============================================================ | | | Crystallography & NMR System (CNS) | | CNSsolve | | | ============================================================ Version: 1.1 Status: Developmental version ============================================================ Written by: A.T.Brunger, P.D.Adams, G.M.Clore, W.L.DeLano, P.Gros, R.W.Grosse-Kunstleve, J.-S.Jiang, J.Kuszewski, M.Nilges, N.S.Pannu, R.J.Read, L.M.Rice, T.Simonson, G.L.Warren. Copyright (c) 1997-1999 Yale University ============================================================ Running on machine: cesg-master.biochem.wisc.edu (Linux,32-bit) Program started by: volkman Program started at: 23:48:18 on 26-Dec-04 ============================================================ FFT3C: Using FFTPACK4.1 CNSsolve>define( DEFINE>{* selection of atoms other than hydrogens for which coordinates DEFINE> will be generated *} DEFINE>{* to generate coordinates for all unknown atoms use: (not(known)) *} DEFINE>{===>} atom_build=(not(known)); DEFINE>{============================= output files ================================} DEFINE> DEFINE>{* input coordinate file *} DEFINE>{===>} coordinate_infile="1xxx_6.pdb"; DEFINE> DEFINE>{* output coordinate file *} DEFINE>{===>} coordinate_outfile="1xxx_6_cns.pdb"; DEFINE>) CNSsolve> CNSsolve> checkversion 1.1 Program version= 1.1 File version= 1.1 CNSsolve> CNSsolve> evaluate ($log_level=verbose) Assuming literal string "VERBOSE" EVALUATE: symbol $LOG_LEVEL set to "VERBOSE" (string) CNSsolve> evaluate ($par_nonbonded="PROLSQ") EVALUATE: symbol $PAR_NONBONDED set to "PROLSQ" (string) CNSsolve> CNSsolve> !@generateProtonsJFD.inp CNSsolve> CNSsolve>{===========================================================================} CNSsolve>{ things below this line do not need to be changed } CNSsolve>{===========================================================================} CNSsolve> CNSsolve>remarks changed Tue Sep 2 09:48:07 CDT 2003 CNSsolve>remarks by jfd to include a fes residue CNSsolve> CNSsolve>!@generate_tmoc.inp CNSsolve> CNSsolve>topology reset end CNSsolve>structure reset end Status of internal molecular topology database: -> NATOM= 0(MAXA= 40000) NBOND= 0(MAXB= 40000) -> NTHETA= 0(MAXT= 80000) NGRP= 0(MAXGRP= 40000) -> NPHI= 0(MAXP= 80000) NIMPHI= 0(MAXIMP= 40000) -> NNB= 0(MAXNB= 40000) CNSsolve> CNSsolve>topology RTFRDR>{===>} @TOPPAR:topallhdg5.3.pro ASSFIL: file /u/volkman/waterrefine/toppar/topallhdg5.3.pro opened. RTFRDR>remark file topallhdg.pro version 5.3 date 23-Sept-02 RTFRDR>remark for file parallhdg.pro version 5.3 date 13-Feb-02 or later RTFRDR>remark Geometric energy function parameters for distance geometry and RTFRDR>remark simulated annealing. RTFRDR>remark Author: Michael Nilges, EMBL Heidelberg; Institut Pasteur, Paris RTFRDR>remark This file contains modifications from M. Williams, UCL London RTFRDR>remark Last modification 16-Sept-02 RTFRDR> RTFRDR>set echo off message off end RTFRDR>end CNSsolve> CNSsolve>! no chain id. CNSsolve>segment name=" " SEGMENT> chain CHAIN> @TOPPAR:topallhdg5.3.pep CHAIN>REMARKS TOPH19.pep -MACRO for protein sequence CHAIN>SET ECHO=FALSE END CHAIN> sequence SEQUENCE> @1xxx.seq SEQUENCE>MET SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =TRP SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =TRP SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =CYS SEQUence-element (terminate with END) = end SEGMNT: 102 residues were inserted into segment " " CHAIN> end SEGMENT>end Status of internal molecular topology database: -> NATOM= 1677(MAXA= 40000) NBOND= 1701(MAXB= 40000) -> NTHETA= 3064(MAXT= 80000) NGRP= 104(MAXGRP= 40000) -> NPHI= 2502(MAXP= 80000) NIMPHI= 926(MAXIMP= 40000) -> NNB= 648(MAXNB= 40000) CNSsolve> CNSsolve>! turn peptide from trans to cis CNSsolve>!patch CISP reference=nil=( resid 80 ) end CNSsolve> CNSsolve>coor @&coordinate_infile COOR>HEADER Structures from CYANA 26-12-2004 COOR>REMARK model 6 COOR>ATOM 9771 N MET A 1 1.325 0.000 0.000 1.00 0.00 %READC-ERR: atom 1 MET HN not found in molecular structure %READC-ERR: atom 1 MET 2HB not found in molecular structure %READC-ERR: atom 1 MET 3HB not found in molecular structure %READC-ERR: atom 1 MET QB not found in molecular structure %READC-ERR: atom 1 MET 2HG not found in molecular structure %READC-ERR: atom 1 MET 3HG not found in molecular structure %READC-ERR: atom 1 MET QG not found in molecular structure %READC-ERR: atom 1 MET QE not found in molecular structure %READC-ERR: atom 1 MET 1HE not found in molecular structure %READC-ERR: atom 1 MET 2HE not found in molecular structure %READC-ERR: atom 1 MET 3HE not found in molecular structure %READC-ERR: atom 2 ALA QB not found in molecular structure %READC-ERR: atom 2 ALA 1HB not found in molecular structure %READC-ERR: atom 2 ALA 2HB not found in molecular structure %READC-ERR: atom 2 ALA 3HB not found in molecular structure %READC-ERR: atom 3 ASP 2HB not found in molecular structure %READC-ERR: atom 3 ASP 3HB not found in molecular structure %READC-ERR: atom 3 ASP QB not found in molecular structure %READC-ERR: atom 4 THR QG2 not found in molecular structure %READC-ERR: atom 4 THR 1HG2 not found in molecular structure %READC-ERR: atom 4 THR 2HG2 not found in molecular structure %READC-ERR: atom 4 THR 3HG2 not found in molecular structure %READC-ERR: atom 5 GLY 1HA not found in molecular structure %READC-ERR: atom 5 GLY 2HA not found in molecular structure %READC-ERR: atom 5 GLY QA not found in molecular structure %READC-ERR: atom 6 GLU 2HB not found in molecular structure %READC-ERR: atom 6 GLU 3HB not found in molecular structure %READC-ERR: atom 6 GLU QB not found in molecular structure %READC-ERR: atom 6 GLU 2HG not found in molecular structure %READC-ERR: atom 6 GLU 3HG not found in molecular structure %READC-ERR: atom 6 GLU QG not found in molecular structure %READC-ERR: atom 7 VAL QG1 not found in molecular structure %READC-ERR: atom 7 VAL QG2 not found in molecular structure %READC-ERR: atom 7 VAL 1HG1 not found in molecular structure %READC-ERR: atom 7 VAL 2HG1 not found in molecular structure %READC-ERR: atom 7 VAL 3HG1 not found in molecular structure %READC-ERR: atom 7 VAL 1HG2 not found in molecular structure %READC-ERR: atom 7 VAL 2HG2 not found in molecular structure %READC-ERR: atom 7 VAL 3HG2 not found in molecular structure %READC-ERR: atom 7 VAL QQG not found in molecular structure %READC-ERR: atom 8 GLN 2HB not found in molecular structure %READC-ERR: atom 8 GLN 3HB not found in molecular structure %READC-ERR: atom 8 GLN QB not found in molecular structure %READC-ERR: atom 8 GLN 2HG not found in molecular structure %READC-ERR: atom 8 GLN 3HG not found in molecular structure %READC-ERR: atom 8 GLN QG not found in molecular structure %READC-ERR: atom 8 GLN 1HE2 not found in molecular structure %READC-ERR: atom 8 GLN 2HE2 not found in molecular structure %READC-ERR: atom 8 GLN QE2 not found in molecular structure %READC-ERR: atom 9 PHE 2HB not found in molecular structure %READC-ERR: atom 9 PHE 3HB not found in molecular structure %READC-ERR: atom 9 PHE QB not found in molecular structure %READC-ERR: atom 9 PHE QD not found in molecular structure %READC-ERR: atom 9 PHE QE not found in molecular structure %READC-ERR: atom 9 PHE QR not found in molecular structure %READC-ERR: atom 10 MET 2HB not found in molecular structure %READC-ERR: atom 10 MET 3HB not found in molecular structure %READC-ERR: atom 10 MET QB not found in molecular structure %READC-ERR: atom 10 MET 2HG not found in molecular structure %READC-ERR: atom 10 MET 3HG not found in molecular structure %READC-ERR: atom 10 MET QG not found in molecular structure %READC-ERR: atom 10 MET QE not found in molecular structure %READC-ERR: atom 10 MET 1HE not found in molecular structure %READC-ERR: atom 10 MET 2HE not found in molecular structure %READC-ERR: atom 10 MET 3HE not found in molecular structure %READC-ERR: atom 11 LYS 2HB not found in molecular structure %READC-ERR: atom 11 LYS 3HB not found in molecular structure %READC-ERR: atom 11 LYS QB not found in molecular structure %READC-ERR: atom 11 LYS 2HG not found in molecular structure %READC-ERR: atom 11 LYS 3HG not found in molecular structure %READC-ERR: atom 11 LYS QG not found in molecular structure %READC-ERR: atom 11 LYS 2HD not found in molecular structure %READC-ERR: atom 11 LYS 3HD not found in molecular structure %READC-ERR: atom 11 LYS QD not found in molecular structure %READC-ERR: atom 11 LYS 2HE not found in molecular structure %READC-ERR: atom 11 LYS 3HE not found in molecular structure %READC-ERR: atom 11 LYS QE not found in molecular structure %READC-ERR: atom 11 LYS 1HZ not found in molecular structure %READC-ERR: atom 11 LYS 2HZ not found in molecular structure %READC-ERR: atom 11 LYS 3HZ not found in molecular structure %READC-ERR: atom 11 LYS QZ not found in molecular structure %READC-ERR: atom 12 PRO 2HB not found in molecular structure %READC-ERR: atom 12 PRO 3HB not found in molecular structure %READC-ERR: atom 12 PRO QB not found in molecular structure %READC-ERR: atom 12 PRO 2HG not found in molecular structure %READC-ERR: atom 12 PRO 3HG not found in molecular structure %READC-ERR: atom 12 PRO QG not found in molecular structure %READC-ERR: atom 12 PRO 2HD not found in molecular structure %READC-ERR: atom 12 PRO 3HD not found in molecular structure %READC-ERR: atom 12 PRO QD not found in molecular structure %READC-ERR: atom 13 PHE 2HB not found in molecular structure %READC-ERR: atom 13 PHE 3HB not found in molecular structure %READC-ERR: atom 13 PHE QB not found in molecular structure %READC-ERR: atom 13 PHE QD not found in molecular structure %READC-ERR: atom 13 PHE QE not found in molecular structure %READC-ERR: atom 13 PHE QR not found in molecular structure %READC-ERR: atom 14 ILE QG2 not found in molecular structure %READC-ERR: atom 14 ILE 1HG2 not found in molecular structure %READC-ERR: atom 14 ILE 2HG2 not found in molecular structure %READC-ERR: atom 14 ILE 3HG2 not found in molecular structure %READC-ERR: atom 14 ILE 2HG1 not found in molecular structure %READC-ERR: atom 14 ILE 3HG1 not found in molecular structure %READC-ERR: atom 14 ILE QG1 not found in molecular structure %READC-ERR: atom 14 ILE QD1 not found in molecular structure %READC-ERR: atom 14 ILE 1HD1 not found in molecular structure %READC-ERR: atom 14 ILE 2HD1 not found in molecular structure %READC-ERR: atom 14 ILE 3HD1 not found in molecular structure %READC-ERR: atom 15 SER 2HB not found in molecular structure %READC-ERR: atom 15 SER 3HB not found in molecular structure %READC-ERR: atom 15 SER QB not found in molecular structure %READC-ERR: atom 16 GLU 2HB not found in molecular structure %READC-ERR: atom 16 GLU 3HB not found in molecular structure %READC-ERR: atom 16 GLU QB not found in molecular structure %READC-ERR: atom 16 GLU 2HG not found in molecular structure %READC-ERR: atom 16 GLU 3HG not found in molecular structure %READC-ERR: atom 16 GLU QG not found in molecular structure %READC-ERR: atom 17 LYS 2HB not found in molecular structure %READC-ERR: atom 17 LYS 3HB not found in molecular structure %READC-ERR: atom 17 LYS QB not found in molecular structure %READC-ERR: atom 17 LYS 2HG not found in molecular structure %READC-ERR: atom 17 LYS 3HG not found in molecular structure %READC-ERR: atom 17 LYS QG not found in molecular structure %READC-ERR: atom 17 LYS 2HD not found in molecular structure %READC-ERR: atom 17 LYS 3HD not found in molecular structure %READC-ERR: atom 17 LYS QD not found in molecular structure %READC-ERR: atom 17 LYS 2HE not found in molecular structure %READC-ERR: atom 17 LYS 3HE not found in molecular structure %READC-ERR: atom 17 LYS QE not found in molecular structure %READC-ERR: atom 17 LYS 1HZ not found in molecular structure %READC-ERR: atom 17 LYS 2HZ not found in molecular structure %READC-ERR: atom 17 LYS 3HZ not found in molecular structure %READC-ERR: atom 17 LYS QZ not found in molecular structure %READC-ERR: atom 18 SER 2HB not found in molecular structure %READC-ERR: atom 18 SER 3HB not found in molecular structure %READC-ERR: atom 18 SER QB not found in molecular structure %READC-ERR: atom 19 SER 2HB not found in molecular structure %READC-ERR: atom 19 SER 3HB not found in molecular structure %READC-ERR: atom 19 SER QB not found in molecular structure %READC-ERR: atom 20 LYS 2HB not found in molecular structure %READC-ERR: atom 20 LYS 3HB not found in molecular structure %READC-ERR: atom 20 LYS QB not found in molecular structure %READC-ERR: atom 20 LYS 2HG not found in molecular structure %READC-ERR: atom 20 LYS 3HG not found in molecular structure %READC-ERR: atom 20 LYS QG not found in molecular structure %READC-ERR: atom 20 LYS 2HD not found in molecular structure %READC-ERR: atom 20 LYS 3HD not found in molecular structure %READC-ERR: atom 20 LYS QD not found in molecular structure %READC-ERR: atom 20 LYS 2HE not found in molecular structure %READC-ERR: atom 20 LYS 3HE not found in molecular structure %READC-ERR: atom 20 LYS QE not found in molecular structure %READC-ERR: atom 20 LYS 1HZ not found in molecular structure %READC-ERR: atom 20 LYS 2HZ not found in molecular structure %READC-ERR: atom 20 LYS 3HZ not found in molecular structure %READC-ERR: atom 20 LYS QZ not found in molecular structure %READC-ERR: atom 21 SER 2HB not found in molecular structure %READC-ERR: atom 21 SER 3HB not found in molecular structure %READC-ERR: atom 21 SER QB not found in molecular structure %READC-ERR: atom 22 LEU 2HB not found in molecular structure %READC-ERR: atom 22 LEU 3HB not found in molecular structure %READC-ERR: atom 22 LEU QB not found in molecular structure %READC-ERR: atom 22 LEU QD1 not found in molecular structure %READC-ERR: atom 22 LEU QD2 not found in molecular structure %READC-ERR: atom 22 LEU 1HD1 not found in molecular structure %READC-ERR: atom 22 LEU 2HD1 not found in molecular structure %READC-ERR: atom 22 LEU 3HD1 not found in molecular structure %READC-ERR: atom 22 LEU 1HD2 not found in molecular structure %READC-ERR: atom 22 LEU 2HD2 not found in molecular structure %READC-ERR: atom 22 LEU 3HD2 not found in molecular structure %READC-ERR: atom 22 LEU QQD not found in molecular structure %READC-ERR: atom 23 GLU 2HB not found in molecular structure %READC-ERR: atom 23 GLU 3HB not found in molecular structure %READC-ERR: atom 23 GLU QB not found in molecular structure %READC-ERR: atom 23 GLU 2HG not found in molecular structure %READC-ERR: atom 23 GLU 3HG not found in molecular structure %READC-ERR: atom 23 GLU QG not found in molecular structure %READC-ERR: atom 24 ILE QG2 not found in molecular structure %READC-ERR: atom 24 ILE 1HG2 not found in molecular structure %READC-ERR: atom 24 ILE 2HG2 not found in molecular structure %READC-ERR: atom 24 ILE 3HG2 not found in molecular structure %READC-ERR: atom 24 ILE 2HG1 not found in molecular structure %READC-ERR: atom 24 ILE 3HG1 not found in molecular structure %READC-ERR: atom 24 ILE QG1 not found in molecular structure %READC-ERR: atom 24 ILE QD1 not found in molecular structure %READC-ERR: atom 24 ILE 1HD1 not found in molecular structure %READC-ERR: atom 24 ILE 2HD1 not found in molecular structure %READC-ERR: atom 24 ILE 3HD1 not found in molecular structure %READC-ERR: atom 25 PRO 2HB not found in molecular structure %READC-ERR: atom 25 PRO 3HB not found in molecular structure %READC-ERR: atom 25 PRO QB not found in molecular structure %READC-ERR: atom 25 PRO 2HG not found in molecular structure %READC-ERR: atom 25 PRO 3HG not found in molecular structure %READC-ERR: atom 25 PRO QG not found in molecular structure %READC-ERR: atom 25 PRO 2HD not found in molecular structure %READC-ERR: atom 25 PRO 3HD not found in molecular structure %READC-ERR: atom 25 PRO QD not found in molecular structure %READC-ERR: atom 26 LEU 2HB not found in molecular structure %READC-ERR: atom 26 LEU 3HB not found in molecular structure %READC-ERR: atom 26 LEU QB not found in molecular structure %READC-ERR: atom 26 LEU QD1 not found in molecular structure %READC-ERR: atom 26 LEU QD2 not found in molecular structure %READC-ERR: atom 26 LEU 1HD1 not found in molecular structure %READC-ERR: atom 26 LEU 2HD1 not found in molecular structure %READC-ERR: atom 26 LEU 3HD1 not found in molecular structure %READC-ERR: atom 26 LEU 1HD2 not found in molecular structure %READC-ERR: atom 26 LEU 2HD2 not found in molecular structure %READC-ERR: atom 26 LEU 3HD2 not found in molecular structure %READC-ERR: atom 26 LEU QQD not found in molecular structure %READC-ERR: atom 27 GLY 1HA not found in molecular structure %READC-ERR: atom 27 GLY 2HA not found in molecular structure %READC-ERR: atom 27 GLY QA not found in molecular structure %READC-ERR: atom 28 PHE 2HB not found in molecular structure %READC-ERR: atom 28 PHE 3HB not found in molecular structure %READC-ERR: atom 28 PHE QB not found in molecular structure %READC-ERR: atom 28 PHE QD not found in molecular structure %READC-ERR: atom 28 PHE QE not found in molecular structure %READC-ERR: atom 28 PHE QR not found in molecular structure %READC-ERR: atom 29 ASN 2HB not found in molecular structure %READC-ERR: atom 29 ASN 3HB not found in molecular structure %READC-ERR: atom 29 ASN QB not found in molecular structure %READC-ERR: atom 29 ASN 1HD2 not found in molecular structure %READC-ERR: atom 29 ASN 2HD2 not found in molecular structure %READC-ERR: atom 29 ASN QD2 not found in molecular structure %READC-ERR: atom 30 GLU 2HB not found in molecular structure %READC-ERR: atom 30 GLU 3HB not found in molecular structure %READC-ERR: atom 30 GLU QB not found in molecular structure %READC-ERR: atom 30 GLU 2HG not found in molecular structure %READC-ERR: atom 30 GLU 3HG not found in molecular structure %READC-ERR: atom 30 GLU QG not found in molecular structure %READC-ERR: atom 31 TYR 2HB not found in molecular structure %READC-ERR: atom 31 TYR 3HB not found in molecular structure %READC-ERR: atom 31 TYR QB not found in molecular structure %READC-ERR: atom 31 TYR QD not found in molecular structure %READC-ERR: atom 31 TYR QE not found in molecular structure %READC-ERR: atom 31 TYR QR not found in molecular structure %READC-ERR: atom 32 PHE 2HB not found in molecular structure %READC-ERR: atom 32 PHE 3HB not found in molecular structure %READC-ERR: atom 32 PHE QB not found in molecular structure %READC-ERR: atom 32 PHE QD not found in molecular structure %READC-ERR: atom 32 PHE QE not found in molecular structure %READC-ERR: atom 32 PHE QR not found in molecular structure %READC-ERR: atom 33 PRO 2HB not found in molecular structure %READC-ERR: atom 33 PRO 3HB not found in molecular structure %READC-ERR: atom 33 PRO QB not found in molecular structure %READC-ERR: atom 33 PRO 2HG not found in molecular structure %READC-ERR: atom 33 PRO 3HG not found in molecular structure %READC-ERR: atom 33 PRO QG not found in molecular structure %READC-ERR: atom 33 PRO 2HD not found in molecular structure %READC-ERR: atom 33 PRO 3HD not found in molecular structure %READC-ERR: atom 33 PRO QD not found in molecular structure %READC-ERR: atom 34 ALA QB not found in molecular structure %READC-ERR: atom 34 ALA 1HB not found in molecular structure %READC-ERR: atom 34 ALA 2HB not found in molecular structure %READC-ERR: atom 34 ALA 3HB not found in molecular structure %READC-ERR: atom 35 PRO 2HB not found in molecular structure %READC-ERR: atom 35 PRO 3HB not found in molecular structure %READC-ERR: atom 35 PRO QB not found in molecular structure %READC-ERR: atom 35 PRO 2HG not found in molecular structure %READC-ERR: atom 35 PRO 3HG not found in molecular structure %READC-ERR: atom 35 PRO QG not found in molecular structure %READC-ERR: atom 35 PRO 2HD not found in molecular structure %READC-ERR: atom 35 PRO 3HD not found in molecular structure %READC-ERR: atom 35 PRO QD not found in molecular structure %READC-ERR: atom 36 PHE 2HB not found in molecular structure %READC-ERR: atom 36 PHE 3HB not found in molecular structure %READC-ERR: atom 36 PHE QB not found in molecular structure %READC-ERR: atom 36 PHE QD not found in molecular structure %READC-ERR: atom 36 PHE QE not found in molecular structure %READC-ERR: atom 36 PHE QR not found in molecular structure %READC-ERR: atom 37 PRO 2HB not found in molecular structure %READC-ERR: atom 37 PRO 3HB not found in molecular structure %READC-ERR: atom 37 PRO QB not found in molecular structure %READC-ERR: atom 37 PRO 2HG not found in molecular structure %READC-ERR: atom 37 PRO 3HG not found in molecular structure %READC-ERR: atom 37 PRO QG not found in molecular structure %READC-ERR: atom 37 PRO 2HD not found in molecular structure %READC-ERR: atom 37 PRO 3HD not found in molecular structure %READC-ERR: atom 37 PRO QD not found in molecular structure %READC-ERR: atom 38 ILE QG2 not found in molecular structure %READC-ERR: atom 38 ILE 1HG2 not found in molecular structure %READC-ERR: atom 38 ILE 2HG2 not found in molecular structure %READC-ERR: atom 38 ILE 3HG2 not found in molecular structure %READC-ERR: atom 38 ILE 2HG1 not found in molecular structure %READC-ERR: atom 38 ILE 3HG1 not found in molecular structure %READC-ERR: atom 38 ILE QG1 not found in molecular structure %READC-ERR: atom 38 ILE QD1 not found in molecular structure %READC-ERR: atom 38 ILE 1HD1 not found in molecular structure %READC-ERR: atom 38 ILE 2HD1 not found in molecular structure %READC-ERR: atom 38 ILE 3HD1 not found in molecular structure %READC-ERR: atom 39 THR QG2 not found in molecular structure %READC-ERR: atom 39 THR 1HG2 not found in molecular structure %READC-ERR: atom 39 THR 2HG2 not found in molecular structure %READC-ERR: atom 39 THR 3HG2 not found in molecular structure %READC-ERR: atom 40 VAL QG1 not found in molecular structure %READC-ERR: atom 40 VAL QG2 not found in molecular structure %READC-ERR: atom 40 VAL 1HG1 not found in molecular structure %READC-ERR: atom 40 VAL 2HG1 not found in molecular structure %READC-ERR: atom 40 VAL 3HG1 not found in molecular structure %READC-ERR: atom 40 VAL 1HG2 not found in molecular structure %READC-ERR: atom 40 VAL 2HG2 not found in molecular structure %READC-ERR: atom 40 VAL 3HG2 not found in molecular structure %READC-ERR: atom 40 VAL QQG not found in molecular structure %READC-ERR: atom 41 ASP 2HB not found in molecular structure %READC-ERR: atom 41 ASP 3HB not found in molecular structure %READC-ERR: atom 41 ASP QB not found in molecular structure %READC-ERR: atom 42 LEU 2HB not found in molecular structure %READC-ERR: atom 42 LEU 3HB not found in molecular structure %READC-ERR: atom 42 LEU QB not found in molecular structure %READC-ERR: atom 42 LEU QD1 not found in molecular structure %READC-ERR: atom 42 LEU QD2 not found in molecular structure %READC-ERR: atom 42 LEU 1HD1 not found in molecular structure %READC-ERR: atom 42 LEU 2HD1 not found in molecular structure %READC-ERR: atom 42 LEU 3HD1 not found in molecular structure %READC-ERR: atom 42 LEU 1HD2 not found in molecular structure %READC-ERR: atom 42 LEU 2HD2 not found in molecular structure %READC-ERR: atom 42 LEU 3HD2 not found in molecular structure %READC-ERR: atom 42 LEU QQD not found in molecular structure %READC-ERR: atom 43 LEU 2HB not found in molecular structure %READC-ERR: atom 43 LEU 3HB not found in molecular structure %READC-ERR: atom 43 LEU QB not found in molecular structure %READC-ERR: atom 43 LEU QD1 not found in molecular structure %READC-ERR: atom 43 LEU QD2 not found in molecular structure %READC-ERR: atom 43 LEU 1HD1 not found in molecular structure %READC-ERR: atom 43 LEU 2HD1 not found in molecular structure %READC-ERR: atom 43 LEU 3HD1 not found in molecular structure %READC-ERR: atom 43 LEU 1HD2 not found in molecular structure %READC-ERR: atom 43 LEU 2HD2 not found in molecular structure %READC-ERR: atom 43 LEU 3HD2 not found in molecular structure %READC-ERR: atom 43 LEU QQD not found in molecular structure %READC-ERR: atom 44 ASP 2HB not found in molecular structure %READC-ERR: atom 44 ASP 3HB not found in molecular structure %READC-ERR: atom 44 ASP QB not found in molecular structure %READC-ERR: atom 45 TYR 2HB not found in molecular structure %READC-ERR: atom 45 TYR 3HB not found in molecular structure %READC-ERR: atom 45 TYR QB not found in molecular structure %READC-ERR: atom 45 TYR QD not found in molecular structure %READC-ERR: atom 45 TYR QE not found in molecular structure %READC-ERR: atom 45 TYR QR not found in molecular structure %READC-ERR: atom 46 SER 2HB not found in molecular structure %READC-ERR: atom 46 SER 3HB not found in molecular structure %READC-ERR: atom 46 SER QB not found in molecular structure %READC-ERR: atom 47 GLY 1HA not found in molecular structure %READC-ERR: atom 47 GLY 2HA not found in molecular structure %READC-ERR: atom 47 GLY QA not found in molecular structure %READC-ERR: atom 48 ARG 2HB not found in molecular structure %READC-ERR: atom 48 ARG 3HB not found in molecular structure %READC-ERR: atom 48 ARG QB not found in molecular structure %READC-ERR: atom 48 ARG 2HG not found in molecular structure %READC-ERR: atom 48 ARG 3HG not found in molecular structure %READC-ERR: atom 48 ARG QG not found in molecular structure %READC-ERR: atom 48 ARG 2HD not found in molecular structure %READC-ERR: atom 48 ARG 3HD not found in molecular structure %READC-ERR: atom 48 ARG QD not found in molecular structure %READC-ERR: atom 48 ARG 1HH1 not found in molecular structure %READC-ERR: atom 48 ARG 2HH1 not found in molecular structure %READC-ERR: atom 48 ARG QH1 not found in molecular structure %READC-ERR: atom 48 ARG 1HH2 not found in molecular structure %READC-ERR: atom 48 ARG 2HH2 not found in molecular structure %READC-ERR: atom 48 ARG QH2 not found in molecular structure %READC-ERR: atom 49 SER 2HB not found in molecular structure %READC-ERR: atom 49 SER 3HB not found in molecular structure %READC-ERR: atom 49 SER QB not found in molecular structure %READC-ERR: atom 50 TRP 2HB not found in molecular structure %READC-ERR: atom 50 TRP 3HB not found in molecular structure %READC-ERR: atom 50 TRP QB not found in molecular structure %READC-ERR: atom 51 THR QG2 not found in molecular structure %READC-ERR: atom 51 THR 1HG2 not found in molecular structure %READC-ERR: atom 51 THR 2HG2 not found in molecular structure %READC-ERR: atom 51 THR 3HG2 not found in molecular structure %READC-ERR: atom 52 VAL QG1 not found in molecular structure %READC-ERR: atom 52 VAL QG2 not found in molecular structure %READC-ERR: atom 52 VAL 1HG1 not found in molecular structure %READC-ERR: atom 52 VAL 2HG1 not found in molecular structure %READC-ERR: atom 52 VAL 3HG1 not found in molecular structure %READC-ERR: atom 52 VAL 1HG2 not found in molecular structure %READC-ERR: atom 52 VAL 2HG2 not found in molecular structure %READC-ERR: atom 52 VAL 3HG2 not found in molecular structure %READC-ERR: atom 52 VAL QQG not found in molecular structure %READC-ERR: atom 53 ARG 2HB not found in molecular structure %READC-ERR: atom 53 ARG 3HB not found in molecular structure %READC-ERR: atom 53 ARG QB not found in molecular structure %READC-ERR: atom 53 ARG 2HG not found in molecular structure %READC-ERR: atom 53 ARG 3HG not found in molecular structure %READC-ERR: atom 53 ARG QG not found in molecular structure %READC-ERR: atom 53 ARG 2HD not found in molecular structure %READC-ERR: atom 53 ARG 3HD not found in molecular structure %READC-ERR: atom 53 ARG QD not found in molecular structure %READC-ERR: atom 53 ARG 1HH1 not found in molecular structure %READC-ERR: atom 53 ARG 2HH1 not found in molecular structure %READC-ERR: atom 53 ARG QH1 not found in molecular structure %READC-ERR: atom 53 ARG 1HH2 not found in molecular structure %READC-ERR: atom 53 ARG 2HH2 not found in molecular structure %READC-ERR: atom 53 ARG QH2 not found in molecular structure %READC-ERR: atom 54 MET 2HB not found in molecular structure %READC-ERR: atom 54 MET 3HB not found in molecular structure %READC-ERR: atom 54 MET QB not found in molecular structure %READC-ERR: atom 54 MET 2HG not found in molecular structure %READC-ERR: atom 54 MET 3HG not found in molecular structure %READC-ERR: atom 54 MET QG not found in molecular structure %READC-ERR: atom 54 MET QE not found in molecular structure %READC-ERR: atom 54 MET 1HE not found in molecular structure %READC-ERR: atom 54 MET 2HE not found in molecular structure %READC-ERR: atom 54 MET 3HE not found in molecular structure %READC-ERR: atom 55 LYS 2HB not found in molecular structure %READC-ERR: atom 55 LYS 3HB not found in molecular structure %READC-ERR: atom 55 LYS QB not found in molecular structure %READC-ERR: atom 55 LYS 2HG not found in molecular structure %READC-ERR: atom 55 LYS 3HG not found in molecular structure %READC-ERR: atom 55 LYS QG not found in molecular structure %READC-ERR: atom 55 LYS 2HD not found in molecular structure %READC-ERR: atom 55 LYS 3HD not found in molecular structure %READC-ERR: atom 55 LYS QD not found in molecular structure %READC-ERR: atom 55 LYS 2HE not found in molecular structure %READC-ERR: atom 55 LYS 3HE not found in molecular structure %READC-ERR: atom 55 LYS QE not found in molecular structure %READC-ERR: atom 55 LYS 1HZ not found in molecular structure %READC-ERR: atom 55 LYS 2HZ not found in molecular structure %READC-ERR: atom 55 LYS 3HZ not found in molecular structure %READC-ERR: atom 55 LYS QZ not found in molecular structure %READC-ERR: atom 56 LYS 2HB not found in molecular structure %READC-ERR: atom 56 LYS 3HB not found in molecular structure %READC-ERR: atom 56 LYS QB not found in molecular structure %READC-ERR: atom 56 LYS 2HG not found in molecular structure %READC-ERR: atom 56 LYS 3HG not found in molecular structure %READC-ERR: atom 56 LYS QG not found in molecular structure %READC-ERR: atom 56 LYS 2HD not found in molecular structure %READC-ERR: atom 56 LYS 3HD not found in molecular structure %READC-ERR: atom 56 LYS QD not found in molecular structure %READC-ERR: atom 56 LYS 2HE not found in molecular structure %READC-ERR: atom 56 LYS 3HE not found in molecular structure %READC-ERR: atom 56 LYS QE not found in molecular structure %READC-ERR: atom 56 LYS 1HZ not found in molecular structure %READC-ERR: atom 56 LYS 2HZ not found in molecular structure %READC-ERR: atom 56 LYS 3HZ not found in molecular structure %READC-ERR: atom 56 LYS QZ not found in molecular structure %READC-ERR: atom 57 ARG 2HB not found in molecular structure %READC-ERR: atom 57 ARG 3HB not found in molecular structure %READC-ERR: atom 57 ARG QB not found in molecular structure %READC-ERR: atom 57 ARG 2HG not found in molecular structure %READC-ERR: atom 57 ARG 3HG not found in molecular structure %READC-ERR: atom 57 ARG QG not found in molecular structure %READC-ERR: atom 57 ARG 2HD not found in molecular structure %READC-ERR: atom 57 ARG 3HD not found in molecular structure %READC-ERR: atom 57 ARG QD not found in molecular structure %READC-ERR: atom 57 ARG 1HH1 not found in molecular structure %READC-ERR: atom 57 ARG 2HH1 not found in molecular structure %READC-ERR: atom 57 ARG QH1 not found in molecular structure %READC-ERR: atom 57 ARG 1HH2 not found in molecular structure %READC-ERR: atom 57 ARG 2HH2 not found in molecular structure %READC-ERR: atom 57 ARG QH2 not found in molecular structure %READC-ERR: atom 58 GLY 1HA not found in molecular structure %READC-ERR: atom 58 GLY 2HA not found in molecular structure %READC-ERR: atom 58 GLY QA not found in molecular structure %READC-ERR: atom 59 GLU 2HB not found in molecular structure %READC-ERR: atom 59 GLU 3HB not found in molecular structure %READC-ERR: atom 59 GLU QB not found in molecular structure %READC-ERR: atom 59 GLU 2HG not found in molecular structure %READC-ERR: atom 59 GLU 3HG not found in molecular structure %READC-ERR: atom 59 GLU QG not found in molecular structure %READC-ERR: atom 60 LYS 2HB not found in molecular structure %READC-ERR: atom 60 LYS 3HB not found in molecular structure %READC-ERR: atom 60 LYS QB not found in molecular structure %READC-ERR: atom 60 LYS 2HG not found in molecular structure %READC-ERR: atom 60 LYS 3HG not found in molecular structure %READC-ERR: atom 60 LYS QG not found in molecular structure %READC-ERR: atom 60 LYS 2HD not found in molecular structure %READC-ERR: atom 60 LYS 3HD not found in molecular structure %READC-ERR: atom 60 LYS QD not found in molecular structure %READC-ERR: atom 60 LYS 2HE not found in molecular structure %READC-ERR: atom 60 LYS 3HE not found in molecular structure %READC-ERR: atom 60 LYS QE not found in molecular structure %READC-ERR: atom 60 LYS 1HZ not found in molecular structure %READC-ERR: atom 60 LYS 2HZ not found in molecular structure %READC-ERR: atom 60 LYS 3HZ not found in molecular structure %READC-ERR: atom 60 LYS QZ not found in molecular structure %READC-ERR: atom 61 VAL QG1 not found in molecular structure %READC-ERR: atom 61 VAL QG2 not found in molecular structure %READC-ERR: atom 61 VAL 1HG1 not found in molecular structure %READC-ERR: atom 61 VAL 2HG1 not found in molecular structure %READC-ERR: atom 61 VAL 3HG1 not found in molecular structure %READC-ERR: atom 61 VAL 1HG2 not found in molecular structure %READC-ERR: atom 61 VAL 2HG2 not found in molecular structure %READC-ERR: atom 61 VAL 3HG2 not found in molecular structure %READC-ERR: atom 61 VAL QQG not found in molecular structure %READC-ERR: atom 62 PHE 2HB not found in molecular structure %READC-ERR: atom 62 PHE 3HB not found in molecular structure %READC-ERR: atom 62 PHE QB not found in molecular structure %READC-ERR: atom 62 PHE QD not found in molecular structure %READC-ERR: atom 62 PHE QE not found in molecular structure %READC-ERR: atom 62 PHE QR not found in molecular structure %READC-ERR: atom 63 LEU 2HB not found in molecular structure %READC-ERR: atom 63 LEU 3HB not found in molecular structure %READC-ERR: atom 63 LEU QB not found in molecular structure %READC-ERR: atom 63 LEU QD1 not found in molecular structure %READC-ERR: atom 63 LEU QD2 not found in molecular structure %READC-ERR: atom 63 LEU 1HD1 not found in molecular structure %READC-ERR: atom 63 LEU 2HD1 not found in molecular structure %READC-ERR: atom 63 LEU 3HD1 not found in molecular structure %READC-ERR: atom 63 LEU 1HD2 not found in molecular structure %READC-ERR: atom 63 LEU 2HD2 not found in molecular structure %READC-ERR: atom 63 LEU 3HD2 not found in molecular structure %READC-ERR: atom 63 LEU QQD not found in molecular structure %READC-ERR: atom 64 THR QG2 not found in molecular structure %READC-ERR: atom 64 THR 1HG2 not found in molecular structure %READC-ERR: atom 64 THR 2HG2 not found in molecular structure %READC-ERR: atom 64 THR 3HG2 not found in molecular structure %READC-ERR: atom 65 VAL QG1 not found in molecular structure %READC-ERR: atom 65 VAL QG2 not found in molecular structure %READC-ERR: atom 65 VAL 1HG1 not found in molecular structure %READC-ERR: atom 65 VAL 2HG1 not found in molecular structure %READC-ERR: atom 65 VAL 3HG1 not found in molecular structure %READC-ERR: atom 65 VAL 1HG2 not found in molecular structure %READC-ERR: atom 65 VAL 2HG2 not found in molecular structure %READC-ERR: atom 65 VAL 3HG2 not found in molecular structure %READC-ERR: atom 65 VAL QQG not found in molecular structure %READC-ERR: atom 66 GLY 1HA not found in molecular structure %READC-ERR: atom 66 GLY 2HA not found in molecular structure %READC-ERR: atom 66 GLY QA not found in molecular structure %READC-ERR: atom 67 TRP 2HB not found in molecular structure %READC-ERR: atom 67 TRP 3HB not found in molecular structure %READC-ERR: atom 67 TRP QB not found in molecular structure %READC-ERR: atom 68 GLU 2HB not found in molecular structure %READC-ERR: atom 68 GLU 3HB not found in molecular structure %READC-ERR: atom 68 GLU QB not found in molecular structure %READC-ERR: atom 68 GLU 2HG not found in molecular structure %READC-ERR: atom 68 GLU 3HG not found in molecular structure %READC-ERR: atom 68 GLU QG not found in molecular structure %READC-ERR: atom 69 ASN 2HB not found in molecular structure %READC-ERR: atom 69 ASN 3HB not found in molecular structure %READC-ERR: atom 69 ASN QB not found in molecular structure %READC-ERR: atom 69 ASN 1HD2 not found in molecular structure %READC-ERR: atom 69 ASN 2HD2 not found in molecular structure %READC-ERR: atom 69 ASN QD2 not found in molecular structure %READC-ERR: atom 70 PHE 2HB not found in molecular structure %READC-ERR: atom 70 PHE 3HB not found in molecular structure %READC-ERR: atom 70 PHE QB not found in molecular structure %READC-ERR: atom 70 PHE QD not found in molecular structure %READC-ERR: atom 70 PHE QE not found in molecular structure %READC-ERR: atom 70 PHE QR not found in molecular structure %READC-ERR: atom 71 VAL QG1 not found in molecular structure %READC-ERR: atom 71 VAL QG2 not found in molecular structure %READC-ERR: atom 71 VAL 1HG1 not found in molecular structure %READC-ERR: atom 71 VAL 2HG1 not found in molecular structure %READC-ERR: atom 71 VAL 3HG1 not found in molecular structure %READC-ERR: atom 71 VAL 1HG2 not found in molecular structure %READC-ERR: atom 71 VAL 2HG2 not found in molecular structure %READC-ERR: atom 71 VAL 3HG2 not found in molecular structure %READC-ERR: atom 71 VAL QQG not found in molecular structure %READC-ERR: atom 72 LYS 2HB not found in molecular structure %READC-ERR: atom 72 LYS 3HB not found in molecular structure %READC-ERR: atom 72 LYS QB not found in molecular structure %READC-ERR: atom 72 LYS 2HG not found in molecular structure %READC-ERR: atom 72 LYS 3HG not found in molecular structure %READC-ERR: atom 72 LYS QG not found in molecular structure %READC-ERR: atom 72 LYS 2HD not found in molecular structure %READC-ERR: atom 72 LYS 3HD not found in molecular structure %READC-ERR: atom 72 LYS QD not found in molecular structure %READC-ERR: atom 72 LYS 2HE not found in molecular structure %READC-ERR: atom 72 LYS 3HE not found in molecular structure %READC-ERR: atom 72 LYS QE not found in molecular structure %READC-ERR: atom 72 LYS 1HZ not found in molecular structure %READC-ERR: atom 72 LYS 2HZ not found in molecular structure %READC-ERR: atom 72 LYS 3HZ not found in molecular structure %READC-ERR: atom 72 LYS QZ not found in molecular structure %READC-ERR: atom 73 ASP 2HB not found in molecular structure %READC-ERR: atom 73 ASP 3HB not found in molecular structure %READC-ERR: atom 73 ASP QB not found in molecular structure %READC-ERR: atom 74 ASN 2HB not found in molecular structure %READC-ERR: atom 74 ASN 3HB not found in molecular structure %READC-ERR: atom 74 ASN QB not found in molecular structure %READC-ERR: atom 74 ASN 1HD2 not found in molecular structure %READC-ERR: atom 74 ASN 2HD2 not found in molecular structure %READC-ERR: atom 74 ASN QD2 not found in molecular structure %READC-ERR: atom 75 ASN 2HB not found in molecular structure %READC-ERR: atom 75 ASN 3HB not found in molecular structure %READC-ERR: atom 75 ASN QB not found in molecular structure %READC-ERR: atom 75 ASN 1HD2 not found in molecular structure %READC-ERR: atom 75 ASN 2HD2 not found in molecular structure %READC-ERR: atom 75 ASN QD2 not found in molecular structure %READC-ERR: atom 76 LEU 2HB not found in molecular structure %READC-ERR: atom 76 LEU 3HB not found in molecular structure %READC-ERR: atom 76 LEU QB not found in molecular structure %READC-ERR: atom 76 LEU QD1 not found in molecular structure %READC-ERR: atom 76 LEU QD2 not found in molecular structure %READC-ERR: atom 76 LEU 1HD1 not found in molecular structure %READC-ERR: atom 76 LEU 2HD1 not found in molecular structure %READC-ERR: atom 76 LEU 3HD1 not found in molecular structure %READC-ERR: atom 76 LEU 1HD2 not found in molecular structure %READC-ERR: atom 76 LEU 2HD2 not found in molecular structure %READC-ERR: atom 76 LEU 3HD2 not found in molecular structure %READC-ERR: atom 76 LEU QQD not found in molecular structure %READC-ERR: atom 77 GLU 2HB not found in molecular structure %READC-ERR: atom 77 GLU 3HB not found in molecular structure %READC-ERR: atom 77 GLU QB not found in molecular structure %READC-ERR: atom 77 GLU 2HG not found in molecular structure %READC-ERR: atom 77 GLU 3HG not found in molecular structure %READC-ERR: atom 77 GLU QG not found in molecular structure %READC-ERR: atom 78 ASP 2HB not found in molecular structure %READC-ERR: atom 78 ASP 3HB not found in molecular structure %READC-ERR: atom 78 ASP QB not found in molecular structure %READC-ERR: atom 79 GLY 1HA not found in molecular structure %READC-ERR: atom 79 GLY 2HA not found in molecular structure %READC-ERR: atom 79 GLY QA not found in molecular structure %READC-ERR: atom 80 LYS 2HB not found in molecular structure %READC-ERR: atom 80 LYS 3HB not found in molecular structure %READC-ERR: atom 80 LYS QB not found in molecular structure %READC-ERR: atom 80 LYS 2HG not found in molecular structure %READC-ERR: atom 80 LYS 3HG not found in molecular structure %READC-ERR: atom 80 LYS QG not found in molecular structure %READC-ERR: atom 80 LYS 2HD not found in molecular structure %READC-ERR: atom 80 LYS 3HD not found in molecular structure %READC-ERR: atom 80 LYS QD not found in molecular structure %READC-ERR: atom 80 LYS 2HE not found in molecular structure %READC-ERR: atom 80 LYS 3HE not found in molecular structure %READC-ERR: atom 80 LYS QE not found in molecular structure %READC-ERR: atom 80 LYS 1HZ not found in molecular structure %READC-ERR: atom 80 LYS 2HZ not found in molecular structure %READC-ERR: atom 80 LYS 3HZ not found in molecular structure %READC-ERR: atom 80 LYS QZ not found in molecular structure %READC-ERR: atom 81 TYR 2HB not found in molecular structure %READC-ERR: atom 81 TYR 3HB not found in molecular structure %READC-ERR: atom 81 TYR QB not found in molecular structure %READC-ERR: atom 81 TYR QD not found in molecular structure %READC-ERR: atom 81 TYR QE not found in molecular structure %READC-ERR: atom 81 TYR QR not found in molecular structure %READC-ERR: atom 82 LEU 2HB not found in molecular structure %READC-ERR: atom 82 LEU 3HB not found in molecular structure %READC-ERR: atom 82 LEU QB not found in molecular structure %READC-ERR: atom 82 LEU QD1 not found in molecular structure %READC-ERR: atom 82 LEU QD2 not found in molecular structure %READC-ERR: atom 82 LEU 1HD1 not found in molecular structure %READC-ERR: atom 82 LEU 2HD1 not found in molecular structure %READC-ERR: atom 82 LEU 3HD1 not found in molecular structure %READC-ERR: atom 82 LEU 1HD2 not found in molecular structure %READC-ERR: atom 82 LEU 2HD2 not found in molecular structure %READC-ERR: atom 82 LEU 3HD2 not found in molecular structure %READC-ERR: atom 82 LEU QQD not found in molecular structure %READC-ERR: atom 83 GLN 2HB not found in molecular structure %READC-ERR: atom 83 GLN 3HB not found in molecular structure %READC-ERR: atom 83 GLN QB not found in molecular structure %READC-ERR: atom 83 GLN 2HG not found in molecular structure %READC-ERR: atom 83 GLN 3HG not found in molecular structure %READC-ERR: atom 83 GLN QG not found in molecular structure %READC-ERR: atom 83 GLN 1HE2 not found in molecular structure %READC-ERR: atom 83 GLN 2HE2 not found in molecular structure %READC-ERR: atom 83 GLN QE2 not found in molecular structure %READC-ERR: atom 84 PHE 2HB not found in molecular structure %READC-ERR: atom 84 PHE 3HB not found in molecular structure %READC-ERR: atom 84 PHE QB not found in molecular structure %READC-ERR: atom 84 PHE QD not found in molecular structure %READC-ERR: atom 84 PHE QE not found in molecular structure %READC-ERR: atom 84 PHE QR not found in molecular structure %READC-ERR: atom 85 ILE QG2 not found in molecular structure %READC-ERR: atom 85 ILE 1HG2 not found in molecular structure %READC-ERR: atom 85 ILE 2HG2 not found in molecular structure %READC-ERR: atom 85 ILE 3HG2 not found in molecular structure %READC-ERR: atom 85 ILE 2HG1 not found in molecular structure %READC-ERR: atom 85 ILE 3HG1 not found in molecular structure %READC-ERR: atom 85 ILE QG1 not found in molecular structure %READC-ERR: atom 85 ILE QD1 not found in molecular structure %READC-ERR: atom 85 ILE 1HD1 not found in molecular structure %READC-ERR: atom 85 ILE 2HD1 not found in molecular structure %READC-ERR: atom 85 ILE 3HD1 not found in molecular structure %READC-ERR: atom 86 TYR 2HB not found in molecular structure %READC-ERR: atom 86 TYR 3HB not found in molecular structure %READC-ERR: atom 86 TYR QB not found in molecular structure %READC-ERR: atom 86 TYR QD not found in molecular structure %READC-ERR: atom 86 TYR QE not found in molecular structure %READC-ERR: atom 86 TYR QR not found in molecular structure %READC-ERR: atom 87 ASP 2HB not found in molecular structure %READC-ERR: atom 87 ASP 3HB not found in molecular structure %READC-ERR: atom 87 ASP QB not found in molecular structure %READC-ERR: atom 88 ARG 2HB not found in molecular structure %READC-ERR: atom 88 ARG 3HB not found in molecular structure %READC-ERR: atom 88 ARG QB not found in molecular structure %READC-ERR: atom 88 ARG 2HG not found in molecular structure %READC-ERR: atom 88 ARG 3HG not found in molecular structure %READC-ERR: atom 88 ARG QG not found in molecular structure %READC-ERR: atom 88 ARG 2HD not found in molecular structure %READC-ERR: atom 88 ARG 3HD not found in molecular structure %READC-ERR: atom 88 ARG QD not found in molecular structure %READC-ERR: atom 88 ARG 1HH1 not found in molecular structure %READC-ERR: atom 88 ARG 2HH1 not found in molecular structure %READC-ERR: atom 88 ARG QH1 not found in molecular structure %READC-ERR: atom 88 ARG 1HH2 not found in molecular structure %READC-ERR: atom 88 ARG 2HH2 not found in molecular structure %READC-ERR: atom 88 ARG QH2 not found in molecular structure %READC-ERR: atom 89 ASP 2HB not found in molecular structure %READC-ERR: atom 89 ASP 3HB not found in molecular structure %READC-ERR: atom 89 ASP QB not found in molecular structure %READC-ERR: atom 90 ARG 2HB not found in molecular structure %READC-ERR: atom 90 ARG 3HB not found in molecular structure %READC-ERR: atom 90 ARG QB not found in molecular structure %READC-ERR: atom 90 ARG 2HG not found in molecular structure %READC-ERR: atom 90 ARG 3HG not found in molecular structure %READC-ERR: atom 90 ARG QG not found in molecular structure %READC-ERR: atom 90 ARG 2HD not found in molecular structure %READC-ERR: atom 90 ARG 3HD not found in molecular structure %READC-ERR: atom 90 ARG QD not found in molecular structure %READC-ERR: atom 90 ARG 1HH1 not found in molecular structure %READC-ERR: atom 90 ARG 2HH1 not found in molecular structure %READC-ERR: atom 90 ARG QH1 not found in molecular structure %READC-ERR: atom 90 ARG 1HH2 not found in molecular structure %READC-ERR: atom 90 ARG 2HH2 not found in molecular structure %READC-ERR: atom 90 ARG QH2 not found in molecular structure %READC-ERR: atom 91 THR QG2 not found in molecular structure %READC-ERR: atom 91 THR 1HG2 not found in molecular structure %READC-ERR: atom 91 THR 2HG2 not found in molecular structure %READC-ERR: atom 91 THR 3HG2 not found in molecular structure %READC-ERR: atom 92 PHE 2HB not found in molecular structure %READC-ERR: atom 92 PHE 3HB not found in molecular structure %READC-ERR: atom 92 PHE QB not found in molecular structure %READC-ERR: atom 92 PHE QD not found in molecular structure %READC-ERR: atom 92 PHE QE not found in molecular structure %READC-ERR: atom 92 PHE QR not found in molecular structure %READC-ERR: atom 93 TYR 2HB not found in molecular structure %READC-ERR: atom 93 TYR 3HB not found in molecular structure %READC-ERR: atom 93 TYR QB not found in molecular structure %READC-ERR: atom 93 TYR QD not found in molecular structure %READC-ERR: atom 93 TYR QE not found in molecular structure %READC-ERR: atom 93 TYR QR not found in molecular structure %READC-ERR: atom 94 VAL QG1 not found in molecular structure %READC-ERR: atom 94 VAL QG2 not found in molecular structure %READC-ERR: atom 94 VAL 1HG1 not found in molecular structure %READC-ERR: atom 94 VAL 2HG1 not found in molecular structure %READC-ERR: atom 94 VAL 3HG1 not found in molecular structure %READC-ERR: atom 94 VAL 1HG2 not found in molecular structure %READC-ERR: atom 94 VAL 2HG2 not found in molecular structure %READC-ERR: atom 94 VAL 3HG2 not found in molecular structure %READC-ERR: atom 94 VAL QQG not found in molecular structure %READC-ERR: atom 95 ILE QG2 not found in molecular structure %READC-ERR: atom 95 ILE 1HG2 not found in molecular structure %READC-ERR: atom 95 ILE 2HG2 not found in molecular structure %READC-ERR: atom 95 ILE 3HG2 not found in molecular structure %READC-ERR: atom 95 ILE 2HG1 not found in molecular structure %READC-ERR: atom 95 ILE 3HG1 not found in molecular structure %READC-ERR: atom 95 ILE QG1 not found in molecular structure %READC-ERR: atom 95 ILE QD1 not found in molecular structure %READC-ERR: atom 95 ILE 1HD1 not found in molecular structure %READC-ERR: atom 95 ILE 2HD1 not found in molecular structure %READC-ERR: atom 95 ILE 3HD1 not found in molecular structure %READC-ERR: atom 96 ILE QG2 not found in molecular structure %READC-ERR: atom 96 ILE 1HG2 not found in molecular structure %READC-ERR: atom 96 ILE 2HG2 not found in molecular structure %READC-ERR: atom 96 ILE 3HG2 not found in molecular structure %READC-ERR: atom 96 ILE 2HG1 not found in molecular structure %READC-ERR: atom 96 ILE 3HG1 not found in molecular structure %READC-ERR: atom 96 ILE QG1 not found in molecular structure %READC-ERR: atom 96 ILE QD1 not found in molecular structure %READC-ERR: atom 96 ILE 1HD1 not found in molecular structure %READC-ERR: atom 96 ILE 2HD1 not found in molecular structure %READC-ERR: atom 96 ILE 3HD1 not found in molecular structure %READC-ERR: atom 97 TYR 2HB not found in molecular structure %READC-ERR: atom 97 TYR 3HB not found in molecular structure %READC-ERR: atom 97 TYR QB not found in molecular structure %READC-ERR: atom 97 TYR QD not found in molecular structure %READC-ERR: atom 97 TYR QE not found in molecular structure %READC-ERR: atom 97 TYR QR not found in molecular structure %READC-ERR: atom 98 GLY 1HA not found in molecular structure %READC-ERR: atom 98 GLY 2HA not found in molecular structure %READC-ERR: atom 98 GLY QA not found in molecular structure %READC-ERR: atom 99 HIS 2HB not found in molecular structure %READC-ERR: atom 99 HIS 3HB not found in molecular structure %READC-ERR: atom 99 HIS QB not found in molecular structure %READC-ERR: atom 100 ASN 2HB not found in molecular structure %READC-ERR: atom 100 ASN 3HB not found in molecular structure %READC-ERR: atom 100 ASN QB not found in molecular structure %READC-ERR: atom 100 ASN 1HD2 not found in molecular structure %READC-ERR: atom 100 ASN 2HD2 not found in molecular structure %READC-ERR: atom 100 ASN QD2 not found in molecular structure %READC-ERR: atom 101 MET 2HB not found in molecular structure %READC-ERR: atom 101 MET 3HB not found in molecular structure %READC-ERR: atom 101 MET QB not found in molecular structure %READC-ERR: atom 101 MET 2HG not found in molecular structure %READC-ERR: atom 101 MET 3HG not found in molecular structure %READC-ERR: atom 101 MET QG not found in molecular structure %READC-ERR: atom 101 MET QE not found in molecular structure %READC-ERR: atom 101 MET 1HE not found in molecular structure %READC-ERR: atom 101 MET 2HE not found in molecular structure %READC-ERR: atom 101 MET 3HE not found in molecular structure %READC-ERR: atom 102 CYS 2HB not found in molecular structure %READC-ERR: atom 102 CYS 3HB not found in molecular structure %READC-ERR: atom 102 CYS QB not found in molecular structure %READC-ERR: atom 102 CYS O not found in molecular structure COOR>END CNSsolve>parameter @TOPPAR:parallhdg5.3.pro end PARRDR>! JFD adds FES complex parameters from Milo Westler's calculations PARRDR>! and standard topology. PARRDR> PARRDR>remark file protein-allhdg-ucl.param version UCL date 07-JUL-01 PARRDR>remark for file protein-allhdg-ucl.top version UCL date 14-MAR-00 PARRDR>remark for file protein-allhdg-dih-ucl.top version UCL date 07-JUL-01 PARRDR>remark Geometric energy function parameters for distance geometry and PARRDR>remark simulated annealing. PARRDR>remark Original author: Michael Nilges, EMBL Heidelberg PARRDR>remark Modifications: Mark A. Williams, UCL London PARRDR> PARRDR>set echo off message off end SHOW: sum over selected elements = 2.000000 CNSsolve> CNSsolve> if ( $log_level = verbose ) then CNSsolve> set message=normal echo=on end CNSsolve> else CNSsolve> set message=off echo=off end CNSsolve> end if CNSsolve> CNSsolve> CNSsolve> identity (store1) (none) SELRPN: 0 atoms have been selected out of 1677 CNSsolve> CNSsolve> identity (store1) (&atom_build) SELRPN: 507 atoms have been selected out of 1677 CNSsolve> identity (store1) (store1 or hydrogen) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> CNSsolve> show sum(1) (store1) SELRPN: 830 atoms have been selected out of 1677 SHOW: sum over selected elements = 830.000000 CNSsolve> evaluate ($tobuild=$result) EVALUATE: symbol $TOBUILD set to 830.000 (real) CNSsolve> CNSsolve> !evaluate ($tobuild=0) CNSsolve> CNSsolve> if ( $tobuild > 0 ) then NEXTCD: condition evaluated as true CNSsolve> CNSsolve> fix selection=(not(store1)) end SELRPN: 847 atoms have been selected out of 1677 CNSsolve> CNSsolve> show sum(1) (store1) SELRPN: 830 atoms have been selected out of 1677 SHOW: sum over selected elements = 830.000000 CNSsolve> evaluate ($moving=$result) EVALUATE: symbol $MOVING set to 830.000 (real) CNSsolve> CNSsolve> if ( $moving > 0 ) then NEXTCD: condition evaluated as true CNSsolve> for $id in id (tag and byres(store1)) loop avco SELRPN: 102 atoms have been selected out of 1677 FOR ID LOOP: symbol ID set to 1.00000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = 1.743111 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 1.74311 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = 0.576222 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.576222 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -2.161111 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.16111 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 20.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1677 SHOW: average of selected elements = 5.219857 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 5.21986 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1677 SHOW: average of selected elements = -1.838571 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.83857 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1677 SHOW: average of selected elements = -1.275714 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -1.27571 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 30.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 8.039000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 8.03900 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -3.911800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.91180 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -3.403700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.40370 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 42.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 11.820909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 11.8209 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -4.678364 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.67836 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -2.238636 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.23864 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 56.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = 12.388200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 12.3882 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -7.972800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.97280 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -2.600400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.60040 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 63.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 13.949455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 13.9495 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -11.012273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -11.0123 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -0.962455 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.962455 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 78.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 16.507300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 16.5073 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -13.757600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -13.7576 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -3.940800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.94080 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 94.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 18.768636 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 18.7686 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -17.004364 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -17.0044 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -1.398727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -1.39873 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 111.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = 23.114444 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 23.1144 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -18.909889 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -18.9099 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -5.976000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -5.97600 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 131.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 22.943100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 22.9431 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -21.754700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -21.7547 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -3.440100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.44010 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 148.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 27.333000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 27.3330 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -21.540545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -21.5405 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -4.642091 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -4.64209 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 170.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = 29.484375 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 29.4844 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = -25.423500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -25.4235 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = -5.078125 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -5.07813 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 184.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = 32.967278 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 32.9673 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -24.070111 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -24.0701 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -1.195778 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -1.19578 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 204.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 36.452818 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 36.4528 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -25.837727 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -25.8377 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -4.992273 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -4.99227 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 223.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = 39.582222 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 39.5822 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -25.219444 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -25.2194 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -1.338111 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -1.33811 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 234.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 41.788273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 41.7883 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -26.834182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -26.8342 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -5.136182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -5.13618 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 249.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 41.050455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 41.0505 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -22.646455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -22.6465 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -6.895727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.89573 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 271.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = 38.635000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 38.6350 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -21.084000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -21.0840 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -2.311222 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.31122 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 282.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = 42.515889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 42.5159 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -21.843556 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -21.8436 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -1.089556 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -1.08956 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 293.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 43.802727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 43.8027 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -17.690091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -17.6901 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -2.688273 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.68827 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 315.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = 41.352889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 41.3529 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -17.485778 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -17.4858 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -5.287333 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -5.28733 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 326.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 36.374273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 36.3743 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -16.570091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -16.5701 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -5.358818 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -5.35882 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 345.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 35.668818 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 35.6688 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -19.484364 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -19.4844 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -8.525364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -8.52536 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 360.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 32.660000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 32.6600 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -15.503182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -15.5032 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -9.768000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.76800 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 379.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = 29.837750 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 29.8378 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = -17.815750 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -17.8158 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = -11.684250 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.6843 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 393.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 29.512273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 29.5123 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -16.342636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -16.3426 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -16.151000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -16.1510 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 412.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = 25.931000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 25.9310 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -16.398000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -16.3980 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -13.579200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -13.5792 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 419.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = 26.728389 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 26.7284 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -14.084722 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.0847 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -8.667444 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -8.66744 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 439.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 28.656700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 28.6567 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -11.691100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -11.6911 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -13.947200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -13.9472 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 453.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 24.238364 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 24.2384 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -11.849182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -11.8492 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -16.029000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -16.0290 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 468.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = 21.547316 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 21.5473 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = -11.762053 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -11.7621 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = -10.448684 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -10.4487 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 489.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = 28.248500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 28.2485 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -9.289111 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.28911 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -11.036500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.0365 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 509.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = 25.548000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 25.5480 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = -4.747625 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.74763 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = -9.799750 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.79975 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 523.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1677 SHOW: average of selected elements = 27.234571 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 27.2346 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1677 SHOW: average of selected elements = -2.464714 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.46471 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1677 SHOW: average of selected elements = -11.607714 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.6077 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 533.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = 29.445125 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 29.4451 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = -2.174625 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.17463 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = -14.582750 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -14.5828 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 547.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = 34.223278 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 34.2233 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -1.795056 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.79506 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -14.925444 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -14.9254 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 567.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = 32.710500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 32.7105 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = -2.390125 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.39013 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = -9.595750 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.59575 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 581.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 35.093455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 35.0935 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 0.267636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.267636 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -7.085909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.08591 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 600.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 34.767455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 34.7675 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -0.983000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.983000 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -3.292909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.29291 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 614.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 32.597800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 32.5978 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -4.558800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.55880 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -2.110000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.11000 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 630.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 30.663600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 30.6636 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -4.257400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.25740 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 1.483400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.48340 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 642.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 31.338182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 31.3382 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -9.215818 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.21582 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 2.637909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 2.63791 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 661.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 28.458727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 28.4587 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -8.659909 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -8.65991 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 5.799182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 5.79918 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 680.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 29.607600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 29.6076 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -12.665100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -12.6651 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 8.588000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 8.58800 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 692.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = 24.818263 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 24.8183 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = -14.586368 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.5864 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = 11.091737 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 11.0917 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 713.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = 30.863000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 30.8630 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -13.926556 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -13.9266 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = 13.493222 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 13.4932 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 724.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = 31.690800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 31.6908 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -10.380800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.3808 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = 13.460600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 13.4606 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 731.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = 35.364000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 35.3640 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = -11.163714 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -11.1637 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = 13.368071 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 13.3681 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 755.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = 34.608778 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 34.6088 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -7.112556 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.11256 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = 8.927889 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 8.92789 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 766.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1677 SHOW: average of selected elements = 35.278500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 35.2785 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1677 SHOW: average of selected elements = -10.352273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.3523 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1677 SHOW: average of selected elements = 6.168636 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 6.16864 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 790.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 37.214273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 37.2143 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -4.921909 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.92191 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 3.091091 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 3.09109 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 804.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 35.640700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 35.6407 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -7.419900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.41990 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -0.429300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.429300 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 820.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = 38.848286 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 38.8483 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = -4.837571 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.83757 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = -3.814643 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.81464 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 844.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 34.629500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 34.6295 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -6.670800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -6.67080 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -7.355500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.35550 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 861.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 39.123000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 39.1230 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -6.504818 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -6.50482 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -9.629545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.62955 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 883.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 36.014636 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 36.0146 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -7.021455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.02145 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -13.531182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -13.5312 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 905.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = 42.048429 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 42.0484 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = -9.481929 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.48193 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = -15.888786 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -15.8888 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 929.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = 38.059400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 38.0594 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -9.875600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.87560 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -18.894200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -18.8942 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 936.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 35.287364 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 35.2874 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -12.479545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -12.4795 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -20.689818 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -20.6898 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 951.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 36.632545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 36.6325 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -14.475273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.4753 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -16.437182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -16.4372 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 973.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 34.692800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 34.6928 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -12.238400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -12.2384 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -12.444300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -12.4443 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 989.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = 37.876889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 37.8769 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -15.327667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -15.3277 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -10.240278 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -10.2403 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1009.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 36.632636 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 36.6326 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -11.988909 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -11.9889 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -5.523091 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -5.52309 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1028.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 40.939818 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 40.9398 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -10.160273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.1603 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -5.136000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -5.13600 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1042.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 42.190000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 42.1900 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -8.865700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -8.86570 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -1.838700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -1.83870 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1058.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = 39.675200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 39.6752 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -10.277600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.2776 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = 1.144200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.14420 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1065.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1677 SHOW: average of selected elements = 36.665409 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 36.6654 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1677 SHOW: average of selected elements = -15.527000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -15.5270 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1677 SHOW: average of selected elements = -0.486318 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.486318 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1089.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 42.223545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 42.2235 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -14.323455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.3235 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 1.412727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.41273 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1104.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 40.531200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 40.5312 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -12.121600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -12.1216 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 4.835800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 4.83580 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1118.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = 34.577556 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 34.5776 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -14.791944 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.7919 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = 3.934833 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 3.93483 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1138.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 37.781900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 37.7819 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -17.411200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -17.4112 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 3.004000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 3.00400 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1154.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 41.486909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 41.4869 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -18.281091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -18.2811 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 5.587182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 5.58718 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1176.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 37.251400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 37.2514 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -16.011700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -16.0117 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 8.805600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 8.80560 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1188.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 34.628000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 34.6280 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -18.626500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -18.6265 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 7.833700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 7.83370 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1202.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 37.973100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 37.9731 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -22.064600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -22.0646 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 6.406600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 6.40660 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1216.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 34.930273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 34.9303 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -21.088818 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -21.0888 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 3.328727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 3.32873 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1235.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 37.947000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 37.9470 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -25.903727 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -25.9037 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 3.294091 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 3.29409 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1250.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 36.151400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 36.1514 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -28.902700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -28.9027 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 0.605100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 0.605100 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1262.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = 32.691000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 32.6910 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -29.010400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -29.0104 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = 2.670200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 2.67020 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1269.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 32.078545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 32.0785 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -26.147455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -26.1475 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 4.997364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 4.99736 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1291.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = 27.306684 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 27.3067 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = -27.104263 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -27.1043 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = 1.563053 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.56305 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1312.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 28.746091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 28.7461 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -20.883000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -20.8830 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 0.215455 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 0.215455 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1331.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 24.239273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 24.2393 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -18.898545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -18.8985 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 1.810727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.81073 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1348.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = 24.382833 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 24.3828 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -13.837722 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -13.8377 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -2.194889 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.19489 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1368.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 21.674727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 21.6747 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -13.525455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -13.5255 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 1.416091 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.41609 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1387.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = 20.140421 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 20.1404 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = -9.465789 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.46579 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = -3.897211 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.89721 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1408.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 18.396900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 18.3969 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -7.781700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.78170 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -0.467200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.467200 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1420.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = 17.235929 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 17.2359 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = -5.174214 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.17421 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = -4.569071 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -4.56907 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1444.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 21.709400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 21.7094 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -3.200000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.20000 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -1.142700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -1.14270 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1456.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = 26.583929 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 26.5839 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = -2.270429 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.27043 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = -3.149714 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.14971 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1480.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 25.162909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 25.1629 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -5.761909 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.76191 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 1.579818 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.57982 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1494.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = 27.073667 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 27.0737 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -9.806611 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.80661 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -1.178278 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -1.17828 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1514.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = 24.310421 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 24.3104 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = -9.904158 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.90416 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = 4.918421 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 4.91842 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1535.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 27.927300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 27.9273 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -15.111300 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -15.1113 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 4.858100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 4.85810 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1551.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 24.900091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 24.9001 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -17.994909 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -17.9949 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 5.976545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 5.97655 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1570.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 28.001909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 28.0019 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -21.066364 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -21.0664 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 7.513909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 7.51391 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1589.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = 23.917105 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 23.9171 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = -24.082368 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -24.0824 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = 6.313053 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 6.31305 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1610.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = 26.640400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 26.6404 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -24.768000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -24.7680 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = 11.800000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 11.8000 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1617.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1677 SHOW: average of selected elements = 29.587800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 29.5878 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1677 SHOW: average of selected elements = -23.201133 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -23.2011 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1677 SHOW: average of selected elements = 14.937133 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 14.9371 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1635.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 33.998100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 33.9981 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -24.428100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -24.4281 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 13.997300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 13.9973 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1649.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 36.431300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 36.4313 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -23.979800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -23.9798 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 16.843300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 16.8433 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1666.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = 38.626875 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 38.6269 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = -20.138500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -20.1385 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = 16.145000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 16.1450 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) CNSsolve> evaluate ($ave_x=$result) CNSsolve> show ave(y) (byres(id $id) and known) CNSsolve> evaluate ($ave_y=$result) CNSsolve> show ave(z) (byres(id $id) and known) CNSsolve> evaluate ($ave_z=$result) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) CNSsolve> do (y=$ave_y) (byres(id $id) and store1) CNSsolve> do (z=$ave_z) (byres(id $id) and store1) CNSsolve> CNSsolve> end loop avco CNSsolve> CNSsolve> do (x=x+random(2.0)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> do (y=y+random(2.0)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> do (z=z+random(2.0)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> CNSsolve> {- start parameter for the side chain building -} CNSsolve> parameter PARRDR> nbonds NBDSET> rcon=20. nbxmod=-2 repel=0.9 wmin=0.1 tolerance=1. NBDSET> rexp=2 irexp=2 inhibit=0.25 NBDSET> end PARRDR> end CNSsolve> CNSsolve> {- Friction coefficient, in 1/ps. -} CNSsolve> do (fbeta=100) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> CNSsolve> evaluate ($bath=300.0) EVALUATE: symbol $BATH set to 300.000 (real) CNSsolve> evaluate ($nstep=500) EVALUATE: symbol $NSTEP set to 500.000 (real) CNSsolve> evaluate ($timestep=0.0005) EVALUATE: symbol $TIMESTEP set to 0.500000E-03 (real) CNSsolve> CNSsolve> do (refy=mass) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> CNSsolve> do (mass=20) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> CNSsolve> igroup interaction SELRPN> (store1) (store1 or known) SELRPN: 830 atoms have been selected out of 1677 SELRPN: 1677 atoms have been selected out of 1677 IGROup> end CNSsolve> CNSsolve> {- turn on initial energy terms -} CNSsolve> flags exclude * include bond angle vdw end CNSsolve> CNSsolve> minimize powell nstep=50 nprint=10 end POWELL: number of degrees of freedom= 2490 NBONDS: generating intra-molecular exclusion list with mode=-2 MAKINB: mode -2 found 830 exclusions and 0 interactions(1-4) %atoms " -9 -PHE -HD2 " and " -9 -PHE -HZ " only 0.10 A apart %atoms " -11 -LYS -HA " and " -11 -LYS -HZ1 " only 0.05 A apart %atoms " -22 -LEU -HD11" and " -22 -LEU -HD22" only 0.06 A apart %atoms " -28 -PHE -HE1 " and " -28 -PHE -HE2 " only 0.09 A apart %atoms " -48 -ARG -HD2 " and " -48 -ARG -HH11" only 0.09 A apart %atoms " -55 -LYS -HD1 " and " -55 -LYS -HE1 " only 0.08 A apart %atoms " -57 -ARG -CG " and " -57 -ARG -HD2 " only 0.10 A apart %atoms " -68 -GLU -HN " and " -68 -GLU -HG2 " only 0.07 A apart %atoms " -72 -LYS -CB " and " -72 -LYS -HG2 " only 0.08 A apart %atoms " -85 -ILE -HG11" and " -85 -ILE -HG23" only 0.07 A apart %atoms " -88 -ARG -HH12" and " -88 -ARG -HH22" only 0.07 A apart %atoms " -93 -TYR -HD2 " and " -93 -TYR -HE1 " only 0.07 A apart %atoms " -94 -VAL -HN " and " -94 -VAL -HG21" only 0.07 A apart NBONDS: found 103002 intra-atom interactions NBONDS: found 13 nonbonded violations %atoms " -85 -ILE -HG11" and " -85 -ILE -HD13" only 0.08 A apart %atoms " -90 -ARG -HG2 " and " -90 -ARG -HD2 " only 0.08 A apart NBONDS: found 101505 intra-atom interactions NBONDS: found 2 nonbonded violations %atoms " -63 -LEU -HN " and " -63 -LEU -CA " only 0.09 A apart NBONDS: found 97473 intra-atom interactions NBONDS: found 1 nonbonded violations NBONDS: found 95241 intra-atom interactions NBONDS: found 95308 intra-atom interactions --------------- cycle= 10 ------ stepsize= 0.0000 ----------------------- | Etotal =420854.468 grad(E)=581.905 E(BOND)=70888.272 E(ANGL)=199203.344 | | E(VDW )=150762.852 | ------------------------------------------------------------------------------- NBONDS: found 95396 intra-atom interactions NBONDS: found 95288 intra-atom interactions NBONDS: found 95177 intra-atom interactions --------------- cycle= 20 ------ stepsize= 0.0000 ----------------------- | Etotal =138137.783 grad(E)=320.506 E(BOND)=22657.210 E(ANGL)=44165.875 | | E(VDW )=71314.699 | ------------------------------------------------------------------------------- NBONDS: found 95158 intra-atom interactions NBONDS: found 95133 intra-atom interactions NBONDS: found 95209 intra-atom interactions --------------- cycle= 30 ------ stepsize= 0.0001 ----------------------- | Etotal =121040.324 grad(E)=303.780 E(BOND)=21281.379 E(ANGL)=34795.077 | | E(VDW )=64963.869 | ------------------------------------------------------------------------------- NBONDS: found 95155 intra-atom interactions --------------- cycle= 40 ------ stepsize= 0.0000 ----------------------- | Etotal =120339.464 grad(E)=301.757 E(BOND)=21134.449 E(ANGL)=34469.051 | | E(VDW )=64735.965 | ------------------------------------------------------------------------------- --------------- cycle= 50 ------ stepsize= -0.0001 ----------------------- | Etotal =120221.060 grad(E)=301.613 E(BOND)=21107.031 E(ANGL)=34452.314 | | E(VDW )=64661.716 | ------------------------------------------------------------------------------- POWELL: STEP number limit. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> CNSsolve> flags exclude vdw include impr end CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=50 Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=567922.166 E(kin)=768.346 temperature=310.562 | | Etotal =567153.820 grad(E)=728.346 E(BOND)=21107.031 E(ANGL)=34452.314 | | E(IMPR)=511594.475 | ------------------------------------------------------------------------------- -------------------- final step= 50 at 0.02500 ps --------------------- | E(kin)+E(total)=370277.260 E(kin)=58818.350 temperature=23774.088 | | Etotal =311458.910 grad(E)=415.617 E(BOND)=35082.497 E(ANGL)=121246.440 | | E(IMPR)=155129.973 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 31.09627 -13.67190 -2.11036 velocity [A/ps] : 0.27196 -2.68243 -0.02113 ang. mom. [amu A/ps] :-278184.74980 88794.75344-186504.10684 kin. ener. [Kcal/mol] : 144.21534 CNSsolve> CNSsolve> flags include vdw end CNSsolve> CNSsolve> minimize powell nstep=50 nprint=10 end POWELL: number of degrees of freedom= 2490 NBONDS: found 94892 intra-atom interactions NBONDS: found 94491 intra-atom interactions NBONDS: found 94767 intra-atom interactions NBONDS: found 94765 intra-atom interactions NBONDS: found 94868 intra-atom interactions --------------- cycle= 10 ------ stepsize= 0.0003 ----------------------- | Etotal =271451.199 grad(E)=414.442 E(BOND)=47554.464 E(ANGL)=70946.634 | | E(IMPR)=110715.304 E(VDW )=42234.797 | ------------------------------------------------------------------------------- NBONDS: found 95049 intra-atom interactions NBONDS: found 95070 intra-atom interactions NBONDS: found 95085 intra-atom interactions --------------- cycle= 20 ------ stepsize= 0.0001 ----------------------- | Etotal =169017.435 grad(E)=264.998 E(BOND)=21451.522 E(ANGL)=28356.897 | | E(IMPR)=76070.193 E(VDW )=43138.823 | ------------------------------------------------------------------------------- NBONDS: found 95118 intra-atom interactions NBONDS: found 95111 intra-atom interactions NBONDS: found 95040 intra-atom interactions --------------- cycle= 30 ------ stepsize= 0.0001 ----------------------- | Etotal =148629.978 grad(E)=265.565 E(BOND)=19939.283 E(ANGL)=23991.781 | | E(IMPR)=61833.038 E(VDW )=42865.876 | ------------------------------------------------------------------------------- NBONDS: found 95066 intra-atom interactions NBONDS: found 95007 intra-atom interactions NBONDS: found 95033 intra-atom interactions --------------- cycle= 40 ------ stepsize= 0.0000 ----------------------- | Etotal =129729.288 grad(E)=256.407 E(BOND)=18570.538 E(ANGL)=17819.671 | | E(IMPR)=51733.344 E(VDW )=41605.735 | ------------------------------------------------------------------------------- NBONDS: found 95012 intra-atom interactions NBONDS: found 95060 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0000 ----------------------- | Etotal =124424.727 grad(E)=254.015 E(BOND)=18391.068 E(ANGL)=15810.019 | | E(IMPR)=49282.524 E(VDW )=40941.116 | ------------------------------------------------------------------------------- POWELL: STEP number limit. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=50 Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=125184.362 E(kin)=759.635 temperature=307.041 | | Etotal =124424.727 grad(E)=254.015 E(BOND)=18391.068 E(ANGL)=15810.019 | | E(IMPR)=49282.524 E(VDW )=40941.116 | ------------------------------------------------------------------------------- NBONDS: found 95091 intra-atom interactions NBONDS: found 95111 intra-atom interactions -------------------- final step= 50 at 0.02500 ps --------------------- | E(kin)+E(total)=123854.032 E(kin)=1781.734 temperature=720.168 | | Etotal =122072.298 grad(E)=259.910 E(BOND)=18746.946 E(ANGL)=16018.384 | | E(IMPR)=46105.371 E(VDW )=41201.597 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 31.09313 -13.66818 -2.10024 velocity [A/ps] : -0.19204 -0.12242 -0.04669 ang. mom. [amu A/ps] : 6172.56779 -8609.79135 -30326.57983 kin. ener. [Kcal/mol] : 1.07214 CNSsolve> CNSsolve> parameter PARRDR> nbonds NBDSET> rcon=2. nbxmod=-3 repel=0.75 NBDSET> end PARRDR> end CNSsolve> CNSsolve> minimize powell nstep=100 nprint=25 end POWELL: number of degrees of freedom= 2490 NBONDS: generating intra-molecular exclusion list with mode=-3 MAKINB: mode -3 found 2719 exclusions and 0 interactions(1-4) NBONDS: found 93222 intra-atom interactions NBONDS: found 93683 intra-atom interactions NBONDS: found 93705 intra-atom interactions NBONDS: found 93646 intra-atom interactions --------------- cycle= 25 ------ stepsize= 0.0000 ----------------------- | Etotal =49758.402 grad(E)=80.421 E(BOND)=2164.998 E(ANGL)=15340.160 | | E(IMPR)=32251.220 E(VDW )=2.023 | ------------------------------------------------------------------------------- --------------- cycle= 50 ------ stepsize= 0.0000 ----------------------- | Etotal =49676.259 grad(E)=79.634 E(BOND)=2244.953 E(ANGL)=15300.557 | | E(IMPR)=32128.583 E(VDW )=2.167 | ------------------------------------------------------------------------------- POWELL: Line search terminated POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=$nstep Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=50420.016 E(kin)=743.757 temperature=300.623 | | Etotal =49676.259 grad(E)=79.634 E(BOND)=2244.953 E(ANGL)=15300.557 | | E(IMPR)=32128.582 E(VDW )=2.167 | ------------------------------------------------------------------------------- NBONDS: found 93688 intra-atom interactions NBONDS: found 93721 intra-atom interactions NBONDS: found 93755 intra-atom interactions NBONDS: found 93730 intra-atom interactions NBONDS: found 93721 intra-atom interactions NBONDS: found 93671 intra-atom interactions NBONDS: found 93722 intra-atom interactions NBONDS: found 93719 intra-atom interactions NBONDS: found 93680 intra-atom interactions NBONDS: found 93652 intra-atom interactions NBONDS: found 93660 intra-atom interactions NBONDS: found 93729 intra-atom interactions NBONDS: found 93772 intra-atom interactions NBONDS: found 93760 intra-atom interactions NBONDS: found 93752 intra-atom interactions NBONDS: found 93675 intra-atom interactions NBONDS: found 93665 intra-atom interactions NBONDS: found 93673 intra-atom interactions NBONDS: found 93703 intra-atom interactions NBONDS: found 93701 intra-atom interactions NBONDS: found 93659 intra-atom interactions NBONDS: found 93649 intra-atom interactions NBONDS: found 93672 intra-atom interactions NBONDS: found 93667 intra-atom interactions NBONDS: found 93687 intra-atom interactions NBONDS: found 93687 intra-atom interactions NBONDS: found 93697 intra-atom interactions NBONDS: found 93717 intra-atom interactions NBONDS: found 93713 intra-atom interactions NBONDS: found 93729 intra-atom interactions NBONDS: found 93710 intra-atom interactions NBONDS: found 93699 intra-atom interactions NBONDS: found 93699 intra-atom interactions NBONDS: found 93723 intra-atom interactions NBONDS: found 93729 intra-atom interactions NBONDS: found 93749 intra-atom interactions NBONDS: found 93727 intra-atom interactions NBONDS: found 93728 intra-atom interactions NBONDS: found 93731 intra-atom interactions NBONDS: found 93718 intra-atom interactions NBONDS: found 93694 intra-atom interactions NBONDS: found 93707 intra-atom interactions NBONDS: found 93720 intra-atom interactions NBONDS: found 93762 intra-atom interactions NBONDS: found 93775 intra-atom interactions NBONDS: found 93754 intra-atom interactions -------------------- final step= 500 at 0.25000 ps --------------------- | E(kin)+E(total)=11409.365 E(kin)=4746.380 temperature=1918.463 | | Etotal =6662.985 grad(E)=126.681 E(BOND)=1485.475 E(ANGL)=1493.223 | | E(IMPR)=3683.215 E(VDW )=1.073 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 31.09108 -13.66990 -2.09733 velocity [A/ps] : -0.32306 -0.00674 0.24452 ang. mom. [amu A/ps] : -14038.81863 -57706.75374 31914.46615 kin. ener. [Kcal/mol] : 3.25737 CNSsolve> CNSsolve> {- turn on all energy terms -} CNSsolve> flags include dihe ? end EFLAGS: the following energy flags are set EFLAGS: BOND ANGL DIHE IMPR VDW CNSsolve> CNSsolve> {- set repel to ~vdw radii -} CNSsolve> parameter PARRDR> nbonds NBDSET> repel=0.89 NBDSET> end PARRDR> end CNSsolve> CNSsolve> minimize powell nstep=500 nprint=50 end POWELL: number of degrees of freedom= 2490 NBONDS: generating intra-molecular exclusion list with mode=-3 MAKINB: mode -3 found 2719 exclusions and 0 interactions(1-4) NBONDS: found 93754 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0000 ----------------------- | Etotal =4953.030 grad(E)=84.078 E(BOND)=313.713 E(ANGL)=1840.445 | | E(DIHE)=83.236 E(IMPR)=2645.545 E(VDW )=70.090 | ------------------------------------------------------------------------------- POWELL: Line search terminated POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> flags exclude * include bond angl impr dihe vdw end CNSsolve> CNSsolve> {- return masses to something sensible -} CNSsolve> do (mass=refy) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=$nstep Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=5678.545 E(kin)=725.515 temperature=293.250 | | Etotal =4953.030 grad(E)=84.078 E(BOND)=313.713 E(ANGL)=1840.445 | | E(DIHE)=83.236 E(IMPR)=2645.545 E(VDW )=70.090 | ------------------------------------------------------------------------------- NBONDS: found 93768 intra-atom interactions NBONDS: found 93770 intra-atom interactions NBONDS: found 93747 intra-atom interactions NBONDS: found 93722 intra-atom interactions NBONDS: found 93719 intra-atom interactions NBONDS: found 93729 intra-atom interactions NBONDS: found 93739 intra-atom interactions NBONDS: found 93722 intra-atom interactions NBONDS: found 93703 intra-atom interactions NBONDS: found 93692 intra-atom interactions NBONDS: found 93662 intra-atom interactions NBONDS: found 93694 intra-atom interactions NBONDS: found 93695 intra-atom interactions NBONDS: found 93688 intra-atom interactions NBONDS: found 93711 intra-atom interactions NBONDS: found 93697 intra-atom interactions NBONDS: found 93672 intra-atom interactions NBONDS: found 93615 intra-atom interactions NBONDS: found 93567 intra-atom interactions NBONDS: found 93530 intra-atom interactions NBONDS: found 93532 intra-atom interactions NBONDS: found 93559 intra-atom interactions NBONDS: found 93602 intra-atom interactions NBONDS: found 93662 intra-atom interactions NBONDS: found 93670 intra-atom interactions NBONDS: found 93708 intra-atom interactions NBONDS: found 93712 intra-atom interactions NBONDS: found 93763 intra-atom interactions NBONDS: found 93750 intra-atom interactions NBONDS: found 93749 intra-atom interactions NBONDS: found 93691 intra-atom interactions NBONDS: found 93652 intra-atom interactions NBONDS: found 93619 intra-atom interactions NBONDS: found 93635 intra-atom interactions NBONDS: found 93657 intra-atom interactions NBONDS: found 93675 intra-atom interactions NBONDS: found 93723 intra-atom interactions NBONDS: found 93737 intra-atom interactions NBONDS: found 93739 intra-atom interactions NBONDS: found 93753 intra-atom interactions NBONDS: found 93741 intra-atom interactions NBONDS: found 93719 intra-atom interactions NBONDS: found 93703 intra-atom interactions NBONDS: found 93652 intra-atom interactions NBONDS: found 93642 intra-atom interactions NBONDS: found 93609 intra-atom interactions NBONDS: found 93618 intra-atom interactions NBONDS: found 93625 intra-atom interactions NBONDS: found 93649 intra-atom interactions NBONDS: found 93652 intra-atom interactions NBONDS: found 93666 intra-atom interactions NBONDS: found 93680 intra-atom interactions NBONDS: found 93647 intra-atom interactions NBONDS: found 93639 intra-atom interactions NBONDS: found 93619 intra-atom interactions NBONDS: found 93604 intra-atom interactions NBONDS: found 93607 intra-atom interactions NBONDS: found 93612 intra-atom interactions NBONDS: found 93651 intra-atom interactions NBONDS: found 93679 intra-atom interactions NBONDS: found 93701 intra-atom interactions NBONDS: found 93724 intra-atom interactions NBONDS: found 93741 intra-atom interactions NBONDS: found 93741 intra-atom interactions NBONDS: found 93708 intra-atom interactions NBONDS: found 93691 intra-atom interactions NBONDS: found 93675 intra-atom interactions NBONDS: found 93650 intra-atom interactions NBONDS: found 93638 intra-atom interactions NBONDS: found 93636 intra-atom interactions NBONDS: found 93666 intra-atom interactions NBONDS: found 93690 intra-atom interactions NBONDS: found 93689 intra-atom interactions NBONDS: found 93704 intra-atom interactions NBONDS: found 93700 intra-atom interactions NBONDS: found 93687 intra-atom interactions NBONDS: found 93648 intra-atom interactions NBONDS: found 93615 intra-atom interactions NBONDS: found 93605 intra-atom interactions NBONDS: found 93588 intra-atom interactions NBONDS: found 93572 intra-atom interactions NBONDS: found 93590 intra-atom interactions NBONDS: found 93596 intra-atom interactions NBONDS: found 93595 intra-atom interactions NBONDS: found 93610 intra-atom interactions NBONDS: found 93639 intra-atom interactions NBONDS: found 93660 intra-atom interactions NBONDS: found 93667 intra-atom interactions NBONDS: found 93669 intra-atom interactions NBONDS: found 93664 intra-atom interactions NBONDS: found 93655 intra-atom interactions NBONDS: found 93673 intra-atom interactions NBONDS: found 93685 intra-atom interactions NBONDS: found 93689 intra-atom interactions NBONDS: found 93667 intra-atom interactions NBONDS: found 93634 intra-atom interactions NBONDS: found 93618 intra-atom interactions NBONDS: found 93596 intra-atom interactions NBONDS: found 93582 intra-atom interactions NBONDS: found 93599 intra-atom interactions NBONDS: found 93595 intra-atom interactions NBONDS: found 93606 intra-atom interactions NBONDS: found 93632 intra-atom interactions NBONDS: found 93646 intra-atom interactions NBONDS: found 93655 intra-atom interactions NBONDS: found 93682 intra-atom interactions NBONDS: found 93722 intra-atom interactions NBONDS: found 93717 intra-atom interactions NBONDS: found 93702 intra-atom interactions NBONDS: found 93677 intra-atom interactions NBONDS: found 93640 intra-atom interactions NBONDS: found 93610 intra-atom interactions NBONDS: found 93597 intra-atom interactions NBONDS: found 93590 intra-atom interactions NBONDS: found 93581 intra-atom interactions NBONDS: found 93579 intra-atom interactions NBONDS: found 93598 intra-atom interactions NBONDS: found 93618 intra-atom interactions NBONDS: found 93628 intra-atom interactions NBONDS: found 93631 intra-atom interactions NBONDS: found 93644 intra-atom interactions NBONDS: found 93687 intra-atom interactions NBONDS: found 93713 intra-atom interactions NBONDS: found 93732 intra-atom interactions NBONDS: found 93720 intra-atom interactions NBONDS: found 93708 intra-atom interactions NBONDS: found 93687 intra-atom interactions NBONDS: found 93660 intra-atom interactions NBONDS: found 93668 intra-atom interactions NBONDS: found 93671 intra-atom interactions NBONDS: found 93671 intra-atom interactions NBONDS: found 93669 intra-atom interactions NBONDS: found 93670 intra-atom interactions NBONDS: found 93659 intra-atom interactions NBONDS: found 93653 intra-atom interactions NBONDS: found 93659 intra-atom interactions NBONDS: found 93669 intra-atom interactions NBONDS: found 93666 intra-atom interactions NBONDS: found 93637 intra-atom interactions NBONDS: found 93606 intra-atom interactions NBONDS: found 93614 intra-atom interactions NBONDS: found 93613 intra-atom interactions NBONDS: found 93640 intra-atom interactions NBONDS: found 93672 intra-atom interactions NBONDS: found 93711 intra-atom interactions NBONDS: found 93739 intra-atom interactions NBONDS: found 93749 intra-atom interactions NBONDS: found 93774 intra-atom interactions NBONDS: found 93781 intra-atom interactions NBONDS: found 93791 intra-atom interactions NBONDS: found 93777 intra-atom interactions NBONDS: found 93751 intra-atom interactions NBONDS: found 93708 intra-atom interactions NBONDS: found 93672 intra-atom interactions NBONDS: found 93641 intra-atom interactions NBONDS: found 93622 intra-atom interactions NBONDS: found 93606 intra-atom interactions NBONDS: found 93633 intra-atom interactions NBONDS: found 93656 intra-atom interactions NBONDS: found 93679 intra-atom interactions NBONDS: found 93685 intra-atom interactions NBONDS: found 93695 intra-atom interactions NBONDS: found 93699 intra-atom interactions NBONDS: found 93713 intra-atom interactions NBONDS: found 93702 intra-atom interactions NBONDS: found 93690 intra-atom interactions NBONDS: found 93664 intra-atom interactions NBONDS: found 93629 intra-atom interactions NBONDS: found 93606 intra-atom interactions NBONDS: found 93594 intra-atom interactions NBONDS: found 93589 intra-atom interactions NBONDS: found 93612 intra-atom interactions NBONDS: found 93634 intra-atom interactions NBONDS: found 93656 intra-atom interactions NBONDS: found 93674 intra-atom interactions NBONDS: found 93683 intra-atom interactions NBONDS: found 93670 intra-atom interactions NBONDS: found 93667 intra-atom interactions NBONDS: found 93635 intra-atom interactions NBONDS: found 93614 intra-atom interactions NBONDS: found 93597 intra-atom interactions NBONDS: found 93570 intra-atom interactions NBONDS: found 93569 intra-atom interactions NBONDS: found 93565 intra-atom interactions NBONDS: found 93569 intra-atom interactions NBONDS: found 93574 intra-atom interactions NBONDS: found 93601 intra-atom interactions NBONDS: found 93628 intra-atom interactions NBONDS: found 93658 intra-atom interactions NBONDS: found 93690 intra-atom interactions NBONDS: found 93710 intra-atom interactions NBONDS: found 93718 intra-atom interactions NBONDS: found 93719 intra-atom interactions NBONDS: found 93708 intra-atom interactions NBONDS: found 93695 intra-atom interactions NBONDS: found 93661 intra-atom interactions NBONDS: found 93612 intra-atom interactions NBONDS: found 93585 intra-atom interactions NBONDS: found 93567 intra-atom interactions NBONDS: found 93558 intra-atom interactions NBONDS: found 93578 intra-atom interactions NBONDS: found 93602 intra-atom interactions NBONDS: found 93649 intra-atom interactions NBONDS: found 93689 intra-atom interactions NBONDS: found 93713 intra-atom interactions NBONDS: found 93734 intra-atom interactions NBONDS: found 93745 intra-atom interactions NBONDS: found 93741 intra-atom interactions NBONDS: found 93692 intra-atom interactions NBONDS: found 93659 intra-atom interactions NBONDS: found 93627 intra-atom interactions NBONDS: found 93606 intra-atom interactions NBONDS: found 93586 intra-atom interactions NBONDS: found 93592 intra-atom interactions NBONDS: found 93612 intra-atom interactions NBONDS: found 93647 intra-atom interactions NBONDS: found 93672 intra-atom interactions NBONDS: found 93697 intra-atom interactions NBONDS: found 93716 intra-atom interactions NBONDS: found 93727 intra-atom interactions NBONDS: found 93733 intra-atom interactions NBONDS: found 93740 intra-atom interactions NBONDS: found 93718 intra-atom interactions NBONDS: found 93704 intra-atom interactions NBONDS: found 93693 intra-atom interactions NBONDS: found 93645 intra-atom interactions NBONDS: found 93612 intra-atom interactions NBONDS: found 93589 intra-atom interactions NBONDS: found 93586 intra-atom interactions NBONDS: found 93603 intra-atom interactions NBONDS: found 93618 intra-atom interactions NBONDS: found 93638 intra-atom interactions NBONDS: found 93622 intra-atom interactions NBONDS: found 93618 intra-atom interactions NBONDS: found 93628 intra-atom interactions NBONDS: found 93673 intra-atom interactions NBONDS: found 93684 intra-atom interactions NBONDS: found 93698 intra-atom interactions NBONDS: found 93707 intra-atom interactions NBONDS: found 93694 intra-atom interactions NBONDS: found 93690 intra-atom interactions NBONDS: found 93671 intra-atom interactions NBONDS: found 93646 intra-atom interactions NBONDS: found 93637 intra-atom interactions NBONDS: found 93618 intra-atom interactions NBONDS: found 93598 intra-atom interactions NBONDS: found 93582 intra-atom interactions NBONDS: found 93567 intra-atom interactions NBONDS: found 93564 intra-atom interactions NBONDS: found 93571 intra-atom interactions NBONDS: found 93600 intra-atom interactions NBONDS: found 93642 intra-atom interactions NBONDS: found 93681 intra-atom interactions NBONDS: found 93711 intra-atom interactions NBONDS: found 93731 intra-atom interactions NBONDS: found 93730 intra-atom interactions NBONDS: found 93726 intra-atom interactions NBONDS: found 93707 intra-atom interactions NBONDS: found 93647 intra-atom interactions NBONDS: found 93628 intra-atom interactions NBONDS: found 93620 intra-atom interactions NBONDS: found 93608 intra-atom interactions NBONDS: found 93579 intra-atom interactions NBONDS: found 93568 intra-atom interactions NBONDS: found 93582 intra-atom interactions NBONDS: found 93614 intra-atom interactions NBONDS: found 93660 intra-atom interactions NBONDS: found 93684 intra-atom interactions NBONDS: found 93714 intra-atom interactions NBONDS: found 93735 intra-atom interactions NBONDS: found 93737 intra-atom interactions NBONDS: found 93722 intra-atom interactions NBONDS: found 93688 intra-atom interactions NBONDS: found 93658 intra-atom interactions NBONDS: found 93634 intra-atom interactions NBONDS: found 93617 intra-atom interactions NBONDS: found 93605 intra-atom interactions NBONDS: found 93590 intra-atom interactions NBONDS: found 93560 intra-atom interactions NBONDS: found 93549 intra-atom interactions NBONDS: found 93551 intra-atom interactions NBONDS: found 93573 intra-atom interactions NBONDS: found 93607 intra-atom interactions NBONDS: found 93647 intra-atom interactions NBONDS: found 93701 intra-atom interactions NBONDS: found 93756 intra-atom interactions NBONDS: found 93785 intra-atom interactions NBONDS: found 93799 intra-atom interactions NBONDS: found 93789 intra-atom interactions NBONDS: found 93780 intra-atom interactions NBONDS: found 93706 intra-atom interactions NBONDS: found 93657 intra-atom interactions NBONDS: found 93636 intra-atom interactions NBONDS: found 93594 intra-atom interactions NBONDS: found 93576 intra-atom interactions NBONDS: found 93566 intra-atom interactions NBONDS: found 93575 intra-atom interactions NBONDS: found 93607 intra-atom interactions NBONDS: found 93657 intra-atom interactions NBONDS: found 93697 intra-atom interactions NBONDS: found 93724 intra-atom interactions NBONDS: found 93741 intra-atom interactions NBONDS: found 93739 intra-atom interactions NBONDS: found 93680 intra-atom interactions NBONDS: found 93649 intra-atom interactions NBONDS: found 93617 intra-atom interactions NBONDS: found 93571 intra-atom interactions NBONDS: found 93553 intra-atom interactions NBONDS: found 93544 intra-atom interactions NBONDS: found 93551 intra-atom interactions NBONDS: found 93574 intra-atom interactions NBONDS: found 93623 intra-atom interactions NBONDS: found 93663 intra-atom interactions NBONDS: found 93695 intra-atom interactions NBONDS: found 93712 intra-atom interactions NBONDS: found 93732 intra-atom interactions NBONDS: found 93727 intra-atom interactions NBONDS: found 93724 intra-atom interactions NBONDS: found 93713 intra-atom interactions NBONDS: found 93689 intra-atom interactions NBONDS: found 93665 intra-atom interactions NBONDS: found 93641 intra-atom interactions NBONDS: found 93618 intra-atom interactions NBONDS: found 93598 intra-atom interactions NBONDS: found 93597 intra-atom interactions NBONDS: found 93608 intra-atom interactions NBONDS: found 93640 intra-atom interactions NBONDS: found 93685 intra-atom interactions NBONDS: found 93721 intra-atom interactions NBONDS: found 93743 intra-atom interactions NBONDS: found 93759 intra-atom interactions NBONDS: found 93767 intra-atom interactions NBONDS: found 93739 intra-atom interactions NBONDS: found 93720 intra-atom interactions NBONDS: found 93696 intra-atom interactions NBONDS: found 93655 intra-atom interactions NBONDS: found 93638 intra-atom interactions NBONDS: found 93615 intra-atom interactions NBONDS: found 93586 intra-atom interactions NBONDS: found 93574 intra-atom interactions NBONDS: found 93571 intra-atom interactions NBONDS: found 93601 intra-atom interactions NBONDS: found 93650 intra-atom interactions NBONDS: found 93672 intra-atom interactions NBONDS: found 93686 intra-atom interactions NBONDS: found 93699 intra-atom interactions NBONDS: found 93703 intra-atom interactions NBONDS: found 93697 intra-atom interactions NBONDS: found 93695 intra-atom interactions NBONDS: found 93685 intra-atom interactions NBONDS: found 93659 intra-atom interactions NBONDS: found 93635 intra-atom interactions NBONDS: found 93609 intra-atom interactions NBONDS: found 93593 intra-atom interactions NBONDS: found 93631 intra-atom interactions NBONDS: found 93676 intra-atom interactions NBONDS: found 93719 intra-atom interactions NBONDS: found 93740 intra-atom interactions NBONDS: found 93747 intra-atom interactions NBONDS: found 93761 intra-atom interactions NBONDS: found 93728 intra-atom interactions NBONDS: found 93702 intra-atom interactions NBONDS: found 93685 intra-atom interactions NBONDS: found 93651 intra-atom interactions NBONDS: found 93618 intra-atom interactions NBONDS: found 93594 intra-atom interactions NBONDS: found 93568 intra-atom interactions NBONDS: found 93570 intra-atom interactions NBONDS: found 93594 intra-atom interactions NBONDS: found 93628 intra-atom interactions NBONDS: found 93671 intra-atom interactions NBONDS: found 93701 intra-atom interactions NBONDS: found 93723 intra-atom interactions NBONDS: found 93744 intra-atom interactions NBONDS: found 93746 intra-atom interactions NBONDS: found 93736 intra-atom interactions NBONDS: found 93719 intra-atom interactions NBONDS: found 93676 intra-atom interactions NBONDS: found 93628 intra-atom interactions NBONDS: found 93591 intra-atom interactions NBONDS: found 93576 intra-atom interactions NBONDS: found 93559 intra-atom interactions NBONDS: found 93591 intra-atom interactions NBONDS: found 93642 intra-atom interactions NBONDS: found 93692 intra-atom interactions NBONDS: found 93728 intra-atom interactions NBONDS: found 93759 intra-atom interactions NBONDS: found 93791 intra-atom interactions NBONDS: found 93795 intra-atom interactions NBONDS: found 93789 intra-atom interactions NBONDS: found 93760 intra-atom interactions NBONDS: found 93733 intra-atom interactions NBONDS: found 93703 intra-atom interactions NBONDS: found 93663 intra-atom interactions NBONDS: found 93642 intra-atom interactions NBONDS: found 93623 intra-atom interactions NBONDS: found 93597 intra-atom interactions NBONDS: found 93604 intra-atom interactions NBONDS: found 93616 intra-atom interactions NBONDS: found 93644 intra-atom interactions NBONDS: found 93677 intra-atom interactions NBONDS: found 93688 intra-atom interactions NBONDS: found 93712 intra-atom interactions NBONDS: found 93728 intra-atom interactions NBONDS: found 93716 intra-atom interactions NBONDS: found 93700 intra-atom interactions NBONDS: found 93676 intra-atom interactions NBONDS: found 93652 intra-atom interactions NBONDS: found 93630 intra-atom interactions NBONDS: found 93605 intra-atom interactions NBONDS: found 93593 intra-atom interactions NBONDS: found 93596 intra-atom interactions NBONDS: found 93604 intra-atom interactions NBONDS: found 93626 intra-atom interactions NBONDS: found 93645 intra-atom interactions NBONDS: found 93682 intra-atom interactions NBONDS: found 93715 intra-atom interactions NBONDS: found 93737 intra-atom interactions NBONDS: found 93751 intra-atom interactions NBONDS: found 93763 intra-atom interactions NBONDS: found 93768 intra-atom interactions NBONDS: found 93747 intra-atom interactions NBONDS: found 93739 intra-atom interactions NBONDS: found 93714 intra-atom interactions NBONDS: found 93677 intra-atom interactions NBONDS: found 93641 intra-atom interactions NBONDS: found 93623 intra-atom interactions NBONDS: found 93616 intra-atom interactions NBONDS: found 93599 intra-atom interactions NBONDS: found 93605 intra-atom interactions NBONDS: found 93620 intra-atom interactions NBONDS: found 93655 intra-atom interactions NBONDS: found 93699 intra-atom interactions NBONDS: found 93729 intra-atom interactions NBONDS: found 93772 intra-atom interactions NBONDS: found 93794 intra-atom interactions NBONDS: found 93794 intra-atom interactions NBONDS: found 93763 intra-atom interactions -------------------- final step= 500 at 0.25000 ps --------------------- | E(kin)+E(total)=33944.226 E(kin)=20167.019 temperature=8151.410 | | Etotal =13777.207 grad(E)=168.279 E(BOND)=6422.642 E(ANGL)=3232.393 | | E(DIHE)=12.942 E(IMPR)=4018.320 E(VDW )=90.910 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 31.28793 -13.86984 -1.54250 velocity [A/ps] : -1.19362 0.48498 3.09401 ang. mom. [amu A/ps] : 8254.68361 -11437.54522 -4588.19453 kin. ener. [Kcal/mol] : 11.63313 CNSsolve> CNSsolve> {- some final minimisation -} CNSsolve> minimize powell POWELL> nstep=500 POWELL> drop=40.0 POWELL> nprint=50 POWELL> end POWELL: number of degrees of freedom= 2490 NBONDS: found 93733 intra-atom interactions NBONDS: found 93705 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0000 ----------------------- | Etotal =6196.468 grad(E)=242.327 E(BOND)=100.653 E(ANGL)=1684.231 | | E(DIHE)=12.938 E(IMPR)=4340.181 E(VDW )=58.466 | ------------------------------------------------------------------------------- POWELL: Line search terminated POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> print thres=0.02 bonds (atom-i |atom-j ) dist. equil. delta energy const. ( 48 NE | 48 HE ) 1.225 0.980 0.245 59.838 1000.000 ( 53 NE | 53 HE ) 1.031 0.980 0.051 2.642 1000.000 ( 57 NE | 57 HE ) 1.099 0.980 0.119 14.172 1000.000 ( 88 NE | 88 HE ) 1.103 0.980 0.123 15.200 1000.000 ( 90 NE | 90 HE ) 1.066 0.980 0.086 7.437 1000.000 Number of violations greater 0.020: 5 RMS deviation= 0.011 CNSsolve> print thres=5. angles (atom-i |atom-j |atom-k ) angle equil. delta energy const. ( 48 CD | 48 NE | 48 HE ) 79.401 118.099 -38.697 228.081 500.000 ( 48 HE | 48 NE | 48 CZ ) 108.655 119.249 -10.594 17.094 500.000 ( 53 CD | 53 NE | 53 HE ) 73.321 118.099 -44.777 305.380 500.000 ( 53 HE | 53 NE | 53 CZ ) 160.225 119.249 40.976 255.732 500.000 ( 57 CD | 57 NE | 57 HE ) 82.001 118.099 -36.098 198.466 500.000 ( 57 HE | 57 NE | 57 CZ ) 125.342 119.249 6.093 5.655 500.000 ( 88 CD | 88 NE | 88 HE ) 92.286 118.099 -25.813 101.485 500.000 ( 88 HE | 88 NE | 88 CZ ) 142.399 119.249 23.150 81.623 500.000 ( 90 CD | 90 NE | 90 HE ) 68.858 118.099 -49.240 369.287 500.000 ( 90 HE | 90 NE | 90 CZ ) 131.426 119.249 12.177 22.586 500.000 Number of violations greater 5.000: 10 RMS deviation= 2.419 CNSsolve> CNSsolve> end if CNSsolve> CNSsolve> fix selection=( none ) end SELRPN: 0 atoms have been selected out of 1677 CNSsolve> CNSsolve> end if CNSsolve> CNSsolve> set echo=false end SELRPN: 0 atoms have been selected out of 1677 SHOW: zero atoms selected NEXTCD: condition evaluated as true SELRPN: 0 atoms have been selected out of 1677 CNSsolve> CNSsolve> if (&set_bfactor=true) then NEXTCD: condition evaluated as false CNSsolve> do (b=&bfactor) ( all ) CNSsolve> else CNSsolve> show ave(b) (known and not(store1)) SELRPN: 847 atoms have been selected out of 1677 SHOW: average of selected elements = 0.000000 CNSsolve> do (b=$result) (store1 and (attr b < 0.01)) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> end if CNSsolve> CNSsolve> if (&set_occupancy=true) then NEXTCD: condition evaluated as false CNSsolve> do (q=&occupancy) ( all ) CNSsolve> end if CNSsolve> CNSsolve> set echo=false end SELRPN: 830 atoms have been selected out of 1677 SHOW: sum over selected elements = 830.000000 NEXTCD: condition evaluated as false CNSsolve> CNSsolve> set remarks=reset end CNSsolve> CNSsolve> buffer message BUFFER> to=remarks BUFFER> dump BUFFER> end CNSsolve> CNSsolve> write coordinates output=&coordinate_outfile end ASSFIL: file 1xxx_6_cns.pdb opened. CNSsolve> CNSsolve>stop HEAP: maximum use = 1096884 current use = 0 bytes HEAP: maximum overhead = 936 current overhead = 64 bytes ============================================================ Maximum dynamic memory allocation: 1096884 bytes Maximum dynamic memory overhead: 936 bytes Program started at: 23:48:18 on 26-Dec-04 Program stopped at: 23:48:43 on 26-Dec-04 CPU time used: 24.8800 seconds ============================================================