H 4.202 0.02 1 444 . 43 THR HG2 H 0.916 0.02 1 445 . 43 THR CA C 62.11 0.1 1 446 . 43 THR CB C 69.417 0.1 1 447 . 43 THR CG2 C 20.667 0.1 1 448 . 43 THR C C 175.287 0.1 1 449 . 43 THR N N 110.725 0.1 1 450 . 44 ALA H H 5.617 0.02 1 451 . 44 ALA HA H 4.207 0.02 1 452 . 44 ALA HB H 0.929 0.02 1 453 . 44 ALA CA C 50.231 0.1 1 454 . 44 ALA CB C 18.413 0.1 1 455 . 44 ALA C C 173.007 0.1 1 456 . 44 ALA N N 121.488 0.1 1 457 . 45 PRO HA H 4.525 0.02 1 458 . 45 PRO HB2 H 2.358 0.02 2 459 . 45 PRO HB3 H 1.911 0.02 2 460 . 45 PRO HG2 H 2.05 0.02 2 461 . 45 PRO HG3 H 1.883 0.02 2 462 . 45 PRO HD2 H 3.741 0.02 2 463 . 45 PRO HD3 H 3.427 0.02 2 464 . 45 PRO CA C 61.476 0.1 1 465 . 45 PRO CB C 31.547 0.1 1 466 . 45 PRO CG C 27.161 0.1 1 467 . 45 PRO CD C 50.236 0.1 1 468 . 45 PRO C C 174.335 0.1 1 469 . 46 PRO HA H 4.362 0.02 1 470 . 46 PRO HB2 H 2.276 0.02 2 471 . 46 PRO HB3 H 1.761 0.02 2 472 . 46 PRO HG2 H 1.99 0.02 2 473 . 46 PRO HG3 H 1.978 0.02 2 474 . 46 PRO HD2 H 3.343 0.02 2 475 . 46 PRO HD3 H 3.717 0.02 2 476 . 46 PRO CA C 62.826 0.1 1 477 . 46 PRO CB C 29.87 0.1 1 478 . 46 PRO CG C 27.482 0.1 1 479 . 46 PRO CD C 49.933 0.1 1 480 . 46 PRO C C 175.977 0.1 1 481 . 47 VAL H H 7.674 0.02 1 482 . 47 VAL HA H 4.106 0.02 1 483 . 47 VAL HB H 1.875 0.02 1 484 . 47 VAL HG1 H 0.927 0.02 2 485 . 47 VAL HG2 H 1.02 0.02 2 486 . 47 VAL CA C 62.133 0.1 1 487 . 47 VAL CB C 33.633 0.1 1 488 . 47 VAL CG1 C 20.694 0.1 2 489 . 47 VAL CG2 C 21.394 0.1 2 490 . 47 VAL C C 177.408 0.1 1 491 . 47 VAL N N 121.883 0.1 1 492 . 48 ASP H H 8.582 0.02 1 493 . 48 ASP HA H 4.389 0.02 1 494 . 48 ASP HB2 H 2.733 0.02 2 495 . 48 ASP HB3 H 2.565 0.02 2 496 . 48 ASP CA C 59.114 0.1 1 497 . 48 ASP CB C 41.947 0.1 1 498 . 48 ASP C C 177.42 0.1 1 499 . 48 ASP N N 126.393 0.1 1 500 . 49 GLY H H 8.936 0.02 1 501 . 49 GLY HA2 H 3.978 0.02 2 502 . 49 GLY HA3 H 3.929 0.02 2 503 . 49 GLY CA C 47.58 0.1 1 504 . 49 GLY N N 106.096 0.1 1 505 . 50 GLN H H 7.379 0.02 1 506 . 50 GLN HA H 4.303 0.02 1 507 . 50 GLN HB2 H 2.14 0.02 2 508 . 50 GLN HB3 H 2.033 0.02 2 509 . 50 GLN HG2 H 2.443 0.02 2 510 . 50 GLN HG3 H 2.385 0.02 2 511 . 50 GLN HE21 H 6.852 0.02 2 512 . 50 GLN HE22 H 7.574 0.02 2 513 . 50 GLN CA C 58.167 0.1 1 514 . 50 GLN CB C 29.468 0.1 1 515 . 50 GLN CG C 34.328 0.1 1 516 . 50 GLN C C 178.237 0.1 1 517 . 50 GLN N N 120.278 0.1 1 518 . 50 GLN NE2 N 110.944 0.1 1 519 . 51 ALA H H 8.708 0.02 1 520 . 51 ALA HA H 3.839 0.02 1 521 . 51 ALA HB H 1.371 0.02 1 522 . 51 ALA CA C 55.972 0.1 1 523 . 51 ALA CB C 17.567 0.1 1 524 . 51 ALA C C 179.55 0.1 1 525 . 51 ALA N N 123.111 0.1 1 526 . 52 ASN H H 8.668 0.02 1 527 . 52 ASN HA H 4.428 0.02 1 528 . 52 ASN HB2 H 2.928 0.02 2 529 . 52 ASN HB3 H 2.709 0.02 2 530 . 52 ASN HD21 H 7.631 0.02 2 531 . 52 ASN HD22 H 8.394 0.02 2 532 . 52 ASN CA C 56.414 0.1 1 533 . 52 ASN CB C 37.687 0.1 1 534 . 52 ASN C C 177.51 0.1 1 535 . 52 ASN N N 116.52 0.1 1 536 . 52 ASN ND2 N 112.855 0.1 1 537 . 53 SER H H 7.768 0.02 1 538 . 53 SER HA H 4.224 0.02 1 539 . 53 SER HB2 H 4.016 0.02 2 540 . 53 SER HB3 H 4.027 0.02 2 541 . 53 SER CA C 61.722 0.1 1 542 . 53 SER CB C 62.755 0.1 1 543 . 53 SER C C 177.242 0.1 1 544 . 53 SER N N 114.717 0.1 1 545 . 54 HIS H H 8.216 0.02 1 546 . 54 HIS HA H 4.132 0.02 1 547 . 54 HIS HB2 H 3.189 0.02 2 548 . 54 HIS HB3 H 3.239 0.02 2 549 . 54 HIS HD2 H 6.536 0.02 1 550 . 54 HIS CA C 60.255 0.1 1 551 . 54 HIS CB C 32.877 0.1 1 552 . 54 HIS CD2 C 116.0 0.1 1 553 . 54 HIS C C 178.237 0.1 1 554 . 54 HIS N N 122.719 0.1 1 555 . 55 LEU H H 8.896 0.02 1 556 . 55 LEU HA H 4.141 0.02 1 557 . 55 LEU HB2 H 2.239 0.02 2 558 . 55 LEU HB3 H 1.727 0.02 2 559 . 55 LEU HG H 1.587 0.02 1 560 . 55 LEU HD1 H 0.98 0.02 2 561 . 55 LEU HD2 H 0.86 0.02 2 562 . 55 LEU CD1 C 23.9 0.1 2 563 . 55 LEU CD2 C 26.9 0.1 2 564 . 55 LEU CA C 58.623 0.1 1 565 . 55 LEU CB C 42.749 0.1 1 566 . 55 LEU CG C 27.151 0.1 1 567 . 55 LEU C C 178.221 0.1 1 568 . 55 LEU N N 120.217 0.1 1 569 . 56 VAL H H 8.532 0.02 1 570 . 56 VAL HA H 3.635 0.02 1 571 . 56 VAL HB H 2.246 0.02 1 572 . 56 VAL HG1 H 1.037 0.02 2 573 . 56 VAL HG2 H 1.111 0.02 2 574 . 56 VAL CA C 67.653 0.1 1 575 . 56 VAL CB C 31.705 0.1 1 576 . 56 VAL CG1 C 21.464 0.1 2 577 . 56 VAL CG2 C 22.213 0.1 2 578 . 56 VAL C C 178.417 0.1 1 579 . 56 VAL N N 118.155 0.1 1 580 . 57 LYS H H 7.613 0.02 1 581 . 57 LYS HA H 4.099 0.02 1 582 . 57 LYS HB2 H 1.911 0.02 2 583 . 57 LYS HB3 H 1.926 0.02 2 584 . 57 LYS HG2 H 1.589 0.02 2 585 . 57 LYS HG3 H 1.409 0.02 2 586 . 57 LYS HD2 H 1.7 0.02 2 587 . 57 LYS HD3 H 1.692 0.02 2 588 . 57 LYS HE2 H 2.954 0.02 2 589 . 57 LYS HE3 H 2.94 0.02 2 590 . 57 LYS CA C 60.04 0.1 1 591 . 57 LYS CB C 32.472 0.1 1 592 . 57 LYS CG C 25.287 0.1 1 593 . 57 LYS CD C 29.731 0.1 1 594 . 57 LYS CE C 42.165 0.1 1 595 . 57 LYS C C 179.356 0.1 1 596 . 57 LYS N N 121.024 0.1 1 597 . 58 PHE H H 8.287 0.02 1 598 . 58 PHE HA H 4.524 0.02 1 599 . 58 PHE HB2 H 3.282 0.02 2 600 . 58 PHE HB3 H 3.063 0.02 2 601 . 58 PHE CA C 60.578 0.1 1 602 . 58 PHE CB C 39.241 0.1 1 603 . 58 PHE N N 120.987 0.1 1 604 . 58 PHE HD1 H 7.197 0.02 1 605 . 58 PHE HD2 H 7.197 0.02 1 606 . 58 PHE HE1 H 7.16 0.02 1 607 . 58 PHE HE2 H 7.16 0.02 1 608 . 58 PHE HZ H 7.05 0.02 1 609 . 58 PHE CD1 C 131.8 0.1 1 610 . 58 PHE CD2 C 131.8 0.1 1 611 . 58 PHE CE1 C 131.7 0.1 1 612 . 58 PHE CE2 C 131.7 0.1 1 613 . 58 PHE CZ C 129.1 0.1 1 614 . 58 PHE C C 177.552 0.1 1 615 . 59 LEU H H 9.156 0.02 1 616 . 59 LEU HA H 3.748 0.02 1 617 . 59 LEU HB2 H 2.025 0.02 2 618 . 59 LEU HB3 H 1.283 0.02 2 619 . 59 LEU HG H 2.175 0.02 1 620 . 59 LEU HD1 H 0.829 0.02 2 621 . 59 LEU HD2 H 0.809 0.02 2 622 . 59 LEU CA C 57.966 0.1 1 623 . 59 LEU CB C 41.27 0.1 1 624 . 59 LEU CG C 26.765 0.1 1 625 . 59 LEU CD1 C 21.506 0.1 2 626 . 59 LEU CD2 C 27.484 0.1 2 627 . 59 LEU C C 179.164 0.1 1 628 . 59 LEU N N 118.207 0.1 1 629 . 60 GLY H H 8.644 0.02 1 630 . 60 GLY HA2 H 3.725 0.02 2 631 . 60 GLY HA3 H 3.712 0.02 2 632 . 60 GLY CA C 47.38 0.1 1 633 . 60 GLY C C 175.745 0.1 1 634 . 60 GLY N N 107.86 0.1 1 635 . 61 LYS H H 7.5 0.02 1 636 . 61 LYS HA H 4.175 0.02 1 637 . 61 LYS HB2 H 1.994 0.02 2 638 . 61 LYS HB3 H 1.997 0.02 2 639 . 61 LYS HG2 H 1.466 0.02 2 640 . 61 LYS HG3 H 1.574 0.02 2 641 . 61 LYS HD2 H 1.737 0.02 2 642 . 61 LYS HD3 H 1.748 0.02 2 643 . 61 LYS HE2 H 3.019 0.02 2 644 . 61 LYS HE3 H 3.012 0.02 2 645 . 61 LYS CA C 59.147 0.1 1 646 . 61 LYS CB C 32.434 0.1 1 647 . 61 LYS CG C 25.18 0.1 1 648 . 61 LYS CD C 29.438 0.1 1 649 . 61 LYS CE C 42.422 0.1 1 650 . 61 LYS C C 180.146 0.1 1 651 . 61 LYS N N 120.263 0.1 1 652 . 62 GLN H H 8.077 0.02 1 653 . 62 GLN HA H 3.636 0.02 1 654 . 62 GLN HB2 H 1.609 0.02 2 655 . 62 GLN HB3 H 1.562 0.02 2 656 . 62 GLN HG2 H 1.61 0.02 2 657 . 62 GLN HG3 H 1.058 0.02 2 658 . 62 GLN HE21 H 6.682 0.02 2 659 . 62 GLN HE22 H 7.013 0.02 2 660 . 62 GLN CA C 58.37 0.1 1 661 . 62 GLN CB C 28.813 0.1 1 662 . 62 GLN CG C 34.196 0.1 1 663 . 62 GLN C C 176.997 0.1 1 664 . 62 GLN N N 117.643 0.1 1 665 . 62 GLN NE2 N 114.701 0.1 1 666 . 63 PHE H H 8.031 0.02 1 667 . 63 PHE HA H 5.088 0.02 1 668 . 63 PHE HB2 H 3.38 0.02 2 669 . 63 PHE HB3 H 2.683 0.02 2 670 . 63 PHE HD1 H 7.887 0.02 1 671 . 63 PHE HD2 H 7.887 0.02 1 672 . 63 PHE CA C 57.901 0.1 1 673 . 63 PHE CB C 39.738 0.1 1 674 . 63 PHE CD1 C 133.7 0.1 1 675 . 63 PHE CD2 C 133.7 0.1 1 676 . 63 PHE N N 112.8 0.1 1 677 . 63 PHE HE1 H 7.1 0.02 1 678 . 63 PHE HE2 H 7.1 0.02 1 679 . 63 PHE HZ H 7.02 0.02 1 680 . 63 PHE CE1 C 130 0.1 1 681 . 63 PHE CE2 C 130 0.1 1 682 . 63 PHE CZ C 127.8 0.1 1 683 . 63 PHE C C 173.705 0.1 1 684 . 64 ARG H H 7.705 0.02 1 685 . 64 ARG HA H 3.966 0.02 1 686 . 64 ARG HB2 H 2.107 0.02 2 687 . 64 ARG HB3 H 1.511 0.02 2 688 . 64 ARG HG2 H 1.675 0.02 2 689 . 64 ARG HG3 H 1.494 0.02 2 690 . 64 ARG HD2 H 3.122 0.02 2 691 . 64 ARG HD3 H 3.12 0.02 2 692 . 64 ARG CA C 57.223 0.1 1 693 . 64 ARG CB C 29.516 0.1 1 694 . 64 ARG CG C 28.141 0.1 1 695 . 64 ARG CD C 44.082 0.1 1 696 . 64 ARG C C 174.3 0.1 1 697 . 64 ARG N N 122.803 0.1 1 698 . 65 VAL H H 8.519 0.02 1 699 . 65 VAL HA H 4.822 0.02 1 700 . 65 VAL HB H 2.24 0.02 1 701 . 65 VAL HG1 H 0.672 0.02 2 702 . 65 VAL HG2 H 0.98 0.02 2 703 . 65 VAL CA C 58.583 0.1 1 704 . 65 VAL CB C 36.087 0.1 1 705 . 65 VAL CG1 C 19.562 0.1 2 706 . 65 VAL CG2 C 24.002 0.1 2 707 . 65 VAL C C 175.201 0.1 1 708 . 65 VAL N N 108.717 0.1 1 709 . 66 ALA H H 7.827 0.02 1 710 . 66 ALA HA H 4.337 0.02 1 711 . 66 ALA HB H 1.492 0.02 1 712 . 66 ALA CA C 51.618 0.1 1 713 . 66 ALA CB C 19.973 0.1 1 714 . 66 ALA C C 178.835 0.1 1 715 . 66 ALA N N 122.781 0.1 1 716 . 67 LYS H H 8.527 0.02 1 717 . 67 LYS HA H 3.883 0.02 1 718 . 67 LYS HB2 H 1.873 0.02 2 719 . 67 LYS HB3 H 1.796 0.02 2 720 . 67 LYS HG2 H 1.541 0.02 2 721 . 67 LYS HG3 H 1.437 0.02 2 722 . 67 LYS HD2 H 1.748 0.02 2 723 . 67 LYS HD3 H 1.74 0.02 2 724 . 67 LYS HE2 H 3.022 0.02 2 725 . 67 LYS HE3 H 3.013 0.02 2 726 . 67 LYS CA C 60.297 0.1 1 727 . 67 LYS CB C 32.206 0.1 1 728 . 67 LYS CG C 24.905 0.1 1 729 . 67 LYS CD C 29.758 0.1 1 730 . 67 LYS CE C 42.178 0.1 1 731 . 67 LYS C C 178.119 0.1 1 732 . 67 LYS N N 120.443 0.1 1 733 . 68 SER H H 7.764 0.02 1 734 . 68 SER HA H 4.21 0.02 1 735 . 68 SER HB2 H 4.012 0.02 2 736 . 68 SER HB3 H 3.882 0.02 2 737 . 68 SER CA C 59.799 0.1 1 738 . 68 SER CB C 62.691 0.1 1 739 . 68 SER C C 175.374 0.1 1 740 . 68 SER N N 110.092 0.1 1 741 . 69 GLN H H 7.959 0.02 1 742 . 69 GLN HA H 4.257 0.02 1 743 . 69 GLN HB2 H 2.947 0.02 2 744 . 69 GLN HB3 H 2.167 0.02 2 745 . 69 GLN HG2 H 2.315 0.02 2 746 . 69 GLN HG3 H 2.206 0.02 2 747 . 69 GLN HE21 H 7.207 0.02 2 748 . 69 GLN HE22 H 7.788 0.02 2 749 . 69 GLN CA C 55.897 0.1 1 750 . 69 GLN CB C 29.491 0.1 1 751 . 69 GLN CG C 36.249 0.1 1 752 . 69 GLN C C 172.625 0.1 1 753 . 69 GLN N N 120.031 0.1 1 754 . 69 GLN NE2 N 113.23 0.1 1 755 . 70 VAL H H 7.336 0.02 1 756 . 70 VAL HA H 4.496 0.02 1 757 . 70 VAL HB H 2.355 0.02 1 758 . 70 VAL HG1 H 0.737 0.02 2 759 . 70 VAL HG2 H 0.749 0.02 2 760 . 70 VAL CA C 61.889 0.1 1 761 . 70 VAL CB C 31.83 0.1 1 762 . 70 VAL CG1 C 19.838 0.1 2 763 . 70 VAL CG2 C 23.076 0.1 2 764 . 70 VAL C C 174.336 0.1 1 765 . 70 VAL N N 120.365 0.1 1 766 . 71 VAL H H 9.109 0.02 1 767 . 71 VAL HA H 4.211 0.02 1 768 . 71 VAL HB H 1.997 0.02 1 769 . 71 VAL HG1 H 0.83 0.02 1 770 . 71 VAL HG2 H 0.83 0.02 1 771 . 71 VAL CA C 61.43 0.1 1 772 . 71 VAL CB C 35.412 0.1 1 773 . 71 VAL CG1 C 20.949 0.1 2 774 . 71 VAL CG2 C 20.708 0.1 2 775 . 71 VAL C C 176.028 0.1 1 776 . 71 VAL N N 126.067 0.1 1 777 . 72 ILE H H 9.074 0.02 1 778 . 72 ILE HA H 4.129 0.02 1 779 . 72 ILE HB H 1.876 0.02 1 780 . 72 ILE HG12 H 1.642 0.02 2 781 . 72 ILE HG13 H 0.624 0.02 2 782 . 72 ILE HG2 H 0.589 0.02 1 783 . 72 ILE HD1 H 0.799 0.02 1 784 . 72 ILE CA C 62.452 0.1 1 785 . 72 ILE CB C 36.529 0.1 1 786 . 72 ILE CG1 C 27.423 0.1 1 787 . 72 ILE CG2 C 17.439 0.1 1 788 . 72 ILE CD1 C 12.916 0.1 1 789 . 72 ILE C C 175.355 0.1 1 790 . 72 ILE N N 127.611 0.1 1 791 . 73 GLU H H 8.889 0.02 1 792 . 73 GLU HA H 4.243 0.02 1 793 . 73 GLU HB2 H 1.974 0.02 2 794 . 73 GLU HB3 H 1.816 0.02 2 795 . 73 GLU HG2 H 2.27 0.02 2 796 . 73 GLU HG3 H 1.962 0.02 2 797 . 73 GLU CA C 58.772 0.1 1 798 . 73 GLU CB C 32.136 0.1 1 799 . 73 GLU CG C 38.186 0.1 1 800 . 73 GLU C C 177.208 0.1 1 801 . 73 GLU N N 129.75 0.1 1 802 . 74 LYS H H 7.921 0.02 1 803 . 74 LYS HA H 4.659 0.02 1 804 . 74 LYS HB2 H 1.888 0.02 2 805 . 74 LYS HB3 H 1.625 0.02 2 806 . 74 LYS HG2 H 1.471 0.02 2 807 . 74 LYS HG3 H 1.313 0.02 2 808 . 74 LYS HD2 H 1.562 0.02 2 809 . 74 LYS HD3 H 1.664 0.02 2 810 . 74 LYS HE2 H 2.95 0.02 2 811 . 74 LYS HE3 H 2.941 0.02 2 812 . 74 LYS CA C 55.661 0.1 1 813 . 74 LYS CB C 37.263 0.1 1 814 . 74 LYS CG C 25.42 0.1 1 815 . 74 LYS CD C 29.555 0.1 1 816 . 74 LYS CE C 42.258 0.1 1 817 . 74 LYS C C 176.069 0.1 1 818 . 74 LYS N N 115.087 0.1 1 819 . 75 GLY H H 8.884 0.02 1 820 . 75 GLY HA2 H 4.557 0.02 2 821 . 75 GLY HA3 H 3.797 0.02 2 822 . 75 GLY CA C 46.462 0.1 1 823 . 75 GLY C C 174.432 0.1 1 824 . 75 GLY N N 110.07 0.1 1 825 . 76 GLU H H 8.627 0.02 1 826 . 76 GLU HA H 3.603 0.02 1 827 . 76 GLU HB2 H 2.062 0.02 2 828 . 76 GLU HB3 H 1.926 0.02 2 829 . 76 GLU HG2 H 2.165 0.02 2 830 . 76 GLU HG3 H 2.158 0.02 2 831 . 76 GLU CA C 61.208 0.1 1 832 . 76 GLU CB C 29.481 0.1 1 833 . 76 GLU CG C 36.64 0.1 1 834 . 76 GLU C C 176.977 0.1 1 835 . 76 GLU N N 121.501 0.1 1 836 . 77 LEU H H 8.12 0.02 1 837 . 77 LEU HA H 4.602 0.02 1 838 . 77 LEU HB2 H 1.705 0.02 2 839 . 77 LEU HB3 H 1.454 0.02 2 840 . 77 LEU HG H 1.636 0.02 1 841 . 77 LEU HD1 H 0.823 0.02 2 842 . 77 LEU HD2 H 0.912 0.02 2 843 . 77 LEU CA C 53.556 0.1 1 844 . 77 LEU CB C 41.77 0.1 1 845 . 77 LEU CG C 27.252 0.1 1 846 . 77 LEU CD1 C 22.919 0.1 2 847 . 77 LEU CD2 C 25.278 0.1 2 848 . 77 LEU C C 177.966 0.1 1 849 . 77 LEU N N 114.835 0.1 1 850 . 78 GLY H H 8.581 0.02 1 851 . 78 GLY HA2 H 4.386 0.02 2 852 . 78 GLY HA3 H 4.021 0.02 2 853 . 78 GLY CA C 44.719 0.1 1 854 . 78 GLY C C 174.115 0.1 1 855 . 78 GLY N N 111.261 0.1 1 856 . 79 ARG H H 8.634 0.02 1 857 . 79 ARG HA H 4.093 0.02 1 858 . 79 ARG HB2 H 1.533 0.02 2 859 . 79 ARG HB3 H 1.961 0.02 2 860 . 79 ARG HG2 H 1.696 0.02 2 861 . 79 ARG HG3 H 1.448 0.02 2 862 . 79 ARG HD2 H 3.135 0.02 2 863 . 79 ARG HD3 H 3.137 0.02 2 864 . 79 ARG CA C 57.105 0.1 1 865 . 79 ARG CB C 31.683 0.1 1 866 . 79 ARG CG C 27.534 0.1 1 867 . 79 ARG CD C 43.471 0.1 1 868 . 79 ARG C C 175.633 0.1 1 869 . 79 ARG N N 113.45 0.1 1 870 . 80 HIS H H 7.999 0.02 1 871 . 80 HIS HA H 5.473 0.02 1 872 . 80 HIS HB2 H 3.171 0.02 2 873 . 80 HIS HB3 H 3.223 0.02 2 874 . 80 HIS HD2 H 7.42 0.02 1 875 . 80 HIS CA C 54.652 0.1 1 876 . 80 HIS CB C 29.091 0.1 1 877 . 80 HIS CD2 C 121.4 0.1 1 878 . 80 HIS C C 175.385 0.1 1 879 . 80 HIS N N 117.373 0.1 1 880 . 81 LYS H H 9.227 0.02 1 881 . 81 LYS HA H 5.211 0.02 1 882 . 81 LYS HB2 H 1.671 0.02 2 883 . 81 LYS HB3 H 1.415 0.02 2 884 . 81 LYS HG2 H 1.032 0.02 2 885 . 81 LYS HG3 H 1.984 0.02 2 886 . 81 LYS HD2 H 1.334 0.02 2 887 . 81 LYS HD3 H 1.234 0.02 2 888 . 81 LYS HE2 H 3.075 0.02 2 889 . 81 LYS HE3 H 2.856 0.02 2 890 . 81 LYS CA C 54.752 0.1 1 891 . 81 LYS CB C 38.293 0.1 1 892 . 81 LYS CG C 25.744 0.1 1 893 . 81 LYS CD C 30.279 0.1 1 894 . 81 LYS CE C 43.337 0.1 1 895 . 81 LYS C C 174.706 0.1 1 896 . 81 LYS N N 123.144 0.1 1 897 . 82 GLN H H 8.645 0.02 1 898 . 82 GLN HA H 5.485 0.02 1 899 . 82 GLN HB2 H 2.029 0.02 2 900 . 82 GLN HB3 H 1.881 0.02 2 901 . 82 GLN HG2 H 2.047 0.02 2 902 . 82 GLN HG3 H 1.934 0.02 2 903 . 82 GLN HE21 H 6.879 0.02 2 904 . 82 GLN HE22 H 8.313 0.02 2 905 . 82 GLN CA C 55.365 0.1 1 906 . 82 GLN CB C 32.512 0.1 1 907 . 82 GLN CG C 35.364 0.1 1 908 . 82 GLN C C 174.433 0.1 1 909 . 82 GLN N N 124.197 0.1 1 910 . 82 GLN NE2 N 114.974 0.1 1 911 . 83 ILE H H 9.407 0.02 1 912 . 83 ILE HA H 5.142 0.02 1 913 . 83 ILE HB H 1.572 0.02 1 914 . 83 ILE HG12 H 1.4 0.02 2 915 . 83 ILE HG13 H 1.17 0.02 2 916 . 83 ILE HG2 H 0.658 0.02 1 917 . 83 ILE HD1 H 0.679 0.02 1 918 . 83 ILE CA C 58.798 0.1 1 919 . 83 ILE CB C 42.017 0.1 1 920 . 83 ILE CG1 C 29.045 0.1 1 921 . 83 ILE CG2 C 18.69 0.1 1 922 . 83 ILE CD1 C 14.379 0.1 1 923 . 83 ILE C C 173.161 0.1 1 924 . 83 ILE N N 128.772 0.1 1 925 . 84 LYS H H 9.515 0.02 1 926 . 84 LYS HA H 5.172 0.02 1 927 . 84 LYS HB2 H 1.656 0.02 2 928 . 84 LYS HB3 H 1.639 0.02 2 929 . 84 LYS HG2 H 1.066 0.02 2 930 . 84 LYS HG3 H 1.099 0.02 2 931 . 84 LYS HD2 H 1.539 0.02 2 932 . 84 LYS HD3 H 1.514 0.02 2 933 . 84 LYS HE2 H 2.64 0.02 2 934 . 84 LYS HE3 H 2.649 0.02 2 935 . 84 LYS CA C 54.47 0.1 1 936 . 84 LYS CB C 35.215 0.1 1 937 . 84 LYS CG C 25.277 0.1 1 938 . 84 LYS CD C 29.529 0.1 1 939 . 84 LYS CE C 41.889 0.1 1 940 . 84 LYS C C 174.32 0.1 1 941 . 84 LYS N N 129.473 0.1 1 942 . 85 ILE H H 9.037 0.02 1 943 . 85 ILE HA H 4.813 0.02 1 944 . 85 ILE HB H 1.531 0.02 1 945 . 85 ILE HG12 H 0.984 0.02 2 946 . 85 ILE HG13 H 0.184 0.02 2 947 . 85 ILE HG2 H 0.371 0.02 1 948 . 85 ILE HD1 H 0.255 0.02 1 949 . 85 ILE CA C 57.775 0.1 1 950 . 85 ILE CB C 37.275 0.1 1 951 . 85 ILE CG1 C 25.666 0.1 1 952 . 85 ILE CG2 C 18.109 0.1 1 953 . 85 ILE CD1 C 12.303 0.1 1 954 . 85 ILE C C 175.426 0.1 1 955 . 85 ILE N N 125.573 0.1 1 956 . 86 ILE H H 9.09 0.02 1 957 . 86 ILE HA H 4.136 0.02 1 958 . 86 ILE HB H 1.662 0.02 1 959 . 86 ILE HG12 H 1.483 0.02 2 960 . 86 ILE HG13 H 0.967 0.02 2 961 . 86 ILE HG2 H 0.984 0.02 1 962 . 86 ILE HD1 H 0.82 0.02 1 963 . 86 ILE CA C 61.359 0.1 1 964 . 86 ILE CB C 39.263 0.1 1 965 . 86 ILE CG1 C 28.711 0.1 1 966 . 86 ILE CG2 C 17.76 0.1 1 967 . 86 ILE CD1 C 13.77 0.1 1 968 . 86 ILE C C 175.616 0.1 1 969 . 86 ILE N N 129.412 0.1 1 970 . 87 ASN H H 8.911 0.02 1 971 . 87 ASN HA H 4.44 0.02 1 972 . 87 ASN HB2 H 2.997 0.02 2 973 . 87 ASN HB3 H 2.705 0.02 2 974 . 87 ASN HD21 H 6.896 0.02 2 975 . 87 ASN HD22 H 7.482 0.02 2 976 . 87 ASN CA C 53.807 0.1 1 977 . 87 ASN CB C 38.489 0.1 1 978 . 87 ASN C C 172.038 0.1 1 979 . 87 ASN N N 120.767 0.1 1 980 . 87 ASN ND2 N 111.013 0.1 1 981 . 88 PRO HA H 4.198 0.02 1 982 . 88 PRO HB2 H 2.054 0.02 2 983 . 88 PRO HB3 H 2.189 0.02 2 984 . 88 PRO HG2 H 2.147 0.02 2 985 . 88 PRO HG3 H 1.71 0.02 2 986 . 88 PRO HD2 H 3.858 0.02 2 987 . 88 PRO HD3 H 3.498 0.02 2 988 . 88 PRO CA C 63.064 0.1 1 989 . 88 PRO CB C 32.588 0.1 1 990 . 88 PRO CG C 27.375 0.1 1 991 . 88 PRO CD C 50.612 0.1 1 992 . 88 PRO C C 177.446 0.1 1 993 . 89 GLN H H 7.534 0.02 1 994 . 89 GLN HA H 4.398 0.02 1 995 . 89 GLN HB2 H 2.354 0.02 2 996 . 89 GLN HB3 H 2.361 0.02 2 997 . 89 GLN HG2 H 2.614 0.02 2 998 . 89 GLN HG3 H 2.468 0.02 2 999 . 89 GLN HE21 H 6.832 0.02 2 1000 . 89 GLN HE22 H 7.284 0.02 2 1001 . 89 GLN CA C 55.956 0.1 1 1002 . 89 GLN CB C 30.229 0.1 1 1003 . 89 GLN CG C 35.301 0.1 1 1004 . 89 GLN C C 175.296 0.1 1 1005 . 89 GLN N N 119.986 0.1 1 1006 . 89 GLN NE2 N 114.419 0.1 1 1007 . 90 GLN H H 7.962 0.02 1 1008 . 90 GLN HA H 4.465 0.02 1 1009 . 90 GLN HB2 H 1.838 0.02 2 1010 . 90 GLN HB3 H 1.805 0.02 2 1011 . 90 GLN HG2 H 1.985 0.02 2 1012 . 90 GLN HG3 H 2.089 0.02 2 1013 . 90 GLN HE21 H 6.788 0.02 2 1014 . 90 GLN HE22 H 7.301 0.02 2 1015 . 90 GLN CA C 54.594 0.1 1 1016 . 90 GLN CB C 32.078 0.1 1 1017 . 90 GLN CG C 33.331 0.1 1 1018 . 90 GLN C C 172.552 0.1 1 1019 . 90 GLN N N 118.357 0.1 1 1020 . 90 GLN NE2 N 111.689 0.1 1 1021 . 91 ILE H H 8.409 0.02 1 1022 . 91 ILE HA H 4.605 0.02 1 1023 . 91 ILE HB H 1.881 0.02 1 1024 . 91 ILE HG12 H 1.553 0.02 2 1025 . 91 ILE HG13 H 1.192 0.02 2 1026 . 91 ILE HG2 H 0.865 0.02 1 1027 . 91 ILE HD1 H 0.84 0.02 1 1028 . 91 ILE CA C 56.791 0.1 1 1029 . 91 ILE CB C 39.099 0.1 1 1030 . 91 ILE CG1 C 27.175 0.1 1 1031 . 91 ILE CG2 C 17.288 0.1 1 1032 . 91 ILE CD1 C 11.635 0.1 1 1033 . 91 ILE C C 174.171 0.1 1 1034 . 91 ILE N N 120.439 0.1 1 1035 . 92 PRO HA H 4.637 0.02 1 1036 . 92 PRO HB2 H 2.503 0.02 2 1037 . 92 PRO HB3 H 1.774 0.02 2 1038 . 92 PRO HG2 H 1.471 0.02 2 1039 . 92 PRO HG3 H 1.228 0.02 2 1040 . 92 PRO HD2 H 2.879 0.02 2 1041 . 92 PRO HD3 H 2.821 0.02 2 1042 . 92 PRO CA C 61.469 0.1 1 1043 . 92 PRO CB C 31.43 0.1 1 1044 . 92 PRO CG C 28.045 0.1 1 1045 . 92 PRO CD C 51.241 0.1 1 1046 . 92 PRO C C 175.552 0.1 1 1047 . 93 PRO HA H 4.266 0.02 1 1048 . 93 PRO HB2 H 2.389 0.02 2 1049 . 93 PRO HB3 H 1.973 0.02 2 1050 . 93 PRO HG2 H 2.176 0.02 2 1051 . 93 PRO HG3 H 2.102 0.02 2 1052 . 93 PRO HD2 H 3.875 0.02 2 1053 . 93 PRO HD3 H 3.839 0.02 2 1054 . 93 PRO CA C 65.799 0.1 1 1055 . 93 PRO CB C 32.07 0.1 1 1056 . 93 PRO CG C 27.757 0.1 1 1057 . 93 PRO CD C 50.996 0.1 1 1058 . 93 PRO C C 178.727 0.1 1 1059 . 94 GLU H H 10.003 0.02 1 1060 . 94 GLU HA H 4.031 0.02 1 1061 . 94 GLU HB2 H 1.828 0.02 2 1062 . 94 GLU HB3 H 1.815 0.02 2 1063 . 94 GLU HG2 H 2.655 0.02 2 1064 . 94 GLU HG3 H 2.329 0.02 2 1065 . 94 GLU CA C 60.299 0.1 1 1066 . 94 GLU CB C 29.583 0.1 1 1067 . 94 GLU CG C 36.935 0.1 1 1068 . 94 GLU C C 178.459 0.1 1 1069 . 94 GLU N N 117.411 0.1 1 1070 . 95 VAL H H 7.279 0.02 1 1071 . 95 VAL HA H 3.808 0.02 1 1072 . 95 VAL HB H 2.01 0.02 1 1073 . 95 VAL HG1 H 1.017 0.02 2 1074 . 95 VAL HG2 H 0.97 0.02 2 1075 . 95 VAL CA C 64.489 0.1 1 1076 . 95 VAL CB C 32.35 0.1 1 1077 . 95 VAL CG1 C 22.101 0.1 2 1078 . 95 VAL CG2 C 22.936 0.1 2 1079 . 95 VAL C C 176.865 0.1 1 1080 . 95 VAL N N 114.544 0.1 1 1081 . 96 ALA H H 8.349 0.02 1 1082 . 96 ALA HA H 3.9 0.02 1 1083 . 96 ALA HB H 1.374 0.02 1 1084 . 96 ALA CA C 55.473 0.1 1 1085 . 96 ALA CB C 18.158 0.1 1 1086 . 96 ALA C C 179.606 0.1 1 1087 . 96 ALA N N 124.334 0.1 1 1088 . 97 ALA H H 7.663 0.02 1 1089 . 97 ALA HA H 4.165 0.02 1 1090 . 97 ALA HB H 1.431 0.02 1 1091 . 97 ALA CA C 54.355 0.1 1 1092 . 97 ALA CB C 18.701 0.1 1 1093 . 97 ALA C C 178.677 0.1 1 1094 . 97 ALA N N 116.183 0.1 1 1095 . 98 LEU H H 7.382 0.02 1 1096 . 98 LEU HA H 4.33 0.02 1 1097 . 98 LEU HB2 H 1.952 0.02 2 1098 . 98 LEU HB3 H 1.632 0.02 2 1099 . 98 LEU HG H 0.875 0.02 1 1100 . 98 LEU HD1 H 0.911 0.02 1 1101 . 98 LEU HD2 H 0.911 0.02 1 1102 . 98 LEU CA C 55.382 0.1 1 1103 . 98 LEU CB C 42.255 0.1 1 1104 . 98 LEU CG C 26.781 0.1 1 1105 . 98 LEU CD1 C 23.045 0.1 2 1106 . 98 LEU CD2 C 23.042 0.1 2 1107 . 98 LEU C C 177.766 0.1 1 1108 . 98 LEU N N 115.723 0.1 1 1109 . 99 ILE H H 7.447 0.02 1 1110 . 99 ILE HA H 3.918 0.02 1 1111 . 99 ILE HB H 1.848 0.02 1 1112 . 99 ILE HG12 H 1.684 0.02 2 1113 . 99 ILE HG13 H 1.695 0.02 2 1114 . 99 ILE HG2 H 0.838 0.02 1 1115 . 99 ILE HD1 H 0.819 0.02 1 1116 . 99 ILE CA C 63.218 0.1 1 1117 . 99 ILE CB C 39.178 0.1 1 1118 . 99 ILE CG1 C 28.42 0.1 1 1119 . 99 ILE CG2 C 17.453 0.1 1 1120 . 99 ILE CD1 C 14.088 0.1 1 1121 . 99 ILE C C 176.246 0.1 1 1122 . 99 ILE N N 119.221 0.1 1 1123 . 100 ASN H H 8.356 0.02 1 1124 . 100 ASN HA H 4.676 0.02 1 1125 . 100 ASN HB2 H 2.882 0.02 2 1126 . 100 ASN HB3 H 2.765 0.02 2 1127 . 100 ASN HD21 H 6.949 0.02 2 1128 . 100 ASN HD22 H 7.599 0.02 2 1129 . 100 ASN CA C 53.914 0.1 1 1130 . 100 ASN CB C 38.699 0.1 1 1131 . 100 ASN C C 175.694 0.1 1 1132 . 100 ASN N N 121.05 0.1 1 1133 . 100 ASN ND2 N 112.294 0.1 1 1134 . 101 LEU H H 8.085 0.02 1 1135 . 101 LEU HA H 4.234 0.02 1 1136 . 101 LEU HB2 H 1.682 0.02 2 1137 . 101 LEU HB3 H 1.597 0.02 2 1138 . 101 LEU HG H 1.652 0.02 1 1139 . 101 LEU HD1 H 0.918 0.02 2 1140 . 101 LEU HD2 H 0.864 0.02 2 1141 . 101 LEU CA C 56.237 0.1 1 1142 . 101 LEU CB C 42.563 0.1 1 1143 . 101 LEU CG C 27.028 0.1 1 1144 . 101 LEU CD1 C 25.287 0.1 2 1145 . 101 LEU CD2 C 23.873 0.1 2 1146 . 101 LEU C C 177.905 0.1 1 1147 . 101 LEU N N 122.372 0.1 1 1148 . 102 GLU H H 8.272 0.02 1 1149 . 102 GLU HA H 4.172 0.02 1 1150 . 102 GLU HB2 H 1.952 0.02 2 1151 . 102 GLU HB3 H 1.959 0.02 2 1152 . 102 GLU HG2 H 2.179 0.02 2 1153 . 102 GLU HG3 H 2.269 0.02 2 1154 . 102 GLU CA C 57.398 0.1 1 1155 . 102 GLU CB C 30.086 0.1 1 1156 . 102 GLU CG C 36.45 0.1 1 1157 . 102 GLU C C 176.82 0.1 1 1158 . 102 GLU N N 120.145 0.1 1 1159 . 103 HIS H H 8.175 0.02 1 1160 . 103 HIS HA H 4.602 0.02 1 1161 . 103 HIS HB2 H 3.095 0.02 2 1162 . 103 HIS HB3 H 3.03 0.02 2 1163 . 103 HIS HD2 H 7.027 0.02 1 1164 . 103 HIS CA C 56.142 0.1 1 1165 . 103 HIS CB C 30.345 0.1 1 1166 . 103 HIS CD2 C 119.7 0.1 1 1167 . 103 HIS C C 173.949 0.1 1 1168 . 103 HIS N N 118.882 0.1 1 1169 . 104 HIS H H 8.158 0.02 1 1170 . 104 HIS N N 125.43 0.1 1 stop_ save_ ######################## # Coupling constants # ######################## save_ER14_JNH_1 _Saveframe_category coupling_constants _Details . loop_ _Sample_label $sample_1 stop_ _Sample_conditions_label $sample_conditions_1 _Spectrometer_frequency_1H 500 _Mol_system_component_name ER14 _Text_data_format . _Text_data . loop_ _Coupling_constant_ID _Coupling_constant_code _Atom_one_residue_seq_code _Atom_one_residue_label _Atom_one_name _Atom_two_residue_seq_code _Atom_two_residue_label _Atom_two_name _Coupling_constant_value _Coupling_constant_min_value _Coupling_constant_max_value _Coupling_constant_value_error 1 3JHNHA 4 VAL H 4 VAL HA 8.5 . . 1.5 2 3JHNHA 5 MET H 5 MET HA 7.5 . . 1.5 3 3JHNHA 6 SER H 6 SER HA 7.5 . . 1.5 4 3JHNHA 8 VAL H 8 VAL HA 8.0 . . 1.0 5 3JHNHA 13 ASP H 13 ASP HA 8.5 . . 1.5 6 3JHNHA 25 ALA H 25 ALA HA 7.0 . . 2.0 7 3JHNHA 27 ARG H 27 ARG HA 6.5 . . 1.0 8 3JHNHA 36 ASP H 36 ASP HA 9.25 . . 3.25 9 3JHNHA 37 GLU H 37 GLU HA 9.25 . . 3.25 10 3JHNHA 42 ILE H 42 ILE HA 9.25 . . 3.25 11 3JHNHA 53 SER H 53 SER HA 2.5 . . 2.5 12 3JHNHA 56 VAL H 56 VAL HA 3.0 . . 3.0 13 3JHNHA 61 LYS H 61 LYS HA 3.0 . . 3.0 14 3JHNHA 64 ARG H 64 ARG HA 7.0 . . 2.0 15 3JHNHA 65 VAL H 65 VAL HA 8.0 . . 2.0 16 3JHNHA 67 LYS H 67 LYS HA 2.5 . . 2.5 17 3JHNHA 68 SER H 68 SER HA 3.0 . . 3.0 18 3JHNHA 69 GLN H 69 GLN HA 7.5 . . 2.5 19 3JHNHA 70 VAL H 70 VAL HA 8.5 . . 1.5 20 3JHNHA 76 GLU H 76 GLU HA 2.5 . . 2.5 21 3JHNHA 77 LEU H 77 LEU HA 9.75 . . 2.75 22 3JHNHA 90 GLN H 90 GLN HA 7.5 . . 1.5 23 3JHNHA 91 ILE H 91 ILE HA 8.0 . . 2.0 24 3JHNHA 96 ALA H 96 ALA HA 2.5 . . 2.5 25 3JHNHA 97 ALA H 97 ALA HA 2.5 . . 2.5 26 3JHNHA 98 LEU H 98 LEU HA 7.0 . . 2.0 27 3JHNHA 102 GLU H 102 GLU HA 6.0 . . 1.0 stop_ save_