============================================================ | | | Crystallography & NMR System (CNS) | | CNSsolve | | | ============================================================ Version: 1.1 Status: Developmental version ============================================================ Written by: A.T.Brunger, P.D.Adams, G.M.Clore, W.L.DeLano, P.Gros, R.W.Grosse-Kunstleve, J.-S.Jiang, J.Kuszewski, M.Nilges, N.S.Pannu, R.J.Read, L.M.Rice, T.Simonson, G.L.Warren. Copyright (c) 1997-1999 Yale University ============================================================ Running on machine: cesg-master.biochem.wisc.edu (Linux,32-bit) Program started by: volkman Program started at: 02:09:35 on 28-Dec-04 ============================================================ FFT3C: Using FFTPACK4.1 CNSsolve>define( DEFINE>{* selection of atoms other than hydrogens for which coordinates DEFINE> will be generated *} DEFINE>{* to generate coordinates for all unknown atoms use: (not(known)) *} DEFINE>{===>} atom_build=(not(known)); DEFINE>{============================= output files ================================} DEFINE> DEFINE>{* input coordinate file *} DEFINE>{===>} coordinate_infile="1xxx_9.pdb"; DEFINE> DEFINE>{* output coordinate file *} DEFINE>{===>} coordinate_outfile="1xxx_9_cns.pdb"; DEFINE>) CNSsolve> CNSsolve> checkversion 1.1 Program version= 1.1 File version= 1.1 CNSsolve> CNSsolve> evaluate ($log_level=verbose) Assuming literal string "VERBOSE" EVALUATE: symbol $LOG_LEVEL set to "VERBOSE" (string) CNSsolve> evaluate ($par_nonbonded="PROLSQ") EVALUATE: symbol $PAR_NONBONDED set to "PROLSQ" (string) CNSsolve> CNSsolve> !@generateProtonsJFD.inp CNSsolve> CNSsolve>{===========================================================================} CNSsolve>{ things below this line do not need to be changed } CNSsolve>{===========================================================================} CNSsolve> CNSsolve>remarks changed Tue Sep 2 09:48:07 CDT 2003 CNSsolve>remarks by jfd to include a fes residue CNSsolve> CNSsolve>!@generate_tmoc.inp CNSsolve> CNSsolve>topology reset end CNSsolve>structure reset end Status of internal molecular topology database: -> NATOM= 0(MAXA= 40000) NBOND= 0(MAXB= 40000) -> NTHETA= 0(MAXT= 80000) NGRP= 0(MAXGRP= 40000) -> NPHI= 0(MAXP= 80000) NIMPHI= 0(MAXIMP= 40000) -> NNB= 0(MAXNB= 40000) CNSsolve> CNSsolve>topology RTFRDR>{===>} @TOPPAR:topallhdg5.3.pro ASSFIL: file /u/volkman/waterrefine/toppar/topallhdg5.3.pro opened. RTFRDR>remark file topallhdg.pro version 5.3 date 23-Sept-02 RTFRDR>remark for file parallhdg.pro version 5.3 date 13-Feb-02 or later RTFRDR>remark Geometric energy function parameters for distance geometry and RTFRDR>remark simulated annealing. RTFRDR>remark Author: Michael Nilges, EMBL Heidelberg; Institut Pasteur, Paris RTFRDR>remark This file contains modifications from M. Williams, UCL London RTFRDR>remark Last modification 16-Sept-02 RTFRDR> RTFRDR>set echo off message off end RTFRDR>end CNSsolve> CNSsolve>! no chain id. CNSsolve>segment name=" " SEGMENT> chain CHAIN> @TOPPAR:topallhdg5.3.pep CHAIN>REMARKS TOPH19.pep -MACRO for protein sequence CHAIN>SET ECHO=FALSE END CHAIN> sequence SEQUENCE> @1xxx.seq SEQUENCE>MET SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =TRP SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =TRP SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =CYS SEQUence-element (terminate with END) = end SEGMNT: 102 residues were inserted into segment " " CHAIN> end SEGMENT>end Status of internal molecular topology database: -> NATOM= 1677(MAXA= 40000) NBOND= 1701(MAXB= 40000) -> NTHETA= 3064(MAXT= 80000) NGRP= 104(MAXGRP= 40000) -> NPHI= 2502(MAXP= 80000) NIMPHI= 926(MAXIMP= 40000) -> NNB= 648(MAXNB= 40000) CNSsolve> CNSsolve>! turn peptide from trans to cis CNSsolve>!patch CISP reference=nil=( resid 80 ) end CNSsolve> CNSsolve>coor @&coordinate_infile COOR>HEADER Structures from CYANA 28-12-2004 COOR>REMARK model 9 COOR>ATOM 1563 N MET A 1 1.325 0.000 0.000 1.00 0.00 %READC-ERR: atom 1 MET HN not found in molecular structure %READC-ERR: atom 1 MET 2HB not found in molecular structure %READC-ERR: atom 1 MET 3HB not found in molecular structure %READC-ERR: atom 1 MET QB not found in molecular structure %READC-ERR: atom 1 MET 2HG not found in molecular structure %READC-ERR: atom 1 MET 3HG not found in molecular structure %READC-ERR: atom 1 MET QG not found in molecular structure %READC-ERR: atom 1 MET QE not found in molecular structure %READC-ERR: atom 1 MET 1HE not found in molecular structure %READC-ERR: atom 1 MET 2HE not found in molecular structure %READC-ERR: atom 1 MET 3HE not found in molecular structure %READC-ERR: atom 2 ALA QB not found in molecular structure %READC-ERR: atom 2 ALA 1HB not found in molecular structure %READC-ERR: atom 2 ALA 2HB not found in molecular structure %READC-ERR: atom 2 ALA 3HB not found in molecular structure %READC-ERR: atom 3 ASP 2HB not found in molecular structure %READC-ERR: atom 3 ASP 3HB not found in molecular structure %READC-ERR: atom 3 ASP QB not found in molecular structure %READC-ERR: atom 4 THR QG2 not found in molecular structure %READC-ERR: atom 4 THR 1HG2 not found in molecular structure %READC-ERR: atom 4 THR 2HG2 not found in molecular structure %READC-ERR: atom 4 THR 3HG2 not found in molecular structure %READC-ERR: atom 5 GLY 1HA not found in molecular structure %READC-ERR: atom 5 GLY 2HA not found in molecular structure %READC-ERR: atom 5 GLY QA not found in molecular structure %READC-ERR: atom 6 GLU 2HB not found in molecular structure %READC-ERR: atom 6 GLU 3HB not found in molecular structure %READC-ERR: atom 6 GLU QB not found in molecular structure %READC-ERR: atom 6 GLU 2HG not found in molecular structure %READC-ERR: atom 6 GLU 3HG not found in molecular structure %READC-ERR: atom 6 GLU QG not found in molecular structure %READC-ERR: atom 7 VAL QG1 not found in molecular structure %READC-ERR: atom 7 VAL QG2 not found in molecular structure %READC-ERR: atom 7 VAL 1HG1 not found in molecular structure %READC-ERR: atom 7 VAL 2HG1 not found in molecular structure %READC-ERR: atom 7 VAL 3HG1 not found in molecular structure %READC-ERR: atom 7 VAL 1HG2 not found in molecular structure %READC-ERR: atom 7 VAL 2HG2 not found in molecular structure %READC-ERR: atom 7 VAL 3HG2 not found in molecular structure %READC-ERR: atom 7 VAL QQG not found in molecular structure %READC-ERR: atom 8 GLN 2HB not found in molecular structure %READC-ERR: atom 8 GLN 3HB not found in molecular structure %READC-ERR: atom 8 GLN QB not found in molecular structure %READC-ERR: atom 8 GLN 2HG not found in molecular structure %READC-ERR: atom 8 GLN 3HG not found in molecular structure %READC-ERR: atom 8 GLN QG not found in molecular structure %READC-ERR: atom 8 GLN 1HE2 not found in molecular structure %READC-ERR: atom 8 GLN 2HE2 not found in molecular structure %READC-ERR: atom 8 GLN QE2 not found in molecular structure %READC-ERR: atom 9 PHE 2HB not found in molecular structure %READC-ERR: atom 9 PHE 3HB not found in molecular structure %READC-ERR: atom 9 PHE QB not found in molecular structure %READC-ERR: atom 9 PHE QD not found in molecular structure %READC-ERR: atom 9 PHE QE not found in molecular structure %READC-ERR: atom 9 PHE QR not found in molecular structure %READC-ERR: atom 10 MET 2HB not found in molecular structure %READC-ERR: atom 10 MET 3HB not found in molecular structure %READC-ERR: atom 10 MET QB not found in molecular structure %READC-ERR: atom 10 MET 2HG not found in molecular structure %READC-ERR: atom 10 MET 3HG not found in molecular structure %READC-ERR: atom 10 MET QG not found in molecular structure %READC-ERR: atom 10 MET QE not found in molecular structure %READC-ERR: atom 10 MET 1HE not found in molecular structure %READC-ERR: atom 10 MET 2HE not found in molecular structure %READC-ERR: atom 10 MET 3HE not found in molecular structure %READC-ERR: atom 11 LYS 2HB not found in molecular structure %READC-ERR: atom 11 LYS 3HB not found in molecular structure %READC-ERR: atom 11 LYS QB not found in molecular structure %READC-ERR: atom 11 LYS 2HG not found in molecular structure %READC-ERR: atom 11 LYS 3HG not found in molecular structure %READC-ERR: atom 11 LYS QG not found in molecular structure %READC-ERR: atom 11 LYS 2HD not found in molecular structure %READC-ERR: atom 11 LYS 3HD not found in molecular structure %READC-ERR: atom 11 LYS QD not found in molecular structure %READC-ERR: atom 11 LYS 2HE not found in molecular structure %READC-ERR: atom 11 LYS 3HE not found in molecular structure %READC-ERR: atom 11 LYS QE not found in molecular structure %READC-ERR: atom 11 LYS 1HZ not found in molecular structure %READC-ERR: atom 11 LYS 2HZ not found in molecular structure %READC-ERR: atom 11 LYS 3HZ not found in molecular structure %READC-ERR: atom 11 LYS QZ not found in molecular structure %READC-ERR: atom 12 PRO 2HB not found in molecular structure %READC-ERR: atom 12 PRO 3HB not found in molecular structure %READC-ERR: atom 12 PRO QB not found in molecular structure %READC-ERR: atom 12 PRO 2HG not found in molecular structure %READC-ERR: atom 12 PRO 3HG not found in molecular structure %READC-ERR: atom 12 PRO QG not found in molecular structure %READC-ERR: atom 12 PRO 2HD not found in molecular structure %READC-ERR: atom 12 PRO 3HD not found in molecular structure %READC-ERR: atom 12 PRO QD not found in molecular structure %READC-ERR: atom 13 PHE 2HB not found in molecular structure %READC-ERR: atom 13 PHE 3HB not found in molecular structure %READC-ERR: atom 13 PHE QB not found in molecular structure %READC-ERR: atom 13 PHE QD not found in molecular structure %READC-ERR: atom 13 PHE QE not found in molecular structure %READC-ERR: atom 13 PHE QR not found in molecular structure %READC-ERR: atom 14 ILE QG2 not found in molecular structure %READC-ERR: atom 14 ILE 1HG2 not found in molecular structure %READC-ERR: atom 14 ILE 2HG2 not found in molecular structure %READC-ERR: atom 14 ILE 3HG2 not found in molecular structure %READC-ERR: atom 14 ILE 2HG1 not found in molecular structure %READC-ERR: atom 14 ILE 3HG1 not found in molecular structure %READC-ERR: atom 14 ILE QG1 not found in molecular structure %READC-ERR: atom 14 ILE QD1 not found in molecular structure %READC-ERR: atom 14 ILE 1HD1 not found in molecular structure %READC-ERR: atom 14 ILE 2HD1 not found in molecular structure %READC-ERR: atom 14 ILE 3HD1 not found in molecular structure %READC-ERR: atom 15 SER 2HB not found in molecular structure %READC-ERR: atom 15 SER 3HB not found in molecular structure %READC-ERR: atom 15 SER QB not found in molecular structure %READC-ERR: atom 16 GLU 2HB not found in molecular structure %READC-ERR: atom 16 GLU 3HB not found in molecular structure %READC-ERR: atom 16 GLU QB not found in molecular structure %READC-ERR: atom 16 GLU 2HG not found in molecular structure %READC-ERR: atom 16 GLU 3HG not found in molecular structure %READC-ERR: atom 16 GLU QG not found in molecular structure %READC-ERR: atom 17 LYS 2HB not found in molecular structure %READC-ERR: atom 17 LYS 3HB not found in molecular structure %READC-ERR: atom 17 LYS QB not found in molecular structure %READC-ERR: atom 17 LYS 2HG not found in molecular structure %READC-ERR: atom 17 LYS 3HG not found in molecular structure %READC-ERR: atom 17 LYS QG not found in molecular structure %READC-ERR: atom 17 LYS 2HD not found in molecular structure %READC-ERR: atom 17 LYS 3HD not found in molecular structure %READC-ERR: atom 17 LYS QD not found in molecular structure %READC-ERR: atom 17 LYS 2HE not found in molecular structure %READC-ERR: atom 17 LYS 3HE not found in molecular structure %READC-ERR: atom 17 LYS QE not found in molecular structure %READC-ERR: atom 17 LYS 1HZ not found in molecular structure %READC-ERR: atom 17 LYS 2HZ not found in molecular structure %READC-ERR: atom 17 LYS 3HZ not found in molecular structure %READC-ERR: atom 17 LYS QZ not found in molecular structure %READC-ERR: atom 18 SER 2HB not found in molecular structure %READC-ERR: atom 18 SER 3HB not found in molecular structure %READC-ERR: atom 18 SER QB not found in molecular structure %READC-ERR: atom 19 SER 2HB not found in molecular structure %READC-ERR: atom 19 SER 3HB not found in molecular structure %READC-ERR: atom 19 SER QB not found in molecular structure %READC-ERR: atom 20 LYS 2HB not found in molecular structure %READC-ERR: atom 20 LYS 3HB not found in molecular structure %READC-ERR: atom 20 LYS QB not found in molecular structure %READC-ERR: atom 20 LYS 2HG not found in molecular structure %READC-ERR: atom 20 LYS 3HG not found in molecular structure %READC-ERR: atom 20 LYS QG not found in molecular structure %READC-ERR: atom 20 LYS 2HD not found in molecular structure %READC-ERR: atom 20 LYS 3HD not found in molecular structure %READC-ERR: atom 20 LYS QD not found in molecular structure %READC-ERR: atom 20 LYS 2HE not found in molecular structure %READC-ERR: atom 20 LYS 3HE not found in molecular structure %READC-ERR: atom 20 LYS QE not found in molecular structure %READC-ERR: atom 20 LYS 1HZ not found in molecular structure %READC-ERR: atom 20 LYS 2HZ not found in molecular structure %READC-ERR: atom 20 LYS 3HZ not found in molecular structure %READC-ERR: atom 20 LYS QZ not found in molecular structure %READC-ERR: atom 21 SER 2HB not found in molecular structure %READC-ERR: atom 21 SER 3HB not found in molecular structure %READC-ERR: atom 21 SER QB not found in molecular structure %READC-ERR: atom 22 LEU 2HB not found in molecular structure %READC-ERR: atom 22 LEU 3HB not found in molecular structure %READC-ERR: atom 22 LEU QB not found in molecular structure %READC-ERR: atom 22 LEU QD1 not found in molecular structure %READC-ERR: atom 22 LEU QD2 not found in molecular structure %READC-ERR: atom 22 LEU 1HD1 not found in molecular structure %READC-ERR: atom 22 LEU 2HD1 not found in molecular structure %READC-ERR: atom 22 LEU 3HD1 not found in molecular structure %READC-ERR: atom 22 LEU 1HD2 not found in molecular structure %READC-ERR: atom 22 LEU 2HD2 not found in molecular structure %READC-ERR: atom 22 LEU 3HD2 not found in molecular structure %READC-ERR: atom 22 LEU QQD not found in molecular structure %READC-ERR: atom 23 GLU 2HB not found in molecular structure %READC-ERR: atom 23 GLU 3HB not found in molecular structure %READC-ERR: atom 23 GLU QB not found in molecular structure %READC-ERR: atom 23 GLU 2HG not found in molecular structure %READC-ERR: atom 23 GLU 3HG not found in molecular structure %READC-ERR: atom 23 GLU QG not found in molecular structure %READC-ERR: atom 24 ILE QG2 not found in molecular structure %READC-ERR: atom 24 ILE 1HG2 not found in molecular structure %READC-ERR: atom 24 ILE 2HG2 not found in molecular structure %READC-ERR: atom 24 ILE 3HG2 not found in molecular structure %READC-ERR: atom 24 ILE 2HG1 not found in molecular structure %READC-ERR: atom 24 ILE 3HG1 not found in molecular structure %READC-ERR: atom 24 ILE QG1 not found in molecular structure %READC-ERR: atom 24 ILE QD1 not found in molecular structure %READC-ERR: atom 24 ILE 1HD1 not found in molecular structure %READC-ERR: atom 24 ILE 2HD1 not found in molecular structure %READC-ERR: atom 24 ILE 3HD1 not found in molecular structure %READC-ERR: atom 25 PRO 2HB not found in molecular structure %READC-ERR: atom 25 PRO 3HB not found in molecular structure %READC-ERR: atom 25 PRO QB not found in molecular structure %READC-ERR: atom 25 PRO 2HG not found in molecular structure %READC-ERR: atom 25 PRO 3HG not found in molecular structure %READC-ERR: atom 25 PRO QG not found in molecular structure %READC-ERR: atom 25 PRO 2HD not found in molecular structure %READC-ERR: atom 25 PRO 3HD not found in molecular structure %READC-ERR: atom 25 PRO QD not found in molecular structure %READC-ERR: atom 26 LEU 2HB not found in molecular structure %READC-ERR: atom 26 LEU 3HB not found in molecular structure %READC-ERR: atom 26 LEU QB not found in molecular structure %READC-ERR: atom 26 LEU QD1 not found in molecular structure %READC-ERR: atom 26 LEU QD2 not found in molecular structure %READC-ERR: atom 26 LEU 1HD1 not found in molecular structure %READC-ERR: atom 26 LEU 2HD1 not found in molecular structure %READC-ERR: atom 26 LEU 3HD1 not found in molecular structure %READC-ERR: atom 26 LEU 1HD2 not found in molecular structure %READC-ERR: atom 26 LEU 2HD2 not found in molecular structure %READC-ERR: atom 26 LEU 3HD2 not found in molecular structure %READC-ERR: atom 26 LEU QQD not found in molecular structure %READC-ERR: atom 27 GLY 1HA not found in molecular structure %READC-ERR: atom 27 GLY 2HA not found in molecular structure %READC-ERR: atom 27 GLY QA not found in molecular structure %READC-ERR: atom 28 PHE 2HB not found in molecular structure %READC-ERR: atom 28 PHE 3HB not found in molecular structure %READC-ERR: atom 28 PHE QB not found in molecular structure %READC-ERR: atom 28 PHE QD not found in molecular structure %READC-ERR: atom 28 PHE QE not found in molecular structure %READC-ERR: atom 28 PHE QR not found in molecular structure %READC-ERR: atom 29 ASN 2HB not found in molecular structure %READC-ERR: atom 29 ASN 3HB not found in molecular structure %READC-ERR: atom 29 ASN QB not found in molecular structure %READC-ERR: atom 29 ASN 1HD2 not found in molecular structure %READC-ERR: atom 29 ASN 2HD2 not found in molecular structure %READC-ERR: atom 29 ASN QD2 not found in molecular structure %READC-ERR: atom 30 GLU 2HB not found in molecular structure %READC-ERR: atom 30 GLU 3HB not found in molecular structure %READC-ERR: atom 30 GLU QB not found in molecular structure %READC-ERR: atom 30 GLU 2HG not found in molecular structure %READC-ERR: atom 30 GLU 3HG not found in molecular structure %READC-ERR: atom 30 GLU QG not found in molecular structure %READC-ERR: atom 31 TYR 2HB not found in molecular structure %READC-ERR: atom 31 TYR 3HB not found in molecular structure %READC-ERR: atom 31 TYR QB not found in molecular structure %READC-ERR: atom 31 TYR QD not found in molecular structure %READC-ERR: atom 31 TYR QE not found in molecular structure %READC-ERR: atom 31 TYR QR not found in molecular structure %READC-ERR: atom 32 PHE 2HB not found in molecular structure %READC-ERR: atom 32 PHE 3HB not found in molecular structure %READC-ERR: atom 32 PHE QB not found in molecular structure %READC-ERR: atom 32 PHE QD not found in molecular structure %READC-ERR: atom 32 PHE QE not found in molecular structure %READC-ERR: atom 32 PHE QR not found in molecular structure %READC-ERR: atom 33 PRO 2HB not found in molecular structure %READC-ERR: atom 33 PRO 3HB not found in molecular structure %READC-ERR: atom 33 PRO QB not found in molecular structure %READC-ERR: atom 33 PRO 2HG not found in molecular structure %READC-ERR: atom 33 PRO 3HG not found in molecular structure %READC-ERR: atom 33 PRO QG not found in molecular structure %READC-ERR: atom 33 PRO 2HD not found in molecular structure %READC-ERR: atom 33 PRO 3HD not found in molecular structure %READC-ERR: atom 33 PRO QD not found in molecular structure %READC-ERR: atom 34 ALA QB not found in molecular structure %READC-ERR: atom 34 ALA 1HB not found in molecular structure %READC-ERR: atom 34 ALA 2HB not found in molecular structure %READC-ERR: atom 34 ALA 3HB not found in molecular structure %READC-ERR: atom 35 PRO 2HB not found in molecular structure %READC-ERR: atom 35 PRO 3HB not found in molecular structure %READC-ERR: atom 35 PRO QB not found in molecular structure %READC-ERR: atom 35 PRO 2HG not found in molecular structure %READC-ERR: atom 35 PRO 3HG not found in molecular structure %READC-ERR: atom 35 PRO QG not found in molecular structure %READC-ERR: atom 35 PRO 2HD not found in molecular structure %READC-ERR: atom 35 PRO 3HD not found in molecular structure %READC-ERR: atom 35 PRO QD not found in molecular structure %READC-ERR: atom 36 PHE 2HB not found in molecular structure %READC-ERR: atom 36 PHE 3HB not found in molecular structure %READC-ERR: atom 36 PHE QB not found in molecular structure %READC-ERR: atom 36 PHE QD not found in molecular structure %READC-ERR: atom 36 PHE QE not found in molecular structure %READC-ERR: atom 36 PHE QR not found in molecular structure %READC-ERR: atom 37 PRO 2HB not found in molecular structure %READC-ERR: atom 37 PRO 3HB not found in molecular structure %READC-ERR: atom 37 PRO QB not found in molecular structure %READC-ERR: atom 37 PRO 2HG not found in molecular structure %READC-ERR: atom 37 PRO 3HG not found in molecular structure %READC-ERR: atom 37 PRO QG not found in molecular structure %READC-ERR: atom 37 PRO 2HD not found in molecular structure %READC-ERR: atom 37 PRO 3HD not found in molecular structure %READC-ERR: atom 37 PRO QD not found in molecular structure %READC-ERR: atom 38 ILE QG2 not found in molecular structure %READC-ERR: atom 38 ILE 1HG2 not found in molecular structure %READC-ERR: atom 38 ILE 2HG2 not found in molecular structure %READC-ERR: atom 38 ILE 3HG2 not found in molecular structure %READC-ERR: atom 38 ILE 2HG1 not found in molecular structure %READC-ERR: atom 38 ILE 3HG1 not found in molecular structure %READC-ERR: atom 38 ILE QG1 not found in molecular structure %READC-ERR: atom 38 ILE QD1 not found in molecular structure %READC-ERR: atom 38 ILE 1HD1 not found in molecular structure %READC-ERR: atom 38 ILE 2HD1 not found in molecular structure %READC-ERR: atom 38 ILE 3HD1 not found in molecular structure %READC-ERR: atom 39 THR QG2 not found in molecular structure %READC-ERR: atom 39 THR 1HG2 not found in molecular structure %READC-ERR: atom 39 THR 2HG2 not found in molecular structure %READC-ERR: atom 39 THR 3HG2 not found in molecular structure %READC-ERR: atom 40 VAL QG1 not found in molecular structure %READC-ERR: atom 40 VAL QG2 not found in molecular structure %READC-ERR: atom 40 VAL 1HG1 not found in molecular structure %READC-ERR: atom 40 VAL 2HG1 not found in molecular structure %READC-ERR: atom 40 VAL 3HG1 not found in molecular structure %READC-ERR: atom 40 VAL 1HG2 not found in molecular structure %READC-ERR: atom 40 VAL 2HG2 not found in molecular structure %READC-ERR: atom 40 VAL 3HG2 not found in molecular structure %READC-ERR: atom 40 VAL QQG not found in molecular structure %READC-ERR: atom 41 ASP 2HB not found in molecular structure %READC-ERR: atom 41 ASP 3HB not found in molecular structure %READC-ERR: atom 41 ASP QB not found in molecular structure %READC-ERR: atom 42 LEU 2HB not found in molecular structure %READC-ERR: atom 42 LEU 3HB not found in molecular structure %READC-ERR: atom 42 LEU QB not found in molecular structure %READC-ERR: atom 42 LEU QD1 not found in molecular structure %READC-ERR: atom 42 LEU QD2 not found in molecular structure %READC-ERR: atom 42 LEU 1HD1 not found in molecular structure %READC-ERR: atom 42 LEU 2HD1 not found in molecular structure %READC-ERR: atom 42 LEU 3HD1 not found in molecular structure %READC-ERR: atom 42 LEU 1HD2 not found in molecular structure %READC-ERR: atom 42 LEU 2HD2 not found in molecular structure %READC-ERR: atom 42 LEU 3HD2 not found in molecular structure %READC-ERR: atom 42 LEU QQD not found in molecular structure %READC-ERR: atom 43 LEU 2HB not found in molecular structure %READC-ERR: atom 43 LEU 3HB not found in molecular structure %READC-ERR: atom 43 LEU QB not found in molecular structure %READC-ERR: atom 43 LEU QD1 not found in molecular structure %READC-ERR: atom 43 LEU QD2 not found in molecular structure %READC-ERR: atom 43 LEU 1HD1 not found in molecular structure %READC-ERR: atom 43 LEU 2HD1 not found in molecular structure %READC-ERR: atom 43 LEU 3HD1 not found in molecular structure %READC-ERR: atom 43 LEU 1HD2 not found in molecular structure %READC-ERR: atom 43 LEU 2HD2 not found in molecular structure %READC-ERR: atom 43 LEU 3HD2 not found in molecular structure %READC-ERR: atom 43 LEU QQD not found in molecular structure %READC-ERR: atom 44 ASP 2HB not found in molecular structure %READC-ERR: atom 44 ASP 3HB not found in molecular structure %READC-ERR: atom 44 ASP QB not found in molecular structure %READC-ERR: atom 45 TYR 2HB not found in molecular structure %READC-ERR: atom 45 TYR 3HB not found in molecular structure %READC-ERR: atom 45 TYR QB not found in molecular structure %READC-ERR: atom 45 TYR QD not found in molecular structure %READC-ERR: atom 45 TYR QE not found in molecular structure %READC-ERR: atom 45 TYR QR not found in molecular structure %READC-ERR: atom 46 SER 2HB not found in molecular structure %READC-ERR: atom 46 SER 3HB not found in molecular structure %READC-ERR: atom 46 SER QB not found in molecular structure %READC-ERR: atom 47 GLY 1HA not found in molecular structure %READC-ERR: atom 47 GLY 2HA not found in molecular structure %READC-ERR: atom 47 GLY QA not found in molecular structure %READC-ERR: atom 48 ARG 2HB not found in molecular structure %READC-ERR: atom 48 ARG 3HB not found in molecular structure %READC-ERR: atom 48 ARG QB not found in molecular structure %READC-ERR: atom 48 ARG 2HG not found in molecular structure %READC-ERR: atom 48 ARG 3HG not found in molecular structure %READC-ERR: atom 48 ARG QG not found in molecular structure %READC-ERR: atom 48 ARG 2HD not found in molecular structure %READC-ERR: atom 48 ARG 3HD not found in molecular structure %READC-ERR: atom 48 ARG QD not found in molecular structure %READC-ERR: atom 48 ARG 1HH1 not found in molecular structure %READC-ERR: atom 48 ARG 2HH1 not found in molecular structure %READC-ERR: atom 48 ARG QH1 not found in molecular structure %READC-ERR: atom 48 ARG 1HH2 not found in molecular structure %READC-ERR: atom 48 ARG 2HH2 not found in molecular structure %READC-ERR: atom 48 ARG QH2 not found in molecular structure %READC-ERR: atom 49 SER 2HB not found in molecular structure %READC-ERR: atom 49 SER 3HB not found in molecular structure %READC-ERR: atom 49 SER QB not found in molecular structure %READC-ERR: atom 50 TRP 2HB not found in molecular structure %READC-ERR: atom 50 TRP 3HB not found in molecular structure %READC-ERR: atom 50 TRP QB not found in molecular structure %READC-ERR: atom 51 THR QG2 not found in molecular structure %READC-ERR: atom 51 THR 1HG2 not found in molecular structure %READC-ERR: atom 51 THR 2HG2 not found in molecular structure %READC-ERR: atom 51 THR 3HG2 not found in molecular structure %READC-ERR: atom 52 VAL QG1 not found in molecular structure %READC-ERR: atom 52 VAL QG2 not found in molecular structure %READC-ERR: atom 52 VAL 1HG1 not found in molecular structure %READC-ERR: atom 52 VAL 2HG1 not found in molecular structure %READC-ERR: atom 52 VAL 3HG1 not found in molecular structure %READC-ERR: atom 52 VAL 1HG2 not found in molecular structure %READC-ERR: atom 52 VAL 2HG2 not found in molecular structure %READC-ERR: atom 52 VAL 3HG2 not found in molecular structure %READC-ERR: atom 52 VAL QQG not found in molecular structure %READC-ERR: atom 53 ARG 2HB not found in molecular structure %READC-ERR: atom 53 ARG 3HB not found in molecular structure %READC-ERR: atom 53 ARG QB not found in molecular structure %READC-ERR: atom 53 ARG 2HG not found in molecular structure %READC-ERR: atom 53 ARG 3HG not found in molecular structure %READC-ERR: atom 53 ARG QG not found in molecular structure %READC-ERR: atom 53 ARG 2HD not found in molecular structure %READC-ERR: atom 53 ARG 3HD not found in molecular structure %READC-ERR: atom 53 ARG QD not found in molecular structure %READC-ERR: atom 53 ARG 1HH1 not found in molecular structure %READC-ERR: atom 53 ARG 2HH1 not found in molecular structure %READC-ERR: atom 53 ARG QH1 not found in molecular structure %READC-ERR: atom 53 ARG 1HH2 not found in molecular structure %READC-ERR: atom 53 ARG 2HH2 not found in molecular structure %READC-ERR: atom 53 ARG QH2 not found in molecular structure %READC-ERR: atom 54 MET 2HB not found in molecular structure %READC-ERR: atom 54 MET 3HB not found in molecular structure %READC-ERR: atom 54 MET QB not found in molecular structure %READC-ERR: atom 54 MET 2HG not found in molecular structure %READC-ERR: atom 54 MET 3HG not found in molecular structure %READC-ERR: atom 54 MET QG not found in molecular structure %READC-ERR: atom 54 MET QE not found in molecular structure %READC-ERR: atom 54 MET 1HE not found in molecular structure %READC-ERR: atom 54 MET 2HE not found in molecular structure %READC-ERR: atom 54 MET 3HE not found in molecular structure %READC-ERR: atom 55 LYS 2HB not found in molecular structure %READC-ERR: atom 55 LYS 3HB not found in molecular structure %READC-ERR: atom 55 LYS QB not found in molecular structure %READC-ERR: atom 55 LYS 2HG not found in molecular structure %READC-ERR: atom 55 LYS 3HG not found in molecular structure %READC-ERR: atom 55 LYS QG not found in molecular structure %READC-ERR: atom 55 LYS 2HD not found in molecular structure %READC-ERR: atom 55 LYS 3HD not found in molecular structure %READC-ERR: atom 55 LYS QD not found in molecular structure %READC-ERR: atom 55 LYS 2HE not found in molecular structure %READC-ERR: atom 55 LYS 3HE not found in molecular structure %READC-ERR: atom 55 LYS QE not found in molecular structure %READC-ERR: atom 55 LYS 1HZ not found in molecular structure %READC-ERR: atom 55 LYS 2HZ not found in molecular structure %READC-ERR: atom 55 LYS 3HZ not found in molecular structure %READC-ERR: atom 55 LYS QZ not found in molecular structure %READC-ERR: atom 56 LYS 2HB not found in molecular structure %READC-ERR: atom 56 LYS 3HB not found in molecular structure %READC-ERR: atom 56 LYS QB not found in molecular structure %READC-ERR: atom 56 LYS 2HG not found in molecular structure %READC-ERR: atom 56 LYS 3HG not found in molecular structure %READC-ERR: atom 56 LYS QG not found in molecular structure %READC-ERR: atom 56 LYS 2HD not found in molecular structure %READC-ERR: atom 56 LYS 3HD not found in molecular structure %READC-ERR: atom 56 LYS QD not found in molecular structure %READC-ERR: atom 56 LYS 2HE not found in molecular structure %READC-ERR: atom 56 LYS 3HE not found in molecular structure %READC-ERR: atom 56 LYS QE not found in molecular structure %READC-ERR: atom 56 LYS 1HZ not found in molecular structure %READC-ERR: atom 56 LYS 2HZ not found in molecular structure %READC-ERR: atom 56 LYS 3HZ not found in molecular structure %READC-ERR: atom 56 LYS QZ not found in molecular structure %READC-ERR: atom 57 ARG 2HB not found in molecular structure %READC-ERR: atom 57 ARG 3HB not found in molecular structure %READC-ERR: atom 57 ARG QB not found in molecular structure %READC-ERR: atom 57 ARG 2HG not found in molecular structure %READC-ERR: atom 57 ARG 3HG not found in molecular structure %READC-ERR: atom 57 ARG QG not found in molecular structure %READC-ERR: atom 57 ARG 2HD not found in molecular structure %READC-ERR: atom 57 ARG 3HD not found in molecular structure %READC-ERR: atom 57 ARG QD not found in molecular structure %READC-ERR: atom 57 ARG 1HH1 not found in molecular structure %READC-ERR: atom 57 ARG 2HH1 not found in molecular structure %READC-ERR: atom 57 ARG QH1 not found in molecular structure %READC-ERR: atom 57 ARG 1HH2 not found in molecular structure %READC-ERR: atom 57 ARG 2HH2 not found in molecular structure %READC-ERR: atom 57 ARG QH2 not found in molecular structure %READC-ERR: atom 58 GLY 1HA not found in molecular structure %READC-ERR: atom 58 GLY 2HA not found in molecular structure %READC-ERR: atom 58 GLY QA not found in molecular structure %READC-ERR: atom 59 GLU 2HB not found in molecular structure %READC-ERR: atom 59 GLU 3HB not found in molecular structure %READC-ERR: atom 59 GLU QB not found in molecular structure %READC-ERR: atom 59 GLU 2HG not found in molecular structure %READC-ERR: atom 59 GLU 3HG not found in molecular structure %READC-ERR: atom 59 GLU QG not found in molecular structure %READC-ERR: atom 60 LYS 2HB not found in molecular structure %READC-ERR: atom 60 LYS 3HB not found in molecular structure %READC-ERR: atom 60 LYS QB not found in molecular structure %READC-ERR: atom 60 LYS 2HG not found in molecular structure %READC-ERR: atom 60 LYS 3HG not found in molecular structure %READC-ERR: atom 60 LYS QG not found in molecular structure %READC-ERR: atom 60 LYS 2HD not found in molecular structure %READC-ERR: atom 60 LYS 3HD not found in molecular structure %READC-ERR: atom 60 LYS QD not found in molecular structure %READC-ERR: atom 60 LYS 2HE not found in molecular structure %READC-ERR: atom 60 LYS 3HE not found in molecular structure %READC-ERR: atom 60 LYS QE not found in molecular structure %READC-ERR: atom 60 LYS 1HZ not found in molecular structure %READC-ERR: atom 60 LYS 2HZ not found in molecular structure %READC-ERR: atom 60 LYS 3HZ not found in molecular structure %READC-ERR: atom 60 LYS QZ not found in molecular structure %READC-ERR: atom 61 VAL QG1 not found in molecular structure %READC-ERR: atom 61 VAL QG2 not found in molecular structure %READC-ERR: atom 61 VAL 1HG1 not found in molecular structure %READC-ERR: atom 61 VAL 2HG1 not found in molecular structure %READC-ERR: atom 61 VAL 3HG1 not found in molecular structure %READC-ERR: atom 61 VAL 1HG2 not found in molecular structure %READC-ERR: atom 61 VAL 2HG2 not found in molecular structure %READC-ERR: atom 61 VAL 3HG2 not found in molecular structure %READC-ERR: atom 61 VAL QQG not found in molecular structure %READC-ERR: atom 62 PHE 2HB not found in molecular structure %READC-ERR: atom 62 PHE 3HB not found in molecular structure %READC-ERR: atom 62 PHE QB not found in molecular structure %READC-ERR: atom 62 PHE QD not found in molecular structure %READC-ERR: atom 62 PHE QE not found in molecular structure %READC-ERR: atom 62 PHE QR not found in molecular structure %READC-ERR: atom 63 LEU 2HB not found in molecular structure %READC-ERR: atom 63 LEU 3HB not found in molecular structure %READC-ERR: atom 63 LEU QB not found in molecular structure %READC-ERR: atom 63 LEU QD1 not found in molecular structure %READC-ERR: atom 63 LEU QD2 not found in molecular structure %READC-ERR: atom 63 LEU 1HD1 not found in molecular structure %READC-ERR: atom 63 LEU 2HD1 not found in molecular structure %READC-ERR: atom 63 LEU 3HD1 not found in molecular structure %READC-ERR: atom 63 LEU 1HD2 not found in molecular structure %READC-ERR: atom 63 LEU 2HD2 not found in molecular structure %READC-ERR: atom 63 LEU 3HD2 not found in molecular structure %READC-ERR: atom 63 LEU QQD not found in molecular structure %READC-ERR: atom 64 THR QG2 not found in molecular structure %READC-ERR: atom 64 THR 1HG2 not found in molecular structure %READC-ERR: atom 64 THR 2HG2 not found in molecular structure %READC-ERR: atom 64 THR 3HG2 not found in molecular structure %READC-ERR: atom 65 VAL QG1 not found in molecular structure %READC-ERR: atom 65 VAL QG2 not found in molecular structure %READC-ERR: atom 65 VAL 1HG1 not found in molecular structure %READC-ERR: atom 65 VAL 2HG1 not found in molecular structure %READC-ERR: atom 65 VAL 3HG1 not found in molecular structure %READC-ERR: atom 65 VAL 1HG2 not found in molecular structure %READC-ERR: atom 65 VAL 2HG2 not found in molecular structure %READC-ERR: atom 65 VAL 3HG2 not found in molecular structure %READC-ERR: atom 65 VAL QQG not found in molecular structure %READC-ERR: atom 66 GLY 1HA not found in molecular structure %READC-ERR: atom 66 GLY 2HA not found in molecular structure %READC-ERR: atom 66 GLY QA not found in molecular structure %READC-ERR: atom 67 TRP 2HB not found in molecular structure %READC-ERR: atom 67 TRP 3HB not found in molecular structure %READC-ERR: atom 67 TRP QB not found in molecular structure %READC-ERR: atom 68 GLU 2HB not found in molecular structure %READC-ERR: atom 68 GLU 3HB not found in molecular structure %READC-ERR: atom 68 GLU QB not found in molecular structure %READC-ERR: atom 68 GLU 2HG not found in molecular structure %READC-ERR: atom 68 GLU 3HG not found in molecular structure %READC-ERR: atom 68 GLU QG not found in molecular structure %READC-ERR: atom 69 ASN 2HB not found in molecular structure %READC-ERR: atom 69 ASN 3HB not found in molecular structure %READC-ERR: atom 69 ASN QB not found in molecular structure %READC-ERR: atom 69 ASN 1HD2 not found in molecular structure %READC-ERR: atom 69 ASN 2HD2 not found in molecular structure %READC-ERR: atom 69 ASN QD2 not found in molecular structure %READC-ERR: atom 70 PHE 2HB not found in molecular structure %READC-ERR: atom 70 PHE 3HB not found in molecular structure %READC-ERR: atom 70 PHE QB not found in molecular structure %READC-ERR: atom 70 PHE QD not found in molecular structure %READC-ERR: atom 70 PHE QE not found in molecular structure %READC-ERR: atom 70 PHE QR not found in molecular structure %READC-ERR: atom 71 VAL QG1 not found in molecular structure %READC-ERR: atom 71 VAL QG2 not found in molecular structure %READC-ERR: atom 71 VAL 1HG1 not found in molecular structure %READC-ERR: atom 71 VAL 2HG1 not found in molecular structure %READC-ERR: atom 71 VAL 3HG1 not found in molecular structure %READC-ERR: atom 71 VAL 1HG2 not found in molecular structure %READC-ERR: atom 71 VAL 2HG2 not found in molecular structure %READC-ERR: atom 71 VAL 3HG2 not found in molecular structure %READC-ERR: atom 71 VAL QQG not found in molecular structure %READC-ERR: atom 72 LYS 2HB not found in molecular structure %READC-ERR: atom 72 LYS 3HB not found in molecular structure %READC-ERR: atom 72 LYS QB not found in molecular structure %READC-ERR: atom 72 LYS 2HG not found in molecular structure %READC-ERR: atom 72 LYS 3HG not found in molecular structure %READC-ERR: atom 72 LYS QG not found in molecular structure %READC-ERR: atom 72 LYS 2HD not found in molecular structure %READC-ERR: atom 72 LYS 3HD not found in molecular structure %READC-ERR: atom 72 LYS QD not found in molecular structure %READC-ERR: atom 72 LYS 2HE not found in molecular structure %READC-ERR: atom 72 LYS 3HE not found in molecular structure %READC-ERR: atom 72 LYS QE not found in molecular structure %READC-ERR: atom 72 LYS 1HZ not found in molecular structure %READC-ERR: atom 72 LYS 2HZ not found in molecular structure %READC-ERR: atom 72 LYS 3HZ not found in molecular structure %READC-ERR: atom 72 LYS QZ not found in molecular structure %READC-ERR: atom 73 ASP 2HB not found in molecular structure %READC-ERR: atom 73 ASP 3HB not found in molecular structure %READC-ERR: atom 73 ASP QB not found in molecular structure %READC-ERR: atom 74 ASN 2HB not found in molecular structure %READC-ERR: atom 74 ASN 3HB not found in molecular structure %READC-ERR: atom 74 ASN QB not found in molecular structure %READC-ERR: atom 74 ASN 1HD2 not found in molecular structure %READC-ERR: atom 74 ASN 2HD2 not found in molecular structure %READC-ERR: atom 74 ASN QD2 not found in molecular structure %READC-ERR: atom 75 ASN 2HB not found in molecular structure %READC-ERR: atom 75 ASN 3HB not found in molecular structure %READC-ERR: atom 75 ASN QB not found in molecular structure %READC-ERR: atom 75 ASN 1HD2 not found in molecular structure %READC-ERR: atom 75 ASN 2HD2 not found in molecular structure %READC-ERR: atom 75 ASN QD2 not found in molecular structure %READC-ERR: atom 76 LEU 2HB not found in molecular structure %READC-ERR: atom 76 LEU 3HB not found in molecular structure %READC-ERR: atom 76 LEU QB not found in molecular structure %READC-ERR: atom 76 LEU QD1 not found in molecular structure %READC-ERR: atom 76 LEU QD2 not found in molecular structure %READC-ERR: atom 76 LEU 1HD1 not found in molecular structure %READC-ERR: atom 76 LEU 2HD1 not found in molecular structure %READC-ERR: atom 76 LEU 3HD1 not found in molecular structure %READC-ERR: atom 76 LEU 1HD2 not found in molecular structure %READC-ERR: atom 76 LEU 2HD2 not found in molecular structure %READC-ERR: atom 76 LEU 3HD2 not found in molecular structure %READC-ERR: atom 76 LEU QQD not found in molecular structure %READC-ERR: atom 77 GLU 2HB not found in molecular structure %READC-ERR: atom 77 GLU 3HB not found in molecular structure %READC-ERR: atom 77 GLU QB not found in molecular structure %READC-ERR: atom 77 GLU 2HG not found in molecular structure %READC-ERR: atom 77 GLU 3HG not found in molecular structure %READC-ERR: atom 77 GLU QG not found in molecular structure %READC-ERR: atom 78 ASP 2HB not found in molecular structure %READC-ERR: atom 78 ASP 3HB not found in molecular structure %READC-ERR: atom 78 ASP QB not found in molecular structure %READC-ERR: atom 79 GLY 1HA not found in molecular structure %READC-ERR: atom 79 GLY 2HA not found in molecular structure %READC-ERR: atom 79 GLY QA not found in molecular structure %READC-ERR: atom 80 LYS 2HB not found in molecular structure %READC-ERR: atom 80 LYS 3HB not found in molecular structure %READC-ERR: atom 80 LYS QB not found in molecular structure %READC-ERR: atom 80 LYS 2HG not found in molecular structure %READC-ERR: atom 80 LYS 3HG not found in molecular structure %READC-ERR: atom 80 LYS QG not found in molecular structure %READC-ERR: atom 80 LYS 2HD not found in molecular structure %READC-ERR: atom 80 LYS 3HD not found in molecular structure %READC-ERR: atom 80 LYS QD not found in molecular structure %READC-ERR: atom 80 LYS 2HE not found in molecular structure %READC-ERR: atom 80 LYS 3HE not found in molecular structure %READC-ERR: atom 80 LYS QE not found in molecular structure %READC-ERR: atom 80 LYS 1HZ not found in molecular structure %READC-ERR: atom 80 LYS 2HZ not found in molecular structure %READC-ERR: atom 80 LYS 3HZ not found in molecular structure %READC-ERR: atom 80 LYS QZ not found in molecular structure %READC-ERR: atom 81 TYR 2HB not found in molecular structure %READC-ERR: atom 81 TYR 3HB not found in molecular structure %READC-ERR: atom 81 TYR QB not found in molecular structure %READC-ERR: atom 81 TYR QD not found in molecular structure %READC-ERR: atom 81 TYR QE not found in molecular structure %READC-ERR: atom 81 TYR QR not found in molecular structure %READC-ERR: atom 82 LEU 2HB not found in molecular structure %READC-ERR: atom 82 LEU 3HB not found in molecular structure %READC-ERR: atom 82 LEU QB not found in molecular structure %READC-ERR: atom 82 LEU QD1 not found in molecular structure %READC-ERR: atom 82 LEU QD2 not found in molecular structure %READC-ERR: atom 82 LEU 1HD1 not found in molecular structure %READC-ERR: atom 82 LEU 2HD1 not found in molecular structure %READC-ERR: atom 82 LEU 3HD1 not found in molecular structure %READC-ERR: atom 82 LEU 1HD2 not found in molecular structure %READC-ERR: atom 82 LEU 2HD2 not found in molecular structure %READC-ERR: atom 82 LEU 3HD2 not found in molecular structure %READC-ERR: atom 82 LEU QQD not found in molecular structure %READC-ERR: atom 83 GLN 2HB not found in molecular structure %READC-ERR: atom 83 GLN 3HB not found in molecular structure %READC-ERR: atom 83 GLN QB not found in molecular structure %READC-ERR: atom 83 GLN 2HG not found in molecular structure %READC-ERR: atom 83 GLN 3HG not found in molecular structure %READC-ERR: atom 83 GLN QG not found in molecular structure %READC-ERR: atom 83 GLN 1HE2 not found in molecular structure %READC-ERR: atom 83 GLN 2HE2 not found in molecular structure %READC-ERR: atom 83 GLN QE2 not found in molecular structure %READC-ERR: atom 84 PHE 2HB not found in molecular structure %READC-ERR: atom 84 PHE 3HB not found in molecular structure %READC-ERR: atom 84 PHE QB not found in molecular structure %READC-ERR: atom 84 PHE QD not found in molecular structure %READC-ERR: atom 84 PHE QE not found in molecular structure %READC-ERR: atom 84 PHE QR not found in molecular structure %READC-ERR: atom 85 ILE QG2 not found in molecular structure %READC-ERR: atom 85 ILE 1HG2 not found in molecular structure %READC-ERR: atom 85 ILE 2HG2 not found in molecular structure %READC-ERR: atom 85 ILE 3HG2 not found in molecular structure %READC-ERR: atom 85 ILE 2HG1 not found in molecular structure %READC-ERR: atom 85 ILE 3HG1 not found in molecular structure %READC-ERR: atom 85 ILE QG1 not found in molecular structure %READC-ERR: atom 85 ILE QD1 not found in molecular structure %READC-ERR: atom 85 ILE 1HD1 not found in molecular structure %READC-ERR: atom 85 ILE 2HD1 not found in molecular structure %READC-ERR: atom 85 ILE 3HD1 not found in molecular structure %READC-ERR: atom 86 TYR 2HB not found in molecular structure %READC-ERR: atom 86 TYR 3HB not found in molecular structure %READC-ERR: atom 86 TYR QB not found in molecular structure %READC-ERR: atom 86 TYR QD not found in molecular structure %READC-ERR: atom 86 TYR QE not found in molecular structure %READC-ERR: atom 86 TYR QR not found in molecular structure %READC-ERR: atom 87 ASP 2HB not found in molecular structure %READC-ERR: atom 87 ASP 3HB not found in molecular structure %READC-ERR: atom 87 ASP QB not found in molecular structure %READC-ERR: atom 88 ARG 2HB not found in molecular structure %READC-ERR: atom 88 ARG 3HB not found in molecular structure %READC-ERR: atom 88 ARG QB not found in molecular structure %READC-ERR: atom 88 ARG 2HG not found in molecular structure %READC-ERR: atom 88 ARG 3HG not found in molecular structure %READC-ERR: atom 88 ARG QG not found in molecular structure %READC-ERR: atom 88 ARG 2HD not found in molecular structure %READC-ERR: atom 88 ARG 3HD not found in molecular structure %READC-ERR: atom 88 ARG QD not found in molecular structure %READC-ERR: atom 88 ARG 1HH1 not found in molecular structure %READC-ERR: atom 88 ARG 2HH1 not found in molecular structure %READC-ERR: atom 88 ARG QH1 not found in molecular structure %READC-ERR: atom 88 ARG 1HH2 not found in molecular structure %READC-ERR: atom 88 ARG 2HH2 not found in molecular structure %READC-ERR: atom 88 ARG QH2 not found in molecular structure %READC-ERR: atom 89 ASP 2HB not found in molecular structure %READC-ERR: atom 89 ASP 3HB not found in molecular structure %READC-ERR: atom 89 ASP QB not found in molecular structure %READC-ERR: atom 90 ARG 2HB not found in molecular structure %READC-ERR: atom 90 ARG 3HB not found in molecular structure %READC-ERR: atom 90 ARG QB not found in molecular structure %READC-ERR: atom 90 ARG 2HG not found in molecular structure %READC-ERR: atom 90 ARG 3HG not found in molecular structure %READC-ERR: atom 90 ARG QG not found in molecular structure %READC-ERR: atom 90 ARG 2HD not found in molecular structure %READC-ERR: atom 90 ARG 3HD not found in molecular structure %READC-ERR: atom 90 ARG QD not found in molecular structure %READC-ERR: atom 90 ARG 1HH1 not found in molecular structure %READC-ERR: atom 90 ARG 2HH1 not found in molecular structure %READC-ERR: atom 90 ARG QH1 not found in molecular structure %READC-ERR: atom 90 ARG 1HH2 not found in molecular structure %READC-ERR: atom 90 ARG 2HH2 not found in molecular structure %READC-ERR: atom 90 ARG QH2 not found in molecular structure %READC-ERR: atom 91 THR QG2 not found in molecular structure %READC-ERR: atom 91 THR 1HG2 not found in molecular structure %READC-ERR: atom 91 THR 2HG2 not found in molecular structure %READC-ERR: atom 91 THR 3HG2 not found in molecular structure %READC-ERR: atom 92 PHE 2HB not found in molecular structure %READC-ERR: atom 92 PHE 3HB not found in molecular structure %READC-ERR: atom 92 PHE QB not found in molecular structure %READC-ERR: atom 92 PHE QD not found in molecular structure %READC-ERR: atom 92 PHE QE not found in molecular structure %READC-ERR: atom 92 PHE QR not found in molecular structure %READC-ERR: atom 93 TYR 2HB not found in molecular structure %READC-ERR: atom 93 TYR 3HB not found in molecular structure %READC-ERR: atom 93 TYR QB not found in molecular structure %READC-ERR: atom 93 TYR QD not found in molecular structure %READC-ERR: atom 93 TYR QE not found in molecular structure %READC-ERR: atom 93 TYR QR not found in molecular structure %READC-ERR: atom 94 VAL QG1 not found in molecular structure %READC-ERR: atom 94 VAL QG2 not found in molecular structure %READC-ERR: atom 94 VAL 1HG1 not found in molecular structure %READC-ERR: atom 94 VAL 2HG1 not found in molecular structure %READC-ERR: atom 94 VAL 3HG1 not found in molecular structure %READC-ERR: atom 94 VAL 1HG2 not found in molecular structure %READC-ERR: atom 94 VAL 2HG2 not found in molecular structure %READC-ERR: atom 94 VAL 3HG2 not found in molecular structure %READC-ERR: atom 94 VAL QQG not found in molecular structure %READC-ERR: atom 95 ILE QG2 not found in molecular structure %READC-ERR: atom 95 ILE 1HG2 not found in molecular structure %READC-ERR: atom 95 ILE 2HG2 not found in molecular structure %READC-ERR: atom 95 ILE 3HG2 not found in molecular structure %READC-ERR: atom 95 ILE 2HG1 not found in molecular structure %READC-ERR: atom 95 ILE 3HG1 not found in molecular structure %READC-ERR: atom 95 ILE QG1 not found in molecular structure %READC-ERR: atom 95 ILE QD1 not found in molecular structure %READC-ERR: atom 95 ILE 1HD1 not found in molecular structure %READC-ERR: atom 95 ILE 2HD1 not found in molecular structure %READC-ERR: atom 95 ILE 3HD1 not found in molecular structure %READC-ERR: atom 96 ILE QG2 not found in molecular structure %READC-ERR: atom 96 ILE 1HG2 not found in molecular structure %READC-ERR: atom 96 ILE 2HG2 not found in molecular structure %READC-ERR: atom 96 ILE 3HG2 not found in molecular structure %READC-ERR: atom 96 ILE 2HG1 not found in molecular structure %READC-ERR: atom 96 ILE 3HG1 not found in molecular structure %READC-ERR: atom 96 ILE QG1 not found in molecular structure %READC-ERR: atom 96 ILE QD1 not found in molecular structure %READC-ERR: atom 96 ILE 1HD1 not found in molecular structure %READC-ERR: atom 96 ILE 2HD1 not found in molecular structure %READC-ERR: atom 96 ILE 3HD1 not found in molecular structure %READC-ERR: atom 97 TYR 2HB not found in molecular structure %READC-ERR: atom 97 TYR 3HB not found in molecular structure %READC-ERR: atom 97 TYR QB not found in molecular structure %READC-ERR: atom 97 TYR QD not found in molecular structure %READC-ERR: atom 97 TYR QE not found in molecular structure %READC-ERR: atom 97 TYR QR not found in molecular structure %READC-ERR: atom 98 GLY 1HA not found in molecular structure %READC-ERR: atom 98 GLY 2HA not found in molecular structure %READC-ERR: atom 98 GLY QA not found in molecular structure %READC-ERR: atom 99 HIS 2HB not found in molecular structure %READC-ERR: atom 99 HIS 3HB not found in molecular structure %READC-ERR: atom 99 HIS QB not found in molecular structure %READC-ERR: atom 100 ASN 2HB not found in molecular structure %READC-ERR: atom 100 ASN 3HB not found in molecular structure %READC-ERR: atom 100 ASN QB not found in molecular structure %READC-ERR: atom 100 ASN 1HD2 not found in molecular structure %READC-ERR: atom 100 ASN 2HD2 not found in molecular structure %READC-ERR: atom 100 ASN QD2 not found in molecular structure %READC-ERR: atom 101 MET 2HB not found in molecular structure %READC-ERR: atom 101 MET 3HB not found in molecular structure %READC-ERR: atom 101 MET QB not found in molecular structure %READC-ERR: atom 101 MET 2HG not found in molecular structure %READC-ERR: atom 101 MET 3HG not found in molecular structure %READC-ERR: atom 101 MET QG not found in molecular structure %READC-ERR: atom 101 MET QE not found in molecular structure %READC-ERR: atom 101 MET 1HE not found in molecular structure %READC-ERR: atom 101 MET 2HE not found in molecular structure %READC-ERR: atom 101 MET 3HE not found in molecular structure %READC-ERR: atom 102 CYS 2HB not found in molecular structure %READC-ERR: atom 102 CYS 3HB not found in molecular structure %READC-ERR: atom 102 CYS QB not found in molecular structure %READC-ERR: atom 102 CYS O not found in molecular structure COOR>END CNSsolve>parameter @TOPPAR:parallhdg5.3.pro end PARRDR>! JFD adds FES complex parameters from Milo Westler's calculations PARRDR>! and standard topology. PARRDR> PARRDR>remark file protein-allhdg-ucl.param version UCL date 07-JUL-01 PARRDR>remark for file protein-allhdg-ucl.top version UCL date 14-MAR-00 PARRDR>remark for file protein-allhdg-dih-ucl.top version UCL date 07-JUL-01 PARRDR>remark Geometric energy function parameters for distance geometry and PARRDR>remark simulated annealing. PARRDR>remark Original author: Michael Nilges, EMBL Heidelberg PARRDR>remark Modifications: Mark A. Williams, UCL London PARRDR> PARRDR>set echo off message off end SHOW: sum over selected elements = 2.000000 CNSsolve> CNSsolve> if ( $log_level = verbose ) then CNSsolve> set message=normal echo=on end CNSsolve> else CNSsolve> set message=off echo=off end CNSsolve> end if CNSsolve> CNSsolve> CNSsolve> identity (store1) (none) SELRPN: 0 atoms have been selected out of 1677 CNSsolve> CNSsolve> identity (store1) (&atom_build) SELRPN: 507 atoms have been selected out of 1677 CNSsolve> identity (store1) (store1 or hydrogen) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> CNSsolve> show sum(1) (store1) SELRPN: 830 atoms have been selected out of 1677 SHOW: sum over selected elements = 830.000000 CNSsolve> evaluate ($tobuild=$result) EVALUATE: symbol $TOBUILD set to 830.000 (real) CNSsolve> CNSsolve> !evaluate ($tobuild=0) CNSsolve> CNSsolve> if ( $tobuild > 0 ) then NEXTCD: condition evaluated as true CNSsolve> CNSsolve> fix selection=(not(store1)) end SELRPN: 847 atoms have been selected out of 1677 CNSsolve> CNSsolve> show sum(1) (store1) SELRPN: 830 atoms have been selected out of 1677 SHOW: sum over selected elements = 830.000000 CNSsolve> evaluate ($moving=$result) EVALUATE: symbol $MOVING set to 830.000 (real) CNSsolve> CNSsolve> if ( $moving > 0 ) then NEXTCD: condition evaluated as true CNSsolve> for $id in id (tag and byres(store1)) loop avco SELRPN: 102 atoms have been selected out of 1677 FOR ID LOOP: symbol ID set to 1.00000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = 1.937889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 1.93789 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -0.642222 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.642222 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -2.224667 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.22467 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 20.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1677 SHOW: average of selected elements = 4.559571 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 4.55957 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1677 SHOW: average of selected elements = 2.677857 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 2.67786 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1677 SHOW: average of selected elements = -2.192000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.19200 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 30.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 7.136400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 7.13640 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 1.836400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.83640 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -5.188900 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -5.18890 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 42.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 7.785455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 7.78545 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 6.178364 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 6.17836 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -6.335818 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.33582 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 56.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = 11.317800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 11.3178 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = 4.807800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 4.80780 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -5.952000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -5.95200 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 63.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 15.034727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 15.0347 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 6.964091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 6.96409 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -4.908636 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -4.90864 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 78.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 15.735900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 15.7359 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 2.327500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 2.32750 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -3.846700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.84670 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 94.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 18.699545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 18.6995 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 2.220000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 2.22000 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -0.604364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.604364 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 111.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = 19.932944 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 19.9329 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -3.604667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.60467 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -2.498333 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.49833 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 131.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 23.267300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 23.2673 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -3.605000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.60500 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 1.525100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.52510 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 148.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 26.850636 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 26.8506 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -6.127364 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -6.12736 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -1.568000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -1.56800 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 170.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = 28.885000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 28.8850 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = -7.823625 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.82363 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = 0.686125 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 0.686125 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 184.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = 34.425833 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 34.4258 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -5.284778 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.28478 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -1.285778 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -1.28578 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 204.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 33.967909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 33.9679 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -9.672273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.67227 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -2.381000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.38100 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 223.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = 38.532111 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 38.5321 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -9.298444 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.29844 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -2.368556 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.36856 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 234.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 37.709727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 37.7097 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -13.266636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -13.2666 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -4.624455 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -4.62445 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 249.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 34.481909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 34.4819 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -11.410000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -11.4100 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -7.008636 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.00864 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 271.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = 35.856444 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 35.8564 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -6.790333 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -6.79033 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -5.804000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -5.80400 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 282.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = 39.709556 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 39.7096 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -7.843000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.84300 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -8.092556 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -8.09256 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 293.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 39.322727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 39.3227 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -6.341727 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -6.34173 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -11.869182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.8692 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 315.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = 34.685556 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 34.6856 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -7.546667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.54667 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -10.723667 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -10.7237 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 326.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 30.872636 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 30.8726 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -5.541455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.54145 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -9.069091 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.06909 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 345.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 28.970182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 28.9702 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -10.010909 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.0109 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -7.244091 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.24409 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 360.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 25.430091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 25.4301 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -8.853545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -8.85355 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -8.760727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -8.76073 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 379.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = 23.107625 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 23.1076 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = -10.014500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.0145 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = -5.687125 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -5.68713 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 393.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 20.536091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 20.5361 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -13.785000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -13.7850 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -7.490455 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.49045 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 412.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = 18.560000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 18.5600 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -10.904000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.9040 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -5.003600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -5.00360 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 419.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = 19.924889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 19.9249 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -6.153833 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -6.15383 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -7.663944 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.66394 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 439.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 18.767500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 18.7675 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -9.886000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.88600 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -10.529800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -10.5298 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 453.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 15.225273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 15.2253 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -11.653364 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -11.6534 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -7.915727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.91573 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 468.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = 13.708211 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 13.7082 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = -6.552263 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -6.55226 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = -5.753842 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -5.75384 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 489.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = 15.585167 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 15.5852 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -5.414944 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.41494 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -10.423889 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -10.4239 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 509.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = 14.136500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 14.1365 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = -8.368750 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -8.36875 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = -14.522375 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -14.5224 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 523.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1677 SHOW: average of selected elements = 16.653714 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 16.6537 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1677 SHOW: average of selected elements = -6.558429 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -6.55843 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1677 SHOW: average of selected elements = -17.051286 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -17.0513 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 533.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = 17.976000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 17.9760 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = -5.511875 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.51188 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = -20.239125 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -20.2391 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 547.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = 22.022444 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 22.0224 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -6.820500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -6.82050 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -23.046444 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -23.0464 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 567.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = 23.271375 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 23.2714 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = -2.801500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.80150 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = -20.060250 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -20.0603 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 581.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 25.851273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 25.8513 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -0.916818 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.916818 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -23.049364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -23.0494 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 600.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 27.768727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 27.7687 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 1.066182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.06618 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -20.180273 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -20.1803 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 614.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 27.042100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 27.0421 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 1.818500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.81850 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -15.967800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -15.9678 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 630.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 27.697300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 27.6973 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 5.838000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 5.83800 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -15.289700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -15.2897 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 642.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 29.061455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 29.0615 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 5.118545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 5.11855 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -10.966818 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -10.9668 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 661.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 27.269091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 27.2691 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 9.315818 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 9.31582 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -9.764818 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.76482 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 680.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 30.718300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 30.7183 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 10.783400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 10.7834 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -6.142500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.14250 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 692.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = 29.640053 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 29.6401 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = 12.397263 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 12.3973 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = -1.004737 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -1.00474 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 713.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = 30.092333 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 30.0923 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = 15.687889 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 15.6879 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -5.949000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -5.94900 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 724.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = 32.534200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 32.5342 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = 15.610200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 15.6102 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -9.068400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.06840 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 731.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = 35.914286 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 35.9143 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = 13.140071 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 13.1401 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = -8.152571 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -8.15257 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 755.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = 33.197000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 33.1970 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = 10.323333 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 10.3233 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -11.876444 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.8764 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 766.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1677 SHOW: average of selected elements = 34.845136 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 34.8451 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1677 SHOW: average of selected elements = 7.270864 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 7.27086 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1677 SHOW: average of selected elements = -9.604318 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.60432 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 790.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 32.644182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 32.6442 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 4.690636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 4.69064 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -15.434000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -15.4340 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 804.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 30.495700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 30.4957 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 0.938800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.938800 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -14.125300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -14.1253 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 820.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = 31.025071 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 31.0251 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = -1.792714 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.79271 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = -18.859500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -18.8595 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 844.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 25.680600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 25.6806 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -3.829300 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.82930 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -15.979300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -15.9793 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 861.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 26.832545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 26.8325 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -6.694273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -6.69427 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -18.762545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -18.7625 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 883.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 21.577909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 21.5779 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -9.505091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.50509 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -17.527182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -17.5272 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 905.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = 24.919357 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 24.9194 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = -14.223786 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.2238 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = -19.094714 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -19.0947 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 929.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = 20.133400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 20.1334 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -14.426200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.4262 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -17.691000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -17.6910 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 936.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 18.684909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 18.6849 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -16.086727 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -16.0867 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -14.171091 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -14.1711 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 951.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 23.647455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 23.6475 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -15.392636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -15.3926 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -12.767909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -12.7679 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 973.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 24.222300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 24.2223 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -10.708500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.7085 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -12.989800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -12.9898 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 989.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = 28.342278 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 28.3423 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -12.247722 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -12.2477 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -12.548111 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -12.5481 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1009.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 29.439636 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 29.4396 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -6.093727 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -6.09373 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -12.957364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -12.9574 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1028.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 32.590455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 32.5905 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -6.242364 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -6.24236 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -16.509455 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -16.5095 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1042.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 35.815900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 35.8159 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -4.010300 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.01030 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -16.754600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -16.7546 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1058.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = 35.371800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 35.3718 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -0.890400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.890400 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -14.059000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -14.0590 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1065.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1677 SHOW: average of selected elements = 33.659955 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 33.6600 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1677 SHOW: average of selected elements = -1.740045 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.74005 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1677 SHOW: average of selected elements = -8.262500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -8.26250 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1089.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 38.357727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 38.3577 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -1.267455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.26745 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -11.886545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.8865 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1104.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 37.926200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 37.9262 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 2.140900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 2.14090 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -12.052300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -12.0523 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1118.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = 34.373111 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 34.3731 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = 3.592500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 3.59250 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -6.905000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.90500 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1138.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 37.764100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 37.7641 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -0.761900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.761900 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -6.560300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.56030 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1154.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 41.928091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 41.9281 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -0.163727 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.163727 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -7.654455 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.65445 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1176.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 39.748400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 39.7484 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 4.919100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 4.91910 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -6.599700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.59970 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1188.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 38.523200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 38.5232 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 3.409400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 3.40940 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -2.792400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.79240 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1202.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 42.694100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 42.6941 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 1.144100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.14410 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -2.450200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.45020 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1216.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 39.071273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 39.0713 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -1.289000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.28900 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -0.944091 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.944091 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1235.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 40.431364 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 40.4314 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -4.648636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.64864 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 1.588364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.58836 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1250.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 37.935300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 37.9353 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -7.913500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.91350 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 2.066500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 2.06650 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1262.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = 35.529200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 35.5292 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -5.760600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.76060 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = 4.665600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 4.66560 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1269.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 35.108909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 35.1089 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -1.939818 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.93982 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 3.932273 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 3.93227 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1291.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = 29.699263 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 29.6993 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = -3.476737 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.47674 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = 5.537211 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 5.53721 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1312.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 29.192818 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 29.1928 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -1.553636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.55364 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -0.259273 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.259273 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1331.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 25.483636 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 25.4836 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 1.898727 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.89873 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -0.165364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.165364 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1348.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = 25.808333 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 25.8083 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = 0.167778 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.167778 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -5.424222 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -5.42422 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1368.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 21.991091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 21.9911 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 4.487182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 4.48718 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -3.985636 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.98564 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1387.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = 17.791000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 17.7910 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = 1.216368 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.21637 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = -7.254263 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.25426 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1408.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 16.836800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 16.8368 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 6.000500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 6.00050 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -8.275500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -8.27550 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1420.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = 13.653357 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 13.6534 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = 1.521357 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.52136 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = -11.493357 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.4934 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1444.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 17.821500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 17.8215 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 5.646300 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 5.64630 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -13.499300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -13.4993 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1456.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = 21.864000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 21.8640 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = 4.854429 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 4.85443 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = -17.022714 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -17.0227 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1480.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 22.417909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 22.4179 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 6.975091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 6.97509 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -12.196909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -12.1969 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1494.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = 23.231278 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 23.2313 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = 2.660778 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 2.66078 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -9.969389 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.96939 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1514.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = 23.878579 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 23.8786 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = 7.784053 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 7.78405 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = -6.615526 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.61553 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1535.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 29.025300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 29.0253 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 4.326500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 4.32650 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -4.362200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -4.36220 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1551.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 28.476182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 28.4762 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 4.968909 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 4.96891 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -0.213545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.213545 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1570.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 32.056455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 32.0565 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 3.468182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 3.46818 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 1.790182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.79018 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1589.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = 28.193000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 28.1930 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = 2.373000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 2.37300 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = 5.210789 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 5.21079 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1610.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = 33.453800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 33.4538 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = 4.859400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 4.85940 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = 7.623800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 7.62380 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1617.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1677 SHOW: average of selected elements = 36.763133 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 36.7631 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1677 SHOW: average of selected elements = 7.247800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 7.24780 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1677 SHOW: average of selected elements = 5.286067 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 5.28607 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1635.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 40.104600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 40.1046 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 5.153900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 5.15390 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 7.097700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 7.09770 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1649.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 42.458800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 42.4588 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 6.580400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 6.58040 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 4.001100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 4.00110 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1666.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = 43.833625 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 43.8336 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = 10.121875 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 10.1219 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = 5.476750 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 5.47675 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) CNSsolve> evaluate ($ave_x=$result) CNSsolve> show ave(y) (byres(id $id) and known) CNSsolve> evaluate ($ave_y=$result) CNSsolve> show ave(z) (byres(id $id) and known) CNSsolve> evaluate ($ave_z=$result) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) CNSsolve> do (y=$ave_y) (byres(id $id) and store1) CNSsolve> do (z=$ave_z) (byres(id $id) and store1) CNSsolve> CNSsolve> end loop avco CNSsolve> CNSsolve> do (x=x+random(2.0)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> do (y=y+random(2.0)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> do (z=z+random(2.0)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> CNSsolve> {- start parameter for the side chain building -} CNSsolve> parameter PARRDR> nbonds NBDSET> rcon=20. nbxmod=-2 repel=0.9 wmin=0.1 tolerance=1. NBDSET> rexp=2 irexp=2 inhibit=0.25 NBDSET> end PARRDR> end CNSsolve> CNSsolve> {- Friction coefficient, in 1/ps. -} CNSsolve> do (fbeta=100) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> CNSsolve> evaluate ($bath=300.0) EVALUATE: symbol $BATH set to 300.000 (real) CNSsolve> evaluate ($nstep=500) EVALUATE: symbol $NSTEP set to 500.000 (real) CNSsolve> evaluate ($timestep=0.0005) EVALUATE: symbol $TIMESTEP set to 0.500000E-03 (real) CNSsolve> CNSsolve> do (refy=mass) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> CNSsolve> do (mass=20) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> CNSsolve> igroup interaction SELRPN> (store1) (store1 or known) SELRPN: 830 atoms have been selected out of 1677 SELRPN: 1677 atoms have been selected out of 1677 IGROup> end CNSsolve> CNSsolve> {- turn on initial energy terms -} CNSsolve> flags exclude * include bond angle vdw end CNSsolve> CNSsolve> minimize powell nstep=50 nprint=10 end POWELL: number of degrees of freedom= 2490 NBONDS: generating intra-molecular exclusion list with mode=-2 MAKINB: mode -2 found 830 exclusions and 0 interactions(1-4) %atoms " -9 -PHE -HD2 " and " -9 -PHE -HZ " only 0.10 A apart %atoms " -11 -LYS -HA " and " -11 -LYS -HZ1 " only 0.05 A apart %atoms " -22 -LEU -HD11" and " -22 -LEU -HD22" only 0.06 A apart %atoms " -28 -PHE -HE1 " and " -28 -PHE -HE2 " only 0.09 A apart %atoms " -48 -ARG -HD2 " and " -48 -ARG -HH11" only 0.09 A apart %atoms " -55 -LYS -HD1 " and " -55 -LYS -HE1 " only 0.08 A apart %atoms " -68 -GLU -HN " and " -68 -GLU -HG2 " only 0.07 A apart %atoms " -85 -ILE -HG11" and " -85 -ILE -HG23" only 0.07 A apart %atoms " -88 -ARG -HH12" and " -88 -ARG -HH22" only 0.07 A apart %atoms " -93 -TYR -HD2 " and " -93 -TYR -HE1 " only 0.07 A apart %atoms " -94 -VAL -HN " and " -94 -VAL -HG21" only 0.07 A apart NBONDS: found 107405 intra-atom interactions NBONDS: found 11 nonbonded violations %atoms " -4 -THR -HA " and " -4 -THR -HG23" only 0.09 A apart %atoms " -31 -TYR -HD1 " and " -31 -TYR -HE1 " only 0.08 A apart %atoms " -88 -ARG -HA " and " -88 -ARG -HG1 " only 0.09 A apart NBONDS: found 106190 intra-atom interactions NBONDS: found 3 nonbonded violations NBONDS: found 101721 intra-atom interactions NBONDS: found 98617 intra-atom interactions NBONDS: found 99207 intra-atom interactions NBONDS: found 98882 intra-atom interactions --------------- cycle= 10 ------ stepsize= 0.0000 ----------------------- | Etotal =437834.368 grad(E)=595.059 E(BOND)=65992.530 E(ANGL)=202166.380 | | E(VDW )=169675.459 | ------------------------------------------------------------------------------- NBONDS: found 99231 intra-atom interactions NBONDS: found 99259 intra-atom interactions NBONDS: found 99255 intra-atom interactions NBONDS: found 99071 intra-atom interactions --------------- cycle= 20 ------ stepsize= -0.0002 ----------------------- | Etotal =162130.528 grad(E)=365.428 E(BOND)=31677.764 E(ANGL)=56239.055 | | E(VDW )=74213.708 | ------------------------------------------------------------------------------- NBONDS: found 99130 intra-atom interactions NBONDS: found 99062 intra-atom interactions --------------- cycle= 30 ------ stepsize= 0.0000 ----------------------- | Etotal =133160.972 grad(E)=309.044 E(BOND)=21133.061 E(ANGL)=40980.461 | | E(VDW )=71047.449 | ------------------------------------------------------------------------------- NBONDS: found 99108 intra-atom interactions NBONDS: found 99125 intra-atom interactions --------------- cycle= 40 ------ stepsize= 0.0003 ----------------------- | Etotal =131259.704 grad(E)=308.898 E(BOND)=21427.600 E(ANGL)=39970.431 | | E(VDW )=69861.673 | ------------------------------------------------------------------------------- --------------- cycle= 50 ------ stepsize= 0.0003 ----------------------- | Etotal =130763.819 grad(E)=307.818 E(BOND)=21369.971 E(ANGL)=39747.257 | | E(VDW )=69646.590 | ------------------------------------------------------------------------------- POWELL: STEP number limit. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> CNSsolve> flags exclude vdw include impr end CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=50 Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=522916.559 E(kin)=768.346 temperature=310.562 | | Etotal =522148.213 grad(E)=726.163 E(BOND)=21369.971 E(ANGL)=39747.257 | | E(IMPR)=461030.984 | ------------------------------------------------------------------------------- -------------------- final step= 50 at 0.02500 ps --------------------- | E(kin)+E(total)=327444.371 E(kin)=59482.130 temperature=24042.385 | | Etotal =267962.241 grad(E)=408.750 E(BOND)=38818.542 E(ANGL)=98926.718 | | E(IMPR)=130216.981 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 27.55896 -1.73998 -7.98010 velocity [A/ps] : -0.14673 -0.06305 0.08820 ang. mom. [amu A/ps] :-215795.62352 213278.18694 328746.10307 kin. ener. [Kcal/mol] : 0.66026 CNSsolve> CNSsolve> flags include vdw end CNSsolve> CNSsolve> minimize powell nstep=50 nprint=10 end POWELL: number of degrees of freedom= 2490 NBONDS: found 98935 intra-atom interactions NBONDS: found 98744 intra-atom interactions NBONDS: found 98840 intra-atom interactions NBONDS: found 98790 intra-atom interactions NBONDS: found 98813 intra-atom interactions NBONDS: found 98845 intra-atom interactions --------------- cycle= 10 ------ stepsize= 0.0003 ----------------------- | Etotal =238300.794 grad(E)=373.799 E(BOND)=36755.678 E(ANGL)=56614.761 | | E(IMPR)=103036.411 E(VDW )=41893.945 | ------------------------------------------------------------------------------- NBONDS: found 98997 intra-atom interactions NBONDS: found 99017 intra-atom interactions --------------- cycle= 20 ------ stepsize= 0.0003 ----------------------- | Etotal =162333.587 grad(E)=266.018 E(BOND)=20929.954 E(ANGL)=30591.902 | | E(IMPR)=65430.645 E(VDW )=45381.086 | ------------------------------------------------------------------------------- NBONDS: found 99039 intra-atom interactions NBONDS: found 99034 intra-atom interactions NBONDS: found 99067 intra-atom interactions NBONDS: found 99023 intra-atom interactions --------------- cycle= 30 ------ stepsize= -0.0001 ----------------------- | Etotal =130750.926 grad(E)=273.756 E(BOND)=19839.771 E(ANGL)=21390.182 | | E(IMPR)=46954.975 E(VDW )=42565.998 | ------------------------------------------------------------------------------- NBONDS: found 99016 intra-atom interactions NBONDS: found 98932 intra-atom interactions --------------- cycle= 40 ------ stepsize= 0.0000 ----------------------- | Etotal =115736.671 grad(E)=260.741 E(BOND)=18919.328 E(ANGL)=15342.862 | | E(IMPR)=40752.716 E(VDW )=40721.765 | ------------------------------------------------------------------------------- NBONDS: found 98911 intra-atom interactions NBONDS: found 98974 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0002 ----------------------- | Etotal =110495.231 grad(E)=256.460 E(BOND)=18508.571 E(ANGL)=13964.536 | | E(IMPR)=37468.714 E(VDW )=40553.410 | ------------------------------------------------------------------------------- POWELL: STEP number limit. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=50 Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=111254.865 E(kin)=759.635 temperature=307.041 | | Etotal =110495.231 grad(E)=256.460 E(BOND)=18508.571 E(ANGL)=13964.536 | | E(IMPR)=37468.714 E(VDW )=40553.410 | ------------------------------------------------------------------------------- NBONDS: found 98958 intra-atom interactions NBONDS: found 98971 intra-atom interactions -------------------- final step= 50 at 0.02500 ps --------------------- | E(kin)+E(total)=108890.038 E(kin)=2528.995 temperature=1022.207 | | Etotal =106361.043 grad(E)=261.403 E(BOND)=18807.500 E(ANGL)=13020.620 | | E(IMPR)=34031.080 E(VDW )=40501.843 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 27.55301 -1.71852 -7.98204 velocity [A/ps] : 0.14633 0.05280 -0.23685 ang. mom. [amu A/ps] : -27779.08199 65872.20993 -38184.99401 kin. ener. [Kcal/mol] : 1.59291 CNSsolve> CNSsolve> parameter PARRDR> nbonds NBDSET> rcon=2. nbxmod=-3 repel=0.75 NBDSET> end PARRDR> end CNSsolve> CNSsolve> minimize powell nstep=100 nprint=25 end POWELL: number of degrees of freedom= 2490 NBONDS: generating intra-molecular exclusion list with mode=-3 MAKINB: mode -3 found 2719 exclusions and 0 interactions(1-4) NBONDS: found 97047 intra-atom interactions NBONDS: found 97609 intra-atom interactions NBONDS: found 97578 intra-atom interactions NBONDS: found 97530 intra-atom interactions --------------- cycle= 25 ------ stepsize= 0.0000 ----------------------- | Etotal =36911.036 grad(E)=133.268 E(BOND)=1330.978 E(ANGL)=11299.074 | | E(IMPR)=24275.685 E(VDW )=5.299 | ------------------------------------------------------------------------------- --------------- cycle= 50 ------ stepsize= 0.0000 ----------------------- | Etotal =36110.232 grad(E)=79.833 E(BOND)=1279.049 E(ANGL)=11352.248 | | E(IMPR)=23474.371 E(VDW )=4.564 | ------------------------------------------------------------------------------- POWELL: Line search terminated POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=$nstep Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=36853.989 E(kin)=743.757 temperature=300.623 | | Etotal =36110.232 grad(E)=79.833 E(BOND)=1279.049 E(ANGL)=11352.248 | | E(IMPR)=23474.371 E(VDW )=4.564 | ------------------------------------------------------------------------------- NBONDS: found 97525 intra-atom interactions NBONDS: found 97529 intra-atom interactions NBONDS: found 97558 intra-atom interactions NBONDS: found 97608 intra-atom interactions NBONDS: found 97623 intra-atom interactions NBONDS: found 97642 intra-atom interactions NBONDS: found 97635 intra-atom interactions NBONDS: found 97626 intra-atom interactions NBONDS: found 97591 intra-atom interactions NBONDS: found 97589 intra-atom interactions NBONDS: found 97576 intra-atom interactions NBONDS: found 97589 intra-atom interactions NBONDS: found 97609 intra-atom interactions NBONDS: found 97649 intra-atom interactions NBONDS: found 97642 intra-atom interactions NBONDS: found 97580 intra-atom interactions NBONDS: found 97559 intra-atom interactions NBONDS: found 97560 intra-atom interactions NBONDS: found 97528 intra-atom interactions NBONDS: found 97506 intra-atom interactions NBONDS: found 97502 intra-atom interactions NBONDS: found 97503 intra-atom interactions NBONDS: found 97492 intra-atom interactions NBONDS: found 97499 intra-atom interactions NBONDS: found 97565 intra-atom interactions NBONDS: found 97587 intra-atom interactions NBONDS: found 97585 intra-atom interactions NBONDS: found 97534 intra-atom interactions NBONDS: found 97545 intra-atom interactions NBONDS: found 97575 intra-atom interactions NBONDS: found 97606 intra-atom interactions NBONDS: found 97620 intra-atom interactions NBONDS: found 97594 intra-atom interactions NBONDS: found 97591 intra-atom interactions NBONDS: found 97560 intra-atom interactions NBONDS: found 97578 intra-atom interactions NBONDS: found 97596 intra-atom interactions NBONDS: found 97573 intra-atom interactions NBONDS: found 97554 intra-atom interactions NBONDS: found 97540 intra-atom interactions NBONDS: found 97547 intra-atom interactions NBONDS: found 97545 intra-atom interactions NBONDS: found 97537 intra-atom interactions NBONDS: found 97571 intra-atom interactions NBONDS: found 97577 intra-atom interactions NBONDS: found 97576 intra-atom interactions -------------------- final step= 500 at 0.25000 ps --------------------- | E(kin)+E(total)=11715.250 E(kin)=4737.319 temperature=1914.801 | | Etotal =6977.931 grad(E)=118.610 E(BOND)=1936.040 E(ANGL)=1548.033 | | E(IMPR)=3482.693 E(VDW )=11.166 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 27.55615 -1.71405 -7.98036 velocity [A/ps] : 0.38493 0.35566 0.35922 ang. mom. [amu A/ps] : 46951.17662 -86259.04992 52021.71752 kin. ener. [Kcal/mol] : 8.00849 CNSsolve> CNSsolve> {- turn on all energy terms -} CNSsolve> flags include dihe ? end EFLAGS: the following energy flags are set EFLAGS: BOND ANGL DIHE IMPR VDW CNSsolve> CNSsolve> {- set repel to ~vdw radii -} CNSsolve> parameter PARRDR> nbonds NBDSET> repel=0.89 NBDSET> end PARRDR> end CNSsolve> CNSsolve> minimize powell nstep=500 nprint=50 end POWELL: number of degrees of freedom= 2490 NBONDS: generating intra-molecular exclusion list with mode=-3 MAKINB: mode -3 found 2719 exclusions and 0 interactions(1-4) NBONDS: found 97583 intra-atom interactions NBONDS: found 97578 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0000 ----------------------- | Etotal =4459.746 grad(E)=80.974 E(BOND)=96.244 E(ANGL)=1279.738 | | E(DIHE)=67.992 E(IMPR)=2934.079 E(VDW )=81.693 | ------------------------------------------------------------------------------- POWELL: Line search terminated POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> flags exclude * include bond angl impr dihe vdw end CNSsolve> CNSsolve> {- return masses to something sensible -} CNSsolve> do (mass=refy) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=$nstep Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=5185.261 E(kin)=725.515 temperature=293.250 | | Etotal =4459.746 grad(E)=80.974 E(BOND)=96.244 E(ANGL)=1279.738 | | E(DIHE)=67.992 E(IMPR)=2934.079 E(VDW )=81.693 | ------------------------------------------------------------------------------- NBONDS: found 97614 intra-atom interactions NBONDS: found 97590 intra-atom interactions NBONDS: found 97593 intra-atom interactions NBONDS: found 97593 intra-atom interactions NBONDS: found 97601 intra-atom interactions NBONDS: found 97613 intra-atom interactions NBONDS: found 97606 intra-atom interactions NBONDS: found 97579 intra-atom interactions NBONDS: found 97509 intra-atom interactions NBONDS: found 97525 intra-atom interactions NBONDS: found 97523 intra-atom interactions NBONDS: found 97528 intra-atom interactions NBONDS: found 97496 intra-atom interactions NBONDS: found 97522 intra-atom interactions NBONDS: found 97520 intra-atom interactions NBONDS: found 97501 intra-atom interactions NBONDS: found 97491 intra-atom interactions NBONDS: found 97491 intra-atom interactions NBONDS: found 97515 intra-atom interactions NBONDS: found 97526 intra-atom interactions NBONDS: found 97548 intra-atom interactions NBONDS: found 97579 intra-atom interactions NBONDS: found 97570 intra-atom interactions NBONDS: found 97573 intra-atom interactions NBONDS: found 97550 intra-atom interactions NBONDS: found 97546 intra-atom interactions NBONDS: found 97528 intra-atom interactions NBONDS: found 97516 intra-atom interactions NBONDS: found 97503 intra-atom interactions NBONDS: found 97491 intra-atom interactions NBONDS: found 97503 intra-atom interactions NBONDS: found 97504 intra-atom interactions NBONDS: found 97535 intra-atom interactions NBONDS: found 97541 intra-atom interactions NBONDS: found 97536 intra-atom interactions NBONDS: found 97545 intra-atom interactions NBONDS: found 97520 intra-atom interactions NBONDS: found 97509 intra-atom interactions NBONDS: found 97496 intra-atom interactions NBONDS: found 97489 intra-atom interactions NBONDS: found 97501 intra-atom interactions NBONDS: found 97494 intra-atom interactions NBONDS: found 97498 intra-atom interactions NBONDS: found 97498 intra-atom interactions NBONDS: found 97495 intra-atom interactions NBONDS: found 97482 intra-atom interactions NBONDS: found 97491 intra-atom interactions NBONDS: found 97484 intra-atom interactions NBONDS: found 97470 intra-atom interactions NBONDS: found 97455 intra-atom interactions NBONDS: found 97448 intra-atom interactions NBONDS: found 97453 intra-atom interactions NBONDS: found 97456 intra-atom interactions NBONDS: found 97465 intra-atom interactions NBONDS: found 97474 intra-atom interactions NBONDS: found 97462 intra-atom interactions NBONDS: found 97468 intra-atom interactions NBONDS: found 97468 intra-atom interactions NBONDS: found 97467 intra-atom interactions NBONDS: found 97493 intra-atom interactions NBONDS: found 97496 intra-atom interactions NBONDS: found 97506 intra-atom interactions NBONDS: found 97505 intra-atom interactions NBONDS: found 97506 intra-atom interactions NBONDS: found 97507 intra-atom interactions NBONDS: found 97505 intra-atom interactions NBONDS: found 97480 intra-atom interactions NBONDS: found 97491 intra-atom interactions NBONDS: found 97478 intra-atom interactions NBONDS: found 97479 intra-atom interactions NBONDS: found 97488 intra-atom interactions NBONDS: found 97497 intra-atom interactions NBONDS: found 97509 intra-atom interactions NBONDS: found 97504 intra-atom interactions NBONDS: found 97484 intra-atom interactions NBONDS: found 97473 intra-atom interactions NBONDS: found 97457 intra-atom interactions NBONDS: found 97449 intra-atom interactions NBONDS: found 97443 intra-atom interactions NBONDS: found 97445 intra-atom interactions NBONDS: found 97456 intra-atom interactions NBONDS: found 97457 intra-atom interactions NBONDS: found 97438 intra-atom interactions NBONDS: found 97424 intra-atom interactions NBONDS: found 97452 intra-atom interactions NBONDS: found 97468 intra-atom interactions NBONDS: found 97501 intra-atom interactions NBONDS: found 97528 intra-atom interactions NBONDS: found 97546 intra-atom interactions NBONDS: found 97563 intra-atom interactions NBONDS: found 97535 intra-atom interactions NBONDS: found 97525 intra-atom interactions NBONDS: found 97518 intra-atom interactions NBONDS: found 97512 intra-atom interactions NBONDS: found 97505 intra-atom interactions NBONDS: found 97494 intra-atom interactions NBONDS: found 97477 intra-atom interactions NBONDS: found 97463 intra-atom interactions NBONDS: found 97432 intra-atom interactions NBONDS: found 97426 intra-atom interactions NBONDS: found 97440 intra-atom interactions NBONDS: found 97457 intra-atom interactions NBONDS: found 97463 intra-atom interactions NBONDS: found 97488 intra-atom interactions NBONDS: found 97522 intra-atom interactions NBONDS: found 97542 intra-atom interactions NBONDS: found 97551 intra-atom interactions NBONDS: found 97536 intra-atom interactions NBONDS: found 97509 intra-atom interactions NBONDS: found 97488 intra-atom interactions NBONDS: found 97493 intra-atom interactions NBONDS: found 97477 intra-atom interactions NBONDS: found 97453 intra-atom interactions NBONDS: found 97402 intra-atom interactions NBONDS: found 97381 intra-atom interactions NBONDS: found 97379 intra-atom interactions NBONDS: found 97393 intra-atom interactions NBONDS: found 97428 intra-atom interactions NBONDS: found 97464 intra-atom interactions NBONDS: found 97498 intra-atom interactions NBONDS: found 97522 intra-atom interactions NBONDS: found 97525 intra-atom interactions NBONDS: found 97524 intra-atom interactions NBONDS: found 97504 intra-atom interactions NBONDS: found 97492 intra-atom interactions NBONDS: found 97466 intra-atom interactions NBONDS: found 97429 intra-atom interactions NBONDS: found 97394 intra-atom interactions NBONDS: found 97351 intra-atom interactions %atoms " -53 -ARG -HE " and " -53 -ARG -HH11" only 0.10 A apart NBONDS: found 97330 intra-atom interactions NBONDS: found 1 nonbonded violations NBONDS: found 97356 intra-atom interactions NBONDS: found 97396 intra-atom interactions NBONDS: found 97431 intra-atom interactions NBONDS: found 97469 intra-atom interactions NBONDS: found 97501 intra-atom interactions NBONDS: found 97546 intra-atom interactions NBONDS: found 97579 intra-atom interactions NBONDS: found 97575 intra-atom interactions NBONDS: found 97572 intra-atom interactions NBONDS: found 97547 intra-atom interactions NBONDS: found 97513 intra-atom interactions NBONDS: found 97493 intra-atom interactions NBONDS: found 97468 intra-atom interactions NBONDS: found 97418 intra-atom interactions NBONDS: found 97409 intra-atom interactions NBONDS: found 97425 intra-atom interactions NBONDS: found 97422 intra-atom interactions NBONDS: found 97440 intra-atom interactions NBONDS: found 97512 intra-atom interactions NBONDS: found 97602 intra-atom interactions NBONDS: found 97640 intra-atom interactions NBONDS: found 97614 intra-atom interactions NBONDS: found 97514 intra-atom interactions NBONDS: found 97455 intra-atom interactions NBONDS: found 97402 intra-atom interactions NBONDS: found 97396 intra-atom interactions NBONDS: found 97444 intra-atom interactions NBONDS: found 97465 intra-atom interactions NBONDS: found 97435 intra-atom interactions NBONDS: found 97433 intra-atom interactions NBONDS: found 97451 intra-atom interactions NBONDS: found 97485 intra-atom interactions NBONDS: found 97509 intra-atom interactions NBONDS: found 97483 intra-atom interactions NBONDS: found 97474 intra-atom interactions NBONDS: found 97465 intra-atom interactions NBONDS: found 97447 intra-atom interactions NBONDS: found 97455 intra-atom interactions NBONDS: found 97466 intra-atom interactions NBONDS: found 97469 intra-atom interactions NBONDS: found 97496 intra-atom interactions NBONDS: found 97496 intra-atom interactions NBONDS: found 97466 intra-atom interactions NBONDS: found 97456 intra-atom interactions NBONDS: found 97454 intra-atom interactions NBONDS: found 97488 intra-atom interactions NBONDS: found 97521 intra-atom interactions NBONDS: found 97524 intra-atom interactions NBONDS: found 97513 intra-atom interactions NBONDS: found 97526 intra-atom interactions NBONDS: found 97535 intra-atom interactions NBONDS: found 97528 intra-atom interactions NBONDS: found 97521 intra-atom interactions NBONDS: found 97516 intra-atom interactions NBONDS: found 97514 intra-atom interactions NBONDS: found 97512 intra-atom interactions NBONDS: found 97484 intra-atom interactions NBONDS: found 97462 intra-atom interactions NBONDS: found 97468 intra-atom interactions NBONDS: found 97473 intra-atom interactions NBONDS: found 97468 intra-atom interactions NBONDS: found 97464 intra-atom interactions NBONDS: found 97449 intra-atom interactions NBONDS: found 97444 intra-atom interactions NBONDS: found 97444 intra-atom interactions NBONDS: found 97448 intra-atom interactions NBONDS: found 97473 intra-atom interactions NBONDS: found 97482 intra-atom interactions NBONDS: found 97512 intra-atom interactions NBONDS: found 97546 intra-atom interactions NBONDS: found 97569 intra-atom interactions NBONDS: found 97555 intra-atom interactions NBONDS: found 97544 intra-atom interactions NBONDS: found 97538 intra-atom interactions NBONDS: found 97532 intra-atom interactions NBONDS: found 97515 intra-atom interactions NBONDS: found 97473 intra-atom interactions NBONDS: found 97437 intra-atom interactions NBONDS: found 97427 intra-atom interactions NBONDS: found 97447 intra-atom interactions NBONDS: found 97470 intra-atom interactions NBONDS: found 97499 intra-atom interactions NBONDS: found 97544 intra-atom interactions NBONDS: found 97583 intra-atom interactions NBONDS: found 97607 intra-atom interactions NBONDS: found 97606 intra-atom interactions NBONDS: found 97621 intra-atom interactions NBONDS: found 97599 intra-atom interactions NBONDS: found 97566 intra-atom interactions NBONDS: found 97523 intra-atom interactions NBONDS: found 97501 intra-atom interactions NBONDS: found 97470 intra-atom interactions NBONDS: found 97440 intra-atom interactions NBONDS: found 97445 intra-atom interactions NBONDS: found 97456 intra-atom interactions NBONDS: found 97482 intra-atom interactions NBONDS: found 97501 intra-atom interactions NBONDS: found 97503 intra-atom interactions NBONDS: found 97518 intra-atom interactions NBONDS: found 97554 intra-atom interactions NBONDS: found 97556 intra-atom interactions NBONDS: found 97553 intra-atom interactions NBONDS: found 97555 intra-atom interactions NBONDS: found 97524 intra-atom interactions NBONDS: found 97513 intra-atom interactions NBONDS: found 97502 intra-atom interactions NBONDS: found 97492 intra-atom interactions NBONDS: found 97496 intra-atom interactions NBONDS: found 97514 intra-atom interactions NBONDS: found 97546 intra-atom interactions NBONDS: found 97555 intra-atom interactions NBONDS: found 97541 intra-atom interactions NBONDS: found 97528 intra-atom interactions NBONDS: found 97522 intra-atom interactions NBONDS: found 97539 intra-atom interactions NBONDS: found 97517 intra-atom interactions NBONDS: found 97506 intra-atom interactions NBONDS: found 97488 intra-atom interactions NBONDS: found 97476 intra-atom interactions NBONDS: found 97462 intra-atom interactions NBONDS: found 97472 intra-atom interactions NBONDS: found 97503 intra-atom interactions NBONDS: found 97532 intra-atom interactions NBONDS: found 97560 intra-atom interactions NBONDS: found 97576 intra-atom interactions NBONDS: found 97580 intra-atom interactions NBONDS: found 97600 intra-atom interactions NBONDS: found 97592 intra-atom interactions NBONDS: found 97589 intra-atom interactions NBONDS: found 97561 intra-atom interactions NBONDS: found 97577 intra-atom interactions NBONDS: found 97569 intra-atom interactions NBONDS: found 97544 intra-atom interactions NBONDS: found 97505 intra-atom interactions NBONDS: found 97507 intra-atom interactions NBONDS: found 97507 intra-atom interactions NBONDS: found 97513 intra-atom interactions NBONDS: found 97497 intra-atom interactions NBONDS: found 97492 intra-atom interactions NBONDS: found 97498 intra-atom interactions NBONDS: found 97515 intra-atom interactions NBONDS: found 97521 intra-atom interactions NBONDS: found 97566 intra-atom interactions NBONDS: found 97604 intra-atom interactions NBONDS: found 97604 intra-atom interactions NBONDS: found 97603 intra-atom interactions NBONDS: found 97548 intra-atom interactions NBONDS: found 97545 intra-atom interactions NBONDS: found 97525 intra-atom interactions NBONDS: found 97506 intra-atom interactions NBONDS: found 97490 intra-atom interactions NBONDS: found 97470 intra-atom interactions NBONDS: found 97468 intra-atom interactions NBONDS: found 97495 intra-atom interactions NBONDS: found 97501 intra-atom interactions NBONDS: found 97530 intra-atom interactions NBONDS: found 97560 intra-atom interactions NBONDS: found 97585 intra-atom interactions NBONDS: found 97585 intra-atom interactions NBONDS: found 97560 intra-atom interactions NBONDS: found 97547 intra-atom interactions NBONDS: found 97509 intra-atom interactions NBONDS: found 97516 intra-atom interactions NBONDS: found 97516 intra-atom interactions NBONDS: found 97523 intra-atom interactions NBONDS: found 97537 intra-atom interactions NBONDS: found 97533 intra-atom interactions NBONDS: found 97545 intra-atom interactions NBONDS: found 97540 intra-atom interactions NBONDS: found 97524 intra-atom interactions NBONDS: found 97535 intra-atom interactions NBONDS: found 97528 intra-atom interactions NBONDS: found 97512 intra-atom interactions NBONDS: found 97531 intra-atom interactions NBONDS: found 97550 intra-atom interactions NBONDS: found 97559 intra-atom interactions NBONDS: found 97569 intra-atom interactions NBONDS: found 97566 intra-atom interactions NBONDS: found 97569 intra-atom interactions NBONDS: found 97574 intra-atom interactions NBONDS: found 97560 intra-atom interactions NBONDS: found 97518 intra-atom interactions NBONDS: found 97498 intra-atom interactions NBONDS: found 97486 intra-atom interactions NBONDS: found 97476 intra-atom interactions NBONDS: found 97469 intra-atom interactions NBONDS: found 97469 intra-atom interactions NBONDS: found 97474 intra-atom interactions NBONDS: found 97495 intra-atom interactions NBONDS: found 97522 intra-atom interactions NBONDS: found 97546 intra-atom interactions NBONDS: found 97567 intra-atom interactions NBONDS: found 97577 intra-atom interactions NBONDS: found 97587 intra-atom interactions NBONDS: found 97577 intra-atom interactions NBONDS: found 97553 intra-atom interactions NBONDS: found 97542 intra-atom interactions NBONDS: found 97509 intra-atom interactions NBONDS: found 97496 intra-atom interactions NBONDS: found 97425 intra-atom interactions NBONDS: found 97395 intra-atom interactions NBONDS: found 97390 intra-atom interactions NBONDS: found 97397 intra-atom interactions NBONDS: found 97438 intra-atom interactions NBONDS: found 97534 intra-atom interactions NBONDS: found 97547 intra-atom interactions NBONDS: found 97487 intra-atom interactions NBONDS: found 97480 intra-atom interactions NBONDS: found 97484 intra-atom interactions NBONDS: found 97472 intra-atom interactions NBONDS: found 97502 intra-atom interactions NBONDS: found 97531 intra-atom interactions NBONDS: found 97434 intra-atom interactions NBONDS: found 97397 intra-atom interactions NBONDS: found 97395 intra-atom interactions NBONDS: found 97402 intra-atom interactions NBONDS: found 97408 intra-atom interactions NBONDS: found 97447 intra-atom interactions NBONDS: found 97516 intra-atom interactions NBONDS: found 97576 intra-atom interactions NBONDS: found 97532 intra-atom interactions NBONDS: found 97495 intra-atom interactions NBONDS: found 97491 intra-atom interactions NBONDS: found 97496 intra-atom interactions NBONDS: found 97539 intra-atom interactions NBONDS: found 97563 intra-atom interactions NBONDS: found 97495 intra-atom interactions NBONDS: found 97425 intra-atom interactions NBONDS: found 97379 intra-atom interactions NBONDS: found 97370 intra-atom interactions NBONDS: found 97356 intra-atom interactions NBONDS: found 97364 intra-atom interactions NBONDS: found 97395 intra-atom interactions NBONDS: found 97470 intra-atom interactions NBONDS: found 97474 intra-atom interactions NBONDS: found 97461 intra-atom interactions NBONDS: found 97466 intra-atom interactions NBONDS: found 97477 intra-atom interactions NBONDS: found 97507 intra-atom interactions NBONDS: found 97552 intra-atom interactions NBONDS: found 97538 intra-atom interactions NBONDS: found 97462 intra-atom interactions NBONDS: found 97431 intra-atom interactions NBONDS: found 97396 intra-atom interactions NBONDS: found 97383 intra-atom interactions NBONDS: found 97380 intra-atom interactions NBONDS: found 97397 intra-atom interactions NBONDS: found 97447 intra-atom interactions NBONDS: found 97475 intra-atom interactions NBONDS: found 97443 intra-atom interactions NBONDS: found 97427 intra-atom interactions NBONDS: found 97443 intra-atom interactions NBONDS: found 97503 intra-atom interactions NBONDS: found 97563 intra-atom interactions NBONDS: found 97601 intra-atom interactions NBONDS: found 97551 intra-atom interactions NBONDS: found 97496 intra-atom interactions NBONDS: found 97465 intra-atom interactions NBONDS: found 97435 intra-atom interactions NBONDS: found 97421 intra-atom interactions NBONDS: found 97427 intra-atom interactions NBONDS: found 97429 intra-atom interactions NBONDS: found 97464 intra-atom interactions NBONDS: found 97442 intra-atom interactions NBONDS: found 97405 intra-atom interactions NBONDS: found 97367 intra-atom interactions NBONDS: found 97423 intra-atom interactions NBONDS: found 97468 intra-atom interactions NBONDS: found 97471 intra-atom interactions NBONDS: found 97438 intra-atom interactions NBONDS: found 97442 intra-atom interactions NBONDS: found 97449 intra-atom interactions NBONDS: found 97481 intra-atom interactions NBONDS: found 97501 intra-atom interactions NBONDS: found 97542 intra-atom interactions NBONDS: found 97589 intra-atom interactions NBONDS: found 97579 intra-atom interactions NBONDS: found 97530 intra-atom interactions NBONDS: found 97494 intra-atom interactions NBONDS: found 97489 intra-atom interactions NBONDS: found 97485 intra-atom interactions NBONDS: found 97455 intra-atom interactions NBONDS: found 97404 intra-atom interactions NBONDS: found 97376 intra-atom interactions NBONDS: found 97373 intra-atom interactions NBONDS: found 97405 intra-atom interactions NBONDS: found 97438 intra-atom interactions NBONDS: found 97496 intra-atom interactions NBONDS: found 97503 intra-atom interactions NBONDS: found 97498 intra-atom interactions NBONDS: found 97504 intra-atom interactions NBONDS: found 97541 intra-atom interactions NBONDS: found 97565 intra-atom interactions NBONDS: found 97559 intra-atom interactions NBONDS: found 97518 intra-atom interactions NBONDS: found 97479 intra-atom interactions NBONDS: found 97464 intra-atom interactions NBONDS: found 97447 intra-atom interactions NBONDS: found 97425 intra-atom interactions NBONDS: found 97428 intra-atom interactions NBONDS: found 97455 intra-atom interactions NBONDS: found 97467 intra-atom interactions NBONDS: found 97473 intra-atom interactions NBONDS: found 97465 intra-atom interactions -------------------- final step= 500 at 0.25000 ps --------------------- | E(kin)+E(total)=68610.614 E(kin)=22184.015 temperature=8966.670 | | Etotal =46426.599 grad(E)=296.173 E(BOND)=38227.621 E(ANGL)=3356.850 | | E(DIHE)=5.251 E(IMPR)=4752.292 E(VDW )=84.585 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 28.15801 -1.31123 -7.58539 velocity [A/ps] : 0.08255 0.64674 2.35098 ang. mom. [amu A/ps] : -52784.52862 56692.10159 37554.20438 kin. ener. [Kcal/mol] : 6.16434 CNSsolve> CNSsolve> {- some final minimisation -} CNSsolve> minimize powell POWELL> nstep=500 POWELL> drop=40.0 POWELL> nprint=50 POWELL> end POWELL: number of degrees of freedom= 2490 NBONDS: found 97482 intra-atom interactions NBONDS: found 97487 intra-atom interactions NBONDS: found 97504 intra-atom interactions NBONDS: found 97533 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0000 ----------------------- | Etotal =4653.978 grad(E)=83.996 E(BOND)=369.737 E(ANGL)=1457.244 | | E(DIHE)=5.246 E(IMPR)=2755.415 E(VDW )=66.336 | ------------------------------------------------------------------------------- POWELL: Line search terminated POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> print thres=0.02 bonds (atom-i |atom-j ) dist. equil. delta energy const. ( 48 NE | 48 HE ) 1.428 0.980 0.448 201.055 1000.000 ( 53 NE | 53 HE ) 1.107 0.980 0.127 16.150 1000.000 ( 57 NE | 57 HE ) 1.044 0.980 0.064 4.129 1000.000 ( 88 NE | 88 HE ) 1.306 0.980 0.326 106.358 1000.000 ( 90 NE | 90 HE ) 1.182 0.980 0.202 40.916 1000.000 Number of violations greater 0.020: 5 RMS deviation= 0.021 CNSsolve> print thres=5. angles (atom-i |atom-j |atom-k ) angle equil. delta energy const. ( 48 CD | 48 NE | 48 HE ) 100.730 118.099 -17.368 45.945 500.000 ( 48 HE | 48 NE | 48 CZ ) 99.357 119.249 -19.892 60.265 500.000 ( 53 CD | 53 NE | 53 HE ) 84.944 118.099 -33.155 167.428 500.000 ( 53 HE | 53 NE | 53 CZ ) 148.902 119.249 29.653 133.925 500.000 ( 57 CD | 57 NE | 57 HE ) 74.313 118.099 -43.786 292.009 500.000 ( 57 HE | 57 NE | 57 CZ ) 135.843 119.249 16.594 41.939 500.000 ( 88 CD | 88 NE | 88 HE ) 66.930 118.099 -51.168 398.775 500.000 ( 88 HE | 88 NE | 88 CZ ) 138.271 119.249 19.022 55.110 500.000 ( 90 CD | 90 NE | 90 HE ) 85.407 118.099 -32.692 162.778 500.000 Number of violations greater 5.000: 9 RMS deviation= 2.251 CNSsolve> CNSsolve> end if CNSsolve> CNSsolve> fix selection=( none ) end SELRPN: 0 atoms have been selected out of 1677 CNSsolve> CNSsolve> end if CNSsolve> CNSsolve> set echo=false end SELRPN: 0 atoms have been selected out of 1677 SHOW: zero atoms selected NEXTCD: condition evaluated as true SELRPN: 0 atoms have been selected out of 1677 CNSsolve> CNSsolve> if (&set_bfactor=true) then NEXTCD: condition evaluated as false CNSsolve> do (b=&bfactor) ( all ) CNSsolve> else CNSsolve> show ave(b) (known and not(store1)) SELRPN: 847 atoms have been selected out of 1677 SHOW: average of selected elements = 0.000000 CNSsolve> do (b=$result) (store1 and (attr b < 0.01)) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> end if CNSsolve> CNSsolve> if (&set_occupancy=true) then NEXTCD: condition evaluated as false CNSsolve> do (q=&occupancy) ( all ) CNSsolve> end if CNSsolve> CNSsolve> set echo=false end SELRPN: 830 atoms have been selected out of 1677 SHOW: sum over selected elements = 830.000000 NEXTCD: condition evaluated as false CNSsolve> CNSsolve> set remarks=reset end CNSsolve> CNSsolve> buffer message BUFFER> to=remarks BUFFER> dump BUFFER> end CNSsolve> CNSsolve> write coordinates output=&coordinate_outfile end ASSFIL: file 1xxx_9_cns.pdb opened. CNSsolve> CNSsolve>stop HEAP: maximum use = 1117020 current use = 0 bytes HEAP: maximum overhead = 960 current overhead = 64 bytes ============================================================ Maximum dynamic memory allocation: 1117020 bytes Maximum dynamic memory overhead: 960 bytes Program started at: 02:09:35 on 28-Dec-04 Program stopped at: 02:10:15 on 28-Dec-04 CPU time used: 26.1000 seconds ============================================================