============================================================ | | | Crystallography & NMR System (CNS) | | CNSsolve | | | ============================================================ Version: 1.1 Status: Developmental version ============================================================ Written by: A.T.Brunger, P.D.Adams, G.M.Clore, W.L.DeLano, P.Gros, R.W.Grosse-Kunstleve, J.-S.Jiang, J.Kuszewski, M.Nilges, N.S.Pannu, R.J.Read, L.M.Rice, T.Simonson, G.L.Warren. Copyright (c) 1997-1999 Yale University ============================================================ Running on machine: cesg-master.biochem.wisc.edu (Linux,32-bit) Program started by: volkman Program started at: 23:47:55 on 26-Dec-04 ============================================================ FFT3C: Using FFTPACK4.1 CNSsolve>define( DEFINE>{* selection of atoms other than hydrogens for which coordinates DEFINE> will be generated *} DEFINE>{* to generate coordinates for all unknown atoms use: (not(known)) *} DEFINE>{===>} atom_build=(not(known)); DEFINE>{============================= output files ================================} DEFINE> DEFINE>{* input coordinate file *} DEFINE>{===>} coordinate_infile="1xxx_5.pdb"; DEFINE> DEFINE>{* output coordinate file *} DEFINE>{===>} coordinate_outfile="1xxx_5_cns.pdb"; DEFINE>) CNSsolve> CNSsolve> checkversion 1.1 Program version= 1.1 File version= 1.1 CNSsolve> CNSsolve> evaluate ($log_level=verbose) Assuming literal string "VERBOSE" EVALUATE: symbol $LOG_LEVEL set to "VERBOSE" (string) CNSsolve> evaluate ($par_nonbonded="PROLSQ") EVALUATE: symbol $PAR_NONBONDED set to "PROLSQ" (string) CNSsolve> CNSsolve> !@generateProtonsJFD.inp CNSsolve> CNSsolve>{===========================================================================} CNSsolve>{ things below this line do not need to be changed } CNSsolve>{===========================================================================} CNSsolve> CNSsolve>remarks changed Tue Sep 2 09:48:07 CDT 2003 CNSsolve>remarks by jfd to include a fes residue CNSsolve> CNSsolve>!@generate_tmoc.inp CNSsolve> CNSsolve>topology reset end CNSsolve>structure reset end Status of internal molecular topology database: -> NATOM= 0(MAXA= 40000) NBOND= 0(MAXB= 40000) -> NTHETA= 0(MAXT= 80000) NGRP= 0(MAXGRP= 40000) -> NPHI= 0(MAXP= 80000) NIMPHI= 0(MAXIMP= 40000) -> NNB= 0(MAXNB= 40000) CNSsolve> CNSsolve>topology RTFRDR>{===>} @TOPPAR:topallhdg5.3.pro ASSFIL: file /u/volkman/waterrefine/toppar/topallhdg5.3.pro opened. RTFRDR>remark file topallhdg.pro version 5.3 date 23-Sept-02 RTFRDR>remark for file parallhdg.pro version 5.3 date 13-Feb-02 or later RTFRDR>remark Geometric energy function parameters for distance geometry and RTFRDR>remark simulated annealing. RTFRDR>remark Author: Michael Nilges, EMBL Heidelberg; Institut Pasteur, Paris RTFRDR>remark This file contains modifications from M. Williams, UCL London RTFRDR>remark Last modification 16-Sept-02 RTFRDR> RTFRDR>set echo off message off end RTFRDR>end CNSsolve> CNSsolve>! no chain id. CNSsolve>segment name=" " SEGMENT> chain CHAIN> @TOPPAR:topallhdg5.3.pep CHAIN>REMARKS TOPH19.pep -MACRO for protein sequence CHAIN>SET ECHO=FALSE END CHAIN> sequence SEQUENCE> @1xxx.seq SEQUENCE>MET SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =TRP SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =TRP SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =CYS SEQUence-element (terminate with END) = end SEGMNT: 102 residues were inserted into segment " " CHAIN> end SEGMENT>end Status of internal molecular topology database: -> NATOM= 1677(MAXA= 40000) NBOND= 1701(MAXB= 40000) -> NTHETA= 3064(MAXT= 80000) NGRP= 104(MAXGRP= 40000) -> NPHI= 2502(MAXP= 80000) NIMPHI= 926(MAXIMP= 40000) -> NNB= 648(MAXNB= 40000) CNSsolve> CNSsolve>! turn peptide from trans to cis CNSsolve>!patch CISP reference=nil=( resid 80 ) end CNSsolve> CNSsolve>coor @&coordinate_infile COOR>HEADER Structures from CYANA 26-12-2004 COOR>REMARK model 5 COOR>ATOM 7817 N MET A 1 1.325 0.000 0.000 1.00 0.00 %READC-ERR: atom 1 MET HN not found in molecular structure %READC-ERR: atom 1 MET 2HB not found in molecular structure %READC-ERR: atom 1 MET 3HB not found in molecular structure %READC-ERR: atom 1 MET QB not found in molecular structure %READC-ERR: atom 1 MET 2HG not found in molecular structure %READC-ERR: atom 1 MET 3HG not found in molecular structure %READC-ERR: atom 1 MET QG not found in molecular structure %READC-ERR: atom 1 MET QE not found in molecular structure %READC-ERR: atom 1 MET 1HE not found in molecular structure %READC-ERR: atom 1 MET 2HE not found in molecular structure %READC-ERR: atom 1 MET 3HE not found in molecular structure %READC-ERR: atom 2 ALA QB not found in molecular structure %READC-ERR: atom 2 ALA 1HB not found in molecular structure %READC-ERR: atom 2 ALA 2HB not found in molecular structure %READC-ERR: atom 2 ALA 3HB not found in molecular structure %READC-ERR: atom 3 ASP 2HB not found in molecular structure %READC-ERR: atom 3 ASP 3HB not found in molecular structure %READC-ERR: atom 3 ASP QB not found in molecular structure %READC-ERR: atom 4 THR QG2 not found in molecular structure %READC-ERR: atom 4 THR 1HG2 not found in molecular structure %READC-ERR: atom 4 THR 2HG2 not found in molecular structure %READC-ERR: atom 4 THR 3HG2 not found in molecular structure %READC-ERR: atom 5 GLY 1HA not found in molecular structure %READC-ERR: atom 5 GLY 2HA not found in molecular structure %READC-ERR: atom 5 GLY QA not found in molecular structure %READC-ERR: atom 6 GLU 2HB not found in molecular structure %READC-ERR: atom 6 GLU 3HB not found in molecular structure %READC-ERR: atom 6 GLU QB not found in molecular structure %READC-ERR: atom 6 GLU 2HG not found in molecular structure %READC-ERR: atom 6 GLU 3HG not found in molecular structure %READC-ERR: atom 6 GLU QG not found in molecular structure %READC-ERR: atom 7 VAL QG1 not found in molecular structure %READC-ERR: atom 7 VAL QG2 not found in molecular structure %READC-ERR: atom 7 VAL 1HG1 not found in molecular structure %READC-ERR: atom 7 VAL 2HG1 not found in molecular structure %READC-ERR: atom 7 VAL 3HG1 not found in molecular structure %READC-ERR: atom 7 VAL 1HG2 not found in molecular structure %READC-ERR: atom 7 VAL 2HG2 not found in molecular structure %READC-ERR: atom 7 VAL 3HG2 not found in molecular structure %READC-ERR: atom 7 VAL QQG not found in molecular structure %READC-ERR: atom 8 GLN 2HB not found in molecular structure %READC-ERR: atom 8 GLN 3HB not found in molecular structure %READC-ERR: atom 8 GLN QB not found in molecular structure %READC-ERR: atom 8 GLN 2HG not found in molecular structure %READC-ERR: atom 8 GLN 3HG not found in molecular structure %READC-ERR: atom 8 GLN QG not found in molecular structure %READC-ERR: atom 8 GLN 1HE2 not found in molecular structure %READC-ERR: atom 8 GLN 2HE2 not found in molecular structure %READC-ERR: atom 8 GLN QE2 not found in molecular structure %READC-ERR: atom 9 PHE 2HB not found in molecular structure %READC-ERR: atom 9 PHE 3HB not found in molecular structure %READC-ERR: atom 9 PHE QB not found in molecular structure %READC-ERR: atom 9 PHE QD not found in molecular structure %READC-ERR: atom 9 PHE QE not found in molecular structure %READC-ERR: atom 9 PHE QR not found in molecular structure %READC-ERR: atom 10 MET 2HB not found in molecular structure %READC-ERR: atom 10 MET 3HB not found in molecular structure %READC-ERR: atom 10 MET QB not found in molecular structure %READC-ERR: atom 10 MET 2HG not found in molecular structure %READC-ERR: atom 10 MET 3HG not found in molecular structure %READC-ERR: atom 10 MET QG not found in molecular structure %READC-ERR: atom 10 MET QE not found in molecular structure %READC-ERR: atom 10 MET 1HE not found in molecular structure %READC-ERR: atom 10 MET 2HE not found in molecular structure %READC-ERR: atom 10 MET 3HE not found in molecular structure %READC-ERR: atom 11 LYS 2HB not found in molecular structure %READC-ERR: atom 11 LYS 3HB not found in molecular structure %READC-ERR: atom 11 LYS QB not found in molecular structure %READC-ERR: atom 11 LYS 2HG not found in molecular structure %READC-ERR: atom 11 LYS 3HG not found in molecular structure %READC-ERR: atom 11 LYS QG not found in molecular structure %READC-ERR: atom 11 LYS 2HD not found in molecular structure %READC-ERR: atom 11 LYS 3HD not found in molecular structure %READC-ERR: atom 11 LYS QD not found in molecular structure %READC-ERR: atom 11 LYS 2HE not found in molecular structure %READC-ERR: atom 11 LYS 3HE not found in molecular structure %READC-ERR: atom 11 LYS QE not found in molecular structure %READC-ERR: atom 11 LYS 1HZ not found in molecular structure %READC-ERR: atom 11 LYS 2HZ not found in molecular structure %READC-ERR: atom 11 LYS 3HZ not found in molecular structure %READC-ERR: atom 11 LYS QZ not found in molecular structure %READC-ERR: atom 12 PRO 2HB not found in molecular structure %READC-ERR: atom 12 PRO 3HB not found in molecular structure %READC-ERR: atom 12 PRO QB not found in molecular structure %READC-ERR: atom 12 PRO 2HG not found in molecular structure %READC-ERR: atom 12 PRO 3HG not found in molecular structure %READC-ERR: atom 12 PRO QG not found in molecular structure %READC-ERR: atom 12 PRO 2HD not found in molecular structure %READC-ERR: atom 12 PRO 3HD not found in molecular structure %READC-ERR: atom 12 PRO QD not found in molecular structure %READC-ERR: atom 13 PHE 2HB not found in molecular structure %READC-ERR: atom 13 PHE 3HB not found in molecular structure %READC-ERR: atom 13 PHE QB not found in molecular structure %READC-ERR: atom 13 PHE QD not found in molecular structure %READC-ERR: atom 13 PHE QE not found in molecular structure %READC-ERR: atom 13 PHE QR not found in molecular structure %READC-ERR: atom 14 ILE QG2 not found in molecular structure %READC-ERR: atom 14 ILE 1HG2 not found in molecular structure %READC-ERR: atom 14 ILE 2HG2 not found in molecular structure %READC-ERR: atom 14 ILE 3HG2 not found in molecular structure %READC-ERR: atom 14 ILE 2HG1 not found in molecular structure %READC-ERR: atom 14 ILE 3HG1 not found in molecular structure %READC-ERR: atom 14 ILE QG1 not found in molecular structure %READC-ERR: atom 14 ILE QD1 not found in molecular structure %READC-ERR: atom 14 ILE 1HD1 not found in molecular structure %READC-ERR: atom 14 ILE 2HD1 not found in molecular structure %READC-ERR: atom 14 ILE 3HD1 not found in molecular structure %READC-ERR: atom 15 SER 2HB not found in molecular structure %READC-ERR: atom 15 SER 3HB not found in molecular structure %READC-ERR: atom 15 SER QB not found in molecular structure %READC-ERR: atom 16 GLU 2HB not found in molecular structure %READC-ERR: atom 16 GLU 3HB not found in molecular structure %READC-ERR: atom 16 GLU QB not found in molecular structure %READC-ERR: atom 16 GLU 2HG not found in molecular structure %READC-ERR: atom 16 GLU 3HG not found in molecular structure %READC-ERR: atom 16 GLU QG not found in molecular structure %READC-ERR: atom 17 LYS 2HB not found in molecular structure %READC-ERR: atom 17 LYS 3HB not found in molecular structure %READC-ERR: atom 17 LYS QB not found in molecular structure %READC-ERR: atom 17 LYS 2HG not found in molecular structure %READC-ERR: atom 17 LYS 3HG not found in molecular structure %READC-ERR: atom 17 LYS QG not found in molecular structure %READC-ERR: atom 17 LYS 2HD not found in molecular structure %READC-ERR: atom 17 LYS 3HD not found in molecular structure %READC-ERR: atom 17 LYS QD not found in molecular structure %READC-ERR: atom 17 LYS 2HE not found in molecular structure %READC-ERR: atom 17 LYS 3HE not found in molecular structure %READC-ERR: atom 17 LYS QE not found in molecular structure %READC-ERR: atom 17 LYS 1HZ not found in molecular structure %READC-ERR: atom 17 LYS 2HZ not found in molecular structure %READC-ERR: atom 17 LYS 3HZ not found in molecular structure %READC-ERR: atom 17 LYS QZ not found in molecular structure %READC-ERR: atom 18 SER 2HB not found in molecular structure %READC-ERR: atom 18 SER 3HB not found in molecular structure %READC-ERR: atom 18 SER QB not found in molecular structure %READC-ERR: atom 19 SER 2HB not found in molecular structure %READC-ERR: atom 19 SER 3HB not found in molecular structure %READC-ERR: atom 19 SER QB not found in molecular structure %READC-ERR: atom 20 LYS 2HB not found in molecular structure %READC-ERR: atom 20 LYS 3HB not found in molecular structure %READC-ERR: atom 20 LYS QB not found in molecular structure %READC-ERR: atom 20 LYS 2HG not found in molecular structure %READC-ERR: atom 20 LYS 3HG not found in molecular structure %READC-ERR: atom 20 LYS QG not found in molecular structure %READC-ERR: atom 20 LYS 2HD not found in molecular structure %READC-ERR: atom 20 LYS 3HD not found in molecular structure %READC-ERR: atom 20 LYS QD not found in molecular structure %READC-ERR: atom 20 LYS 2HE not found in molecular structure %READC-ERR: atom 20 LYS 3HE not found in molecular structure %READC-ERR: atom 20 LYS QE not found in molecular structure %READC-ERR: atom 20 LYS 1HZ not found in molecular structure %READC-ERR: atom 20 LYS 2HZ not found in molecular structure %READC-ERR: atom 20 LYS 3HZ not found in molecular structure %READC-ERR: atom 20 LYS QZ not found in molecular structure %READC-ERR: atom 21 SER 2HB not found in molecular structure %READC-ERR: atom 21 SER 3HB not found in molecular structure %READC-ERR: atom 21 SER QB not found in molecular structure %READC-ERR: atom 22 LEU 2HB not found in molecular structure %READC-ERR: atom 22 LEU 3HB not found in molecular structure %READC-ERR: atom 22 LEU QB not found in molecular structure %READC-ERR: atom 22 LEU QD1 not found in molecular structure %READC-ERR: atom 22 LEU QD2 not found in molecular structure %READC-ERR: atom 22 LEU 1HD1 not found in molecular structure %READC-ERR: atom 22 LEU 2HD1 not found in molecular structure %READC-ERR: atom 22 LEU 3HD1 not found in molecular structure %READC-ERR: atom 22 LEU 1HD2 not found in molecular structure %READC-ERR: atom 22 LEU 2HD2 not found in molecular structure %READC-ERR: atom 22 LEU 3HD2 not found in molecular structure %READC-ERR: atom 22 LEU QQD not found in molecular structure %READC-ERR: atom 23 GLU 2HB not found in molecular structure %READC-ERR: atom 23 GLU 3HB not found in molecular structure %READC-ERR: atom 23 GLU QB not found in molecular structure %READC-ERR: atom 23 GLU 2HG not found in molecular structure %READC-ERR: atom 23 GLU 3HG not found in molecular structure %READC-ERR: atom 23 GLU QG not found in molecular structure %READC-ERR: atom 24 ILE QG2 not found in molecular structure %READC-ERR: atom 24 ILE 1HG2 not found in molecular structure %READC-ERR: atom 24 ILE 2HG2 not found in molecular structure %READC-ERR: atom 24 ILE 3HG2 not found in molecular structure %READC-ERR: atom 24 ILE 2HG1 not found in molecular structure %READC-ERR: atom 24 ILE 3HG1 not found in molecular structure %READC-ERR: atom 24 ILE QG1 not found in molecular structure %READC-ERR: atom 24 ILE QD1 not found in molecular structure %READC-ERR: atom 24 ILE 1HD1 not found in molecular structure %READC-ERR: atom 24 ILE 2HD1 not found in molecular structure %READC-ERR: atom 24 ILE 3HD1 not found in molecular structure %READC-ERR: atom 25 PRO 2HB not found in molecular structure %READC-ERR: atom 25 PRO 3HB not found in molecular structure %READC-ERR: atom 25 PRO QB not found in molecular structure %READC-ERR: atom 25 PRO 2HG not found in molecular structure %READC-ERR: atom 25 PRO 3HG not found in molecular structure %READC-ERR: atom 25 PRO QG not found in molecular structure %READC-ERR: atom 25 PRO 2HD not found in molecular structure %READC-ERR: atom 25 PRO 3HD not found in molecular structure %READC-ERR: atom 25 PRO QD not found in molecular structure %READC-ERR: atom 26 LEU 2HB not found in molecular structure %READC-ERR: atom 26 LEU 3HB not found in molecular structure %READC-ERR: atom 26 LEU QB not found in molecular structure %READC-ERR: atom 26 LEU QD1 not found in molecular structure %READC-ERR: atom 26 LEU QD2 not found in molecular structure %READC-ERR: atom 26 LEU 1HD1 not found in molecular structure %READC-ERR: atom 26 LEU 2HD1 not found in molecular structure %READC-ERR: atom 26 LEU 3HD1 not found in molecular structure %READC-ERR: atom 26 LEU 1HD2 not found in molecular structure %READC-ERR: atom 26 LEU 2HD2 not found in molecular structure %READC-ERR: atom 26 LEU 3HD2 not found in molecular structure %READC-ERR: atom 26 LEU QQD not found in molecular structure %READC-ERR: atom 27 GLY 1HA not found in molecular structure %READC-ERR: atom 27 GLY 2HA not found in molecular structure %READC-ERR: atom 27 GLY QA not found in molecular structure %READC-ERR: atom 28 PHE 2HB not found in molecular structure %READC-ERR: atom 28 PHE 3HB not found in molecular structure %READC-ERR: atom 28 PHE QB not found in molecular structure %READC-ERR: atom 28 PHE QD not found in molecular structure %READC-ERR: atom 28 PHE QE not found in molecular structure %READC-ERR: atom 28 PHE QR not found in molecular structure %READC-ERR: atom 29 ASN 2HB not found in molecular structure %READC-ERR: atom 29 ASN 3HB not found in molecular structure %READC-ERR: atom 29 ASN QB not found in molecular structure %READC-ERR: atom 29 ASN 1HD2 not found in molecular structure %READC-ERR: atom 29 ASN 2HD2 not found in molecular structure %READC-ERR: atom 29 ASN QD2 not found in molecular structure %READC-ERR: atom 30 GLU 2HB not found in molecular structure %READC-ERR: atom 30 GLU 3HB not found in molecular structure %READC-ERR: atom 30 GLU QB not found in molecular structure %READC-ERR: atom 30 GLU 2HG not found in molecular structure %READC-ERR: atom 30 GLU 3HG not found in molecular structure %READC-ERR: atom 30 GLU QG not found in molecular structure %READC-ERR: atom 31 TYR 2HB not found in molecular structure %READC-ERR: atom 31 TYR 3HB not found in molecular structure %READC-ERR: atom 31 TYR QB not found in molecular structure %READC-ERR: atom 31 TYR QD not found in molecular structure %READC-ERR: atom 31 TYR QE not found in molecular structure %READC-ERR: atom 31 TYR QR not found in molecular structure %READC-ERR: atom 32 PHE 2HB not found in molecular structure %READC-ERR: atom 32 PHE 3HB not found in molecular structure %READC-ERR: atom 32 PHE QB not found in molecular structure %READC-ERR: atom 32 PHE QD not found in molecular structure %READC-ERR: atom 32 PHE QE not found in molecular structure %READC-ERR: atom 32 PHE QR not found in molecular structure %READC-ERR: atom 33 PRO 2HB not found in molecular structure %READC-ERR: atom 33 PRO 3HB not found in molecular structure %READC-ERR: atom 33 PRO QB not found in molecular structure %READC-ERR: atom 33 PRO 2HG not found in molecular structure %READC-ERR: atom 33 PRO 3HG not found in molecular structure %READC-ERR: atom 33 PRO QG not found in molecular structure %READC-ERR: atom 33 PRO 2HD not found in molecular structure %READC-ERR: atom 33 PRO 3HD not found in molecular structure %READC-ERR: atom 33 PRO QD not found in molecular structure %READC-ERR: atom 34 ALA QB not found in molecular structure %READC-ERR: atom 34 ALA 1HB not found in molecular structure %READC-ERR: atom 34 ALA 2HB not found in molecular structure %READC-ERR: atom 34 ALA 3HB not found in molecular structure %READC-ERR: atom 35 PRO 2HB not found in molecular structure %READC-ERR: atom 35 PRO 3HB not found in molecular structure %READC-ERR: atom 35 PRO QB not found in molecular structure %READC-ERR: atom 35 PRO 2HG not found in molecular structure %READC-ERR: atom 35 PRO 3HG not found in molecular structure %READC-ERR: atom 35 PRO QG not found in molecular structure %READC-ERR: atom 35 PRO 2HD not found in molecular structure %READC-ERR: atom 35 PRO 3HD not found in molecular structure %READC-ERR: atom 35 PRO QD not found in molecular structure %READC-ERR: atom 36 PHE 2HB not found in molecular structure %READC-ERR: atom 36 PHE 3HB not found in molecular structure %READC-ERR: atom 36 PHE QB not found in molecular structure %READC-ERR: atom 36 PHE QD not found in molecular structure %READC-ERR: atom 36 PHE QE not found in molecular structure %READC-ERR: atom 36 PHE QR not found in molecular structure %READC-ERR: atom 37 PRO 2HB not found in molecular structure %READC-ERR: atom 37 PRO 3HB not found in molecular structure %READC-ERR: atom 37 PRO QB not found in molecular structure %READC-ERR: atom 37 PRO 2HG not found in molecular structure %READC-ERR: atom 37 PRO 3HG not found in molecular structure %READC-ERR: atom 37 PRO QG not found in molecular structure %READC-ERR: atom 37 PRO 2HD not found in molecular structure %READC-ERR: atom 37 PRO 3HD not found in molecular structure %READC-ERR: atom 37 PRO QD not found in molecular structure %READC-ERR: atom 38 ILE QG2 not found in molecular structure %READC-ERR: atom 38 ILE 1HG2 not found in molecular structure %READC-ERR: atom 38 ILE 2HG2 not found in molecular structure %READC-ERR: atom 38 ILE 3HG2 not found in molecular structure %READC-ERR: atom 38 ILE 2HG1 not found in molecular structure %READC-ERR: atom 38 ILE 3HG1 not found in molecular structure %READC-ERR: atom 38 ILE QG1 not found in molecular structure %READC-ERR: atom 38 ILE QD1 not found in molecular structure %READC-ERR: atom 38 ILE 1HD1 not found in molecular structure %READC-ERR: atom 38 ILE 2HD1 not found in molecular structure %READC-ERR: atom 38 ILE 3HD1 not found in molecular structure %READC-ERR: atom 39 THR QG2 not found in molecular structure %READC-ERR: atom 39 THR 1HG2 not found in molecular structure %READC-ERR: atom 39 THR 2HG2 not found in molecular structure %READC-ERR: atom 39 THR 3HG2 not found in molecular structure %READC-ERR: atom 40 VAL QG1 not found in molecular structure %READC-ERR: atom 40 VAL QG2 not found in molecular structure %READC-ERR: atom 40 VAL 1HG1 not found in molecular structure %READC-ERR: atom 40 VAL 2HG1 not found in molecular structure %READC-ERR: atom 40 VAL 3HG1 not found in molecular structure %READC-ERR: atom 40 VAL 1HG2 not found in molecular structure %READC-ERR: atom 40 VAL 2HG2 not found in molecular structure %READC-ERR: atom 40 VAL 3HG2 not found in molecular structure %READC-ERR: atom 40 VAL QQG not found in molecular structure %READC-ERR: atom 41 ASP 2HB not found in molecular structure %READC-ERR: atom 41 ASP 3HB not found in molecular structure %READC-ERR: atom 41 ASP QB not found in molecular structure %READC-ERR: atom 42 LEU 2HB not found in molecular structure %READC-ERR: atom 42 LEU 3HB not found in molecular structure %READC-ERR: atom 42 LEU QB not found in molecular structure %READC-ERR: atom 42 LEU QD1 not found in molecular structure %READC-ERR: atom 42 LEU QD2 not found in molecular structure %READC-ERR: atom 42 LEU 1HD1 not found in molecular structure %READC-ERR: atom 42 LEU 2HD1 not found in molecular structure %READC-ERR: atom 42 LEU 3HD1 not found in molecular structure %READC-ERR: atom 42 LEU 1HD2 not found in molecular structure %READC-ERR: atom 42 LEU 2HD2 not found in molecular structure %READC-ERR: atom 42 LEU 3HD2 not found in molecular structure %READC-ERR: atom 42 LEU QQD not found in molecular structure %READC-ERR: atom 43 LEU 2HB not found in molecular structure %READC-ERR: atom 43 LEU 3HB not found in molecular structure %READC-ERR: atom 43 LEU QB not found in molecular structure %READC-ERR: atom 43 LEU QD1 not found in molecular structure %READC-ERR: atom 43 LEU QD2 not found in molecular structure %READC-ERR: atom 43 LEU 1HD1 not found in molecular structure %READC-ERR: atom 43 LEU 2HD1 not found in molecular structure %READC-ERR: atom 43 LEU 3HD1 not found in molecular structure %READC-ERR: atom 43 LEU 1HD2 not found in molecular structure %READC-ERR: atom 43 LEU 2HD2 not found in molecular structure %READC-ERR: atom 43 LEU 3HD2 not found in molecular structure %READC-ERR: atom 43 LEU QQD not found in molecular structure %READC-ERR: atom 44 ASP 2HB not found in molecular structure %READC-ERR: atom 44 ASP 3HB not found in molecular structure %READC-ERR: atom 44 ASP QB not found in molecular structure %READC-ERR: atom 45 TYR 2HB not found in molecular structure %READC-ERR: atom 45 TYR 3HB not found in molecular structure %READC-ERR: atom 45 TYR QB not found in molecular structure %READC-ERR: atom 45 TYR QD not found in molecular structure %READC-ERR: atom 45 TYR QE not found in molecular structure %READC-ERR: atom 45 TYR QR not found in molecular structure %READC-ERR: atom 46 SER 2HB not found in molecular structure %READC-ERR: atom 46 SER 3HB not found in molecular structure %READC-ERR: atom 46 SER QB not found in molecular structure %READC-ERR: atom 47 GLY 1HA not found in molecular structure %READC-ERR: atom 47 GLY 2HA not found in molecular structure %READC-ERR: atom 47 GLY QA not found in molecular structure %READC-ERR: atom 48 ARG 2HB not found in molecular structure %READC-ERR: atom 48 ARG 3HB not found in molecular structure %READC-ERR: atom 48 ARG QB not found in molecular structure %READC-ERR: atom 48 ARG 2HG not found in molecular structure %READC-ERR: atom 48 ARG 3HG not found in molecular structure %READC-ERR: atom 48 ARG QG not found in molecular structure %READC-ERR: atom 48 ARG 2HD not found in molecular structure %READC-ERR: atom 48 ARG 3HD not found in molecular structure %READC-ERR: atom 48 ARG QD not found in molecular structure %READC-ERR: atom 48 ARG 1HH1 not found in molecular structure %READC-ERR: atom 48 ARG 2HH1 not found in molecular structure %READC-ERR: atom 48 ARG QH1 not found in molecular structure %READC-ERR: atom 48 ARG 1HH2 not found in molecular structure %READC-ERR: atom 48 ARG 2HH2 not found in molecular structure %READC-ERR: atom 48 ARG QH2 not found in molecular structure %READC-ERR: atom 49 SER 2HB not found in molecular structure %READC-ERR: atom 49 SER 3HB not found in molecular structure %READC-ERR: atom 49 SER QB not found in molecular structure %READC-ERR: atom 50 TRP 2HB not found in molecular structure %READC-ERR: atom 50 TRP 3HB not found in molecular structure %READC-ERR: atom 50 TRP QB not found in molecular structure %READC-ERR: atom 51 THR QG2 not found in molecular structure %READC-ERR: atom 51 THR 1HG2 not found in molecular structure %READC-ERR: atom 51 THR 2HG2 not found in molecular structure %READC-ERR: atom 51 THR 3HG2 not found in molecular structure %READC-ERR: atom 52 VAL QG1 not found in molecular structure %READC-ERR: atom 52 VAL QG2 not found in molecular structure %READC-ERR: atom 52 VAL 1HG1 not found in molecular structure %READC-ERR: atom 52 VAL 2HG1 not found in molecular structure %READC-ERR: atom 52 VAL 3HG1 not found in molecular structure %READC-ERR: atom 52 VAL 1HG2 not found in molecular structure %READC-ERR: atom 52 VAL 2HG2 not found in molecular structure %READC-ERR: atom 52 VAL 3HG2 not found in molecular structure %READC-ERR: atom 52 VAL QQG not found in molecular structure %READC-ERR: atom 53 ARG 2HB not found in molecular structure %READC-ERR: atom 53 ARG 3HB not found in molecular structure %READC-ERR: atom 53 ARG QB not found in molecular structure %READC-ERR: atom 53 ARG 2HG not found in molecular structure %READC-ERR: atom 53 ARG 3HG not found in molecular structure %READC-ERR: atom 53 ARG QG not found in molecular structure %READC-ERR: atom 53 ARG 2HD not found in molecular structure %READC-ERR: atom 53 ARG 3HD not found in molecular structure %READC-ERR: atom 53 ARG QD not found in molecular structure %READC-ERR: atom 53 ARG 1HH1 not found in molecular structure %READC-ERR: atom 53 ARG 2HH1 not found in molecular structure %READC-ERR: atom 53 ARG QH1 not found in molecular structure %READC-ERR: atom 53 ARG 1HH2 not found in molecular structure %READC-ERR: atom 53 ARG 2HH2 not found in molecular structure %READC-ERR: atom 53 ARG QH2 not found in molecular structure %READC-ERR: atom 54 MET 2HB not found in molecular structure %READC-ERR: atom 54 MET 3HB not found in molecular structure %READC-ERR: atom 54 MET QB not found in molecular structure %READC-ERR: atom 54 MET 2HG not found in molecular structure %READC-ERR: atom 54 MET 3HG not found in molecular structure %READC-ERR: atom 54 MET QG not found in molecular structure %READC-ERR: atom 54 MET QE not found in molecular structure %READC-ERR: atom 54 MET 1HE not found in molecular structure %READC-ERR: atom 54 MET 2HE not found in molecular structure %READC-ERR: atom 54 MET 3HE not found in molecular structure %READC-ERR: atom 55 LYS 2HB not found in molecular structure %READC-ERR: atom 55 LYS 3HB not found in molecular structure %READC-ERR: atom 55 LYS QB not found in molecular structure %READC-ERR: atom 55 LYS 2HG not found in molecular structure %READC-ERR: atom 55 LYS 3HG not found in molecular structure %READC-ERR: atom 55 LYS QG not found in molecular structure %READC-ERR: atom 55 LYS 2HD not found in molecular structure %READC-ERR: atom 55 LYS 3HD not found in molecular structure %READC-ERR: atom 55 LYS QD not found in molecular structure %READC-ERR: atom 55 LYS 2HE not found in molecular structure %READC-ERR: atom 55 LYS 3HE not found in molecular structure %READC-ERR: atom 55 LYS QE not found in molecular structure %READC-ERR: atom 55 LYS 1HZ not found in molecular structure %READC-ERR: atom 55 LYS 2HZ not found in molecular structure %READC-ERR: atom 55 LYS 3HZ not found in molecular structure %READC-ERR: atom 55 LYS QZ not found in molecular structure %READC-ERR: atom 56 LYS 2HB not found in molecular structure %READC-ERR: atom 56 LYS 3HB not found in molecular structure %READC-ERR: atom 56 LYS QB not found in molecular structure %READC-ERR: atom 56 LYS 2HG not found in molecular structure %READC-ERR: atom 56 LYS 3HG not found in molecular structure %READC-ERR: atom 56 LYS QG not found in molecular structure %READC-ERR: atom 56 LYS 2HD not found in molecular structure %READC-ERR: atom 56 LYS 3HD not found in molecular structure %READC-ERR: atom 56 LYS QD not found in molecular structure %READC-ERR: atom 56 LYS 2HE not found in molecular structure %READC-ERR: atom 56 LYS 3HE not found in molecular structure %READC-ERR: atom 56 LYS QE not found in molecular structure %READC-ERR: atom 56 LYS 1HZ not found in molecular structure %READC-ERR: atom 56 LYS 2HZ not found in molecular structure %READC-ERR: atom 56 LYS 3HZ not found in molecular structure %READC-ERR: atom 56 LYS QZ not found in molecular structure %READC-ERR: atom 57 ARG 2HB not found in molecular structure %READC-ERR: atom 57 ARG 3HB not found in molecular structure %READC-ERR: atom 57 ARG QB not found in molecular structure %READC-ERR: atom 57 ARG 2HG not found in molecular structure %READC-ERR: atom 57 ARG 3HG not found in molecular structure %READC-ERR: atom 57 ARG QG not found in molecular structure %READC-ERR: atom 57 ARG 2HD not found in molecular structure %READC-ERR: atom 57 ARG 3HD not found in molecular structure %READC-ERR: atom 57 ARG QD not found in molecular structure %READC-ERR: atom 57 ARG 1HH1 not found in molecular structure %READC-ERR: atom 57 ARG 2HH1 not found in molecular structure %READC-ERR: atom 57 ARG QH1 not found in molecular structure %READC-ERR: atom 57 ARG 1HH2 not found in molecular structure %READC-ERR: atom 57 ARG 2HH2 not found in molecular structure %READC-ERR: atom 57 ARG QH2 not found in molecular structure %READC-ERR: atom 58 GLY 1HA not found in molecular structure %READC-ERR: atom 58 GLY 2HA not found in molecular structure %READC-ERR: atom 58 GLY QA not found in molecular structure %READC-ERR: atom 59 GLU 2HB not found in molecular structure %READC-ERR: atom 59 GLU 3HB not found in molecular structure %READC-ERR: atom 59 GLU QB not found in molecular structure %READC-ERR: atom 59 GLU 2HG not found in molecular structure %READC-ERR: atom 59 GLU 3HG not found in molecular structure %READC-ERR: atom 59 GLU QG not found in molecular structure %READC-ERR: atom 60 LYS 2HB not found in molecular structure %READC-ERR: atom 60 LYS 3HB not found in molecular structure %READC-ERR: atom 60 LYS QB not found in molecular structure %READC-ERR: atom 60 LYS 2HG not found in molecular structure %READC-ERR: atom 60 LYS 3HG not found in molecular structure %READC-ERR: atom 60 LYS QG not found in molecular structure %READC-ERR: atom 60 LYS 2HD not found in molecular structure %READC-ERR: atom 60 LYS 3HD not found in molecular structure %READC-ERR: atom 60 LYS QD not found in molecular structure %READC-ERR: atom 60 LYS 2HE not found in molecular structure %READC-ERR: atom 60 LYS 3HE not found in molecular structure %READC-ERR: atom 60 LYS QE not found in molecular structure %READC-ERR: atom 60 LYS 1HZ not found in molecular structure %READC-ERR: atom 60 LYS 2HZ not found in molecular structure %READC-ERR: atom 60 LYS 3HZ not found in molecular structure %READC-ERR: atom 60 LYS QZ not found in molecular structure %READC-ERR: atom 61 VAL QG1 not found in molecular structure %READC-ERR: atom 61 VAL QG2 not found in molecular structure %READC-ERR: atom 61 VAL 1HG1 not found in molecular structure %READC-ERR: atom 61 VAL 2HG1 not found in molecular structure %READC-ERR: atom 61 VAL 3HG1 not found in molecular structure %READC-ERR: atom 61 VAL 1HG2 not found in molecular structure %READC-ERR: atom 61 VAL 2HG2 not found in molecular structure %READC-ERR: atom 61 VAL 3HG2 not found in molecular structure %READC-ERR: atom 61 VAL QQG not found in molecular structure %READC-ERR: atom 62 PHE 2HB not found in molecular structure %READC-ERR: atom 62 PHE 3HB not found in molecular structure %READC-ERR: atom 62 PHE QB not found in molecular structure %READC-ERR: atom 62 PHE QD not found in molecular structure %READC-ERR: atom 62 PHE QE not found in molecular structure %READC-ERR: atom 62 PHE QR not found in molecular structure %READC-ERR: atom 63 LEU 2HB not found in molecular structure %READC-ERR: atom 63 LEU 3HB not found in molecular structure %READC-ERR: atom 63 LEU QB not found in molecular structure %READC-ERR: atom 63 LEU QD1 not found in molecular structure %READC-ERR: atom 63 LEU QD2 not found in molecular structure %READC-ERR: atom 63 LEU 1HD1 not found in molecular structure %READC-ERR: atom 63 LEU 2HD1 not found in molecular structure %READC-ERR: atom 63 LEU 3HD1 not found in molecular structure %READC-ERR: atom 63 LEU 1HD2 not found in molecular structure %READC-ERR: atom 63 LEU 2HD2 not found in molecular structure %READC-ERR: atom 63 LEU 3HD2 not found in molecular structure %READC-ERR: atom 63 LEU QQD not found in molecular structure %READC-ERR: atom 64 THR QG2 not found in molecular structure %READC-ERR: atom 64 THR 1HG2 not found in molecular structure %READC-ERR: atom 64 THR 2HG2 not found in molecular structure %READC-ERR: atom 64 THR 3HG2 not found in molecular structure %READC-ERR: atom 65 VAL QG1 not found in molecular structure %READC-ERR: atom 65 VAL QG2 not found in molecular structure %READC-ERR: atom 65 VAL 1HG1 not found in molecular structure %READC-ERR: atom 65 VAL 2HG1 not found in molecular structure %READC-ERR: atom 65 VAL 3HG1 not found in molecular structure %READC-ERR: atom 65 VAL 1HG2 not found in molecular structure %READC-ERR: atom 65 VAL 2HG2 not found in molecular structure %READC-ERR: atom 65 VAL 3HG2 not found in molecular structure %READC-ERR: atom 65 VAL QQG not found in molecular structure %READC-ERR: atom 66 GLY 1HA not found in molecular structure %READC-ERR: atom 66 GLY 2HA not found in molecular structure %READC-ERR: atom 66 GLY QA not found in molecular structure %READC-ERR: atom 67 TRP 2HB not found in molecular structure %READC-ERR: atom 67 TRP 3HB not found in molecular structure %READC-ERR: atom 67 TRP QB not found in molecular structure %READC-ERR: atom 68 GLU 2HB not found in molecular structure %READC-ERR: atom 68 GLU 3HB not found in molecular structure %READC-ERR: atom 68 GLU QB not found in molecular structure %READC-ERR: atom 68 GLU 2HG not found in molecular structure %READC-ERR: atom 68 GLU 3HG not found in molecular structure %READC-ERR: atom 68 GLU QG not found in molecular structure %READC-ERR: atom 69 ASN 2HB not found in molecular structure %READC-ERR: atom 69 ASN 3HB not found in molecular structure %READC-ERR: atom 69 ASN QB not found in molecular structure %READC-ERR: atom 69 ASN 1HD2 not found in molecular structure %READC-ERR: atom 69 ASN 2HD2 not found in molecular structure %READC-ERR: atom 69 ASN QD2 not found in molecular structure %READC-ERR: atom 70 PHE 2HB not found in molecular structure %READC-ERR: atom 70 PHE 3HB not found in molecular structure %READC-ERR: atom 70 PHE QB not found in molecular structure %READC-ERR: atom 70 PHE QD not found in molecular structure %READC-ERR: atom 70 PHE QE not found in molecular structure %READC-ERR: atom 70 PHE QR not found in molecular structure %READC-ERR: atom 71 VAL QG1 not found in molecular structure %READC-ERR: atom 71 VAL QG2 not found in molecular structure %READC-ERR: atom 71 VAL 1HG1 not found in molecular structure %READC-ERR: atom 71 VAL 2HG1 not found in molecular structure %READC-ERR: atom 71 VAL 3HG1 not found in molecular structure %READC-ERR: atom 71 VAL 1HG2 not found in molecular structure %READC-ERR: atom 71 VAL 2HG2 not found in molecular structure %READC-ERR: atom 71 VAL 3HG2 not found in molecular structure %READC-ERR: atom 71 VAL QQG not found in molecular structure %READC-ERR: atom 72 LYS 2HB not found in molecular structure %READC-ERR: atom 72 LYS 3HB not found in molecular structure %READC-ERR: atom 72 LYS QB not found in molecular structure %READC-ERR: atom 72 LYS 2HG not found in molecular structure %READC-ERR: atom 72 LYS 3HG not found in molecular structure %READC-ERR: atom 72 LYS QG not found in molecular structure %READC-ERR: atom 72 LYS 2HD not found in molecular structure %READC-ERR: atom 72 LYS 3HD not found in molecular structure %READC-ERR: atom 72 LYS QD not found in molecular structure %READC-ERR: atom 72 LYS 2HE not found in molecular structure %READC-ERR: atom 72 LYS 3HE not found in molecular structure %READC-ERR: atom 72 LYS QE not found in molecular structure %READC-ERR: atom 72 LYS 1HZ not found in molecular structure %READC-ERR: atom 72 LYS 2HZ not found in molecular structure %READC-ERR: atom 72 LYS 3HZ not found in molecular structure %READC-ERR: atom 72 LYS QZ not found in molecular structure %READC-ERR: atom 73 ASP 2HB not found in molecular structure %READC-ERR: atom 73 ASP 3HB not found in molecular structure %READC-ERR: atom 73 ASP QB not found in molecular structure %READC-ERR: atom 74 ASN 2HB not found in molecular structure %READC-ERR: atom 74 ASN 3HB not found in molecular structure %READC-ERR: atom 74 ASN QB not found in molecular structure %READC-ERR: atom 74 ASN 1HD2 not found in molecular structure %READC-ERR: atom 74 ASN 2HD2 not found in molecular structure %READC-ERR: atom 74 ASN QD2 not found in molecular structure %READC-ERR: atom 75 ASN 2HB not found in molecular structure %READC-ERR: atom 75 ASN 3HB not found in molecular structure %READC-ERR: atom 75 ASN QB not found in molecular structure %READC-ERR: atom 75 ASN 1HD2 not found in molecular structure %READC-ERR: atom 75 ASN 2HD2 not found in molecular structure %READC-ERR: atom 75 ASN QD2 not found in molecular structure %READC-ERR: atom 76 LEU 2HB not found in molecular structure %READC-ERR: atom 76 LEU 3HB not found in molecular structure %READC-ERR: atom 76 LEU QB not found in molecular structure %READC-ERR: atom 76 LEU QD1 not found in molecular structure %READC-ERR: atom 76 LEU QD2 not found in molecular structure %READC-ERR: atom 76 LEU 1HD1 not found in molecular structure %READC-ERR: atom 76 LEU 2HD1 not found in molecular structure %READC-ERR: atom 76 LEU 3HD1 not found in molecular structure %READC-ERR: atom 76 LEU 1HD2 not found in molecular structure %READC-ERR: atom 76 LEU 2HD2 not found in molecular structure %READC-ERR: atom 76 LEU 3HD2 not found in molecular structure %READC-ERR: atom 76 LEU QQD not found in molecular structure %READC-ERR: atom 77 GLU 2HB not found in molecular structure %READC-ERR: atom 77 GLU 3HB not found in molecular structure %READC-ERR: atom 77 GLU QB not found in molecular structure %READC-ERR: atom 77 GLU 2HG not found in molecular structure %READC-ERR: atom 77 GLU 3HG not found in molecular structure %READC-ERR: atom 77 GLU QG not found in molecular structure %READC-ERR: atom 78 ASP 2HB not found in molecular structure %READC-ERR: atom 78 ASP 3HB not found in molecular structure %READC-ERR: atom 78 ASP QB not found in molecular structure %READC-ERR: atom 79 GLY 1HA not found in molecular structure %READC-ERR: atom 79 GLY 2HA not found in molecular structure %READC-ERR: atom 79 GLY QA not found in molecular structure %READC-ERR: atom 80 LYS 2HB not found in molecular structure %READC-ERR: atom 80 LYS 3HB not found in molecular structure %READC-ERR: atom 80 LYS QB not found in molecular structure %READC-ERR: atom 80 LYS 2HG not found in molecular structure %READC-ERR: atom 80 LYS 3HG not found in molecular structure %READC-ERR: atom 80 LYS QG not found in molecular structure %READC-ERR: atom 80 LYS 2HD not found in molecular structure %READC-ERR: atom 80 LYS 3HD not found in molecular structure %READC-ERR: atom 80 LYS QD not found in molecular structure %READC-ERR: atom 80 LYS 2HE not found in molecular structure %READC-ERR: atom 80 LYS 3HE not found in molecular structure %READC-ERR: atom 80 LYS QE not found in molecular structure %READC-ERR: atom 80 LYS 1HZ not found in molecular structure %READC-ERR: atom 80 LYS 2HZ not found in molecular structure %READC-ERR: atom 80 LYS 3HZ not found in molecular structure %READC-ERR: atom 80 LYS QZ not found in molecular structure %READC-ERR: atom 81 TYR 2HB not found in molecular structure %READC-ERR: atom 81 TYR 3HB not found in molecular structure %READC-ERR: atom 81 TYR QB not found in molecular structure %READC-ERR: atom 81 TYR QD not found in molecular structure %READC-ERR: atom 81 TYR QE not found in molecular structure %READC-ERR: atom 81 TYR QR not found in molecular structure %READC-ERR: atom 82 LEU 2HB not found in molecular structure %READC-ERR: atom 82 LEU 3HB not found in molecular structure %READC-ERR: atom 82 LEU QB not found in molecular structure %READC-ERR: atom 82 LEU QD1 not found in molecular structure %READC-ERR: atom 82 LEU QD2 not found in molecular structure %READC-ERR: atom 82 LEU 1HD1 not found in molecular structure %READC-ERR: atom 82 LEU 2HD1 not found in molecular structure %READC-ERR: atom 82 LEU 3HD1 not found in molecular structure %READC-ERR: atom 82 LEU 1HD2 not found in molecular structure %READC-ERR: atom 82 LEU 2HD2 not found in molecular structure %READC-ERR: atom 82 LEU 3HD2 not found in molecular structure %READC-ERR: atom 82 LEU QQD not found in molecular structure %READC-ERR: atom 83 GLN 2HB not found in molecular structure %READC-ERR: atom 83 GLN 3HB not found in molecular structure %READC-ERR: atom 83 GLN QB not found in molecular structure %READC-ERR: atom 83 GLN 2HG not found in molecular structure %READC-ERR: atom 83 GLN 3HG not found in molecular structure %READC-ERR: atom 83 GLN QG not found in molecular structure %READC-ERR: atom 83 GLN 1HE2 not found in molecular structure %READC-ERR: atom 83 GLN 2HE2 not found in molecular structure %READC-ERR: atom 83 GLN QE2 not found in molecular structure %READC-ERR: atom 84 PHE 2HB not found in molecular structure %READC-ERR: atom 84 PHE 3HB not found in molecular structure %READC-ERR: atom 84 PHE QB not found in molecular structure %READC-ERR: atom 84 PHE QD not found in molecular structure %READC-ERR: atom 84 PHE QE not found in molecular structure %READC-ERR: atom 84 PHE QR not found in molecular structure %READC-ERR: atom 85 ILE QG2 not found in molecular structure %READC-ERR: atom 85 ILE 1HG2 not found in molecular structure %READC-ERR: atom 85 ILE 2HG2 not found in molecular structure %READC-ERR: atom 85 ILE 3HG2 not found in molecular structure %READC-ERR: atom 85 ILE 2HG1 not found in molecular structure %READC-ERR: atom 85 ILE 3HG1 not found in molecular structure %READC-ERR: atom 85 ILE QG1 not found in molecular structure %READC-ERR: atom 85 ILE QD1 not found in molecular structure %READC-ERR: atom 85 ILE 1HD1 not found in molecular structure %READC-ERR: atom 85 ILE 2HD1 not found in molecular structure %READC-ERR: atom 85 ILE 3HD1 not found in molecular structure %READC-ERR: atom 86 TYR 2HB not found in molecular structure %READC-ERR: atom 86 TYR 3HB not found in molecular structure %READC-ERR: atom 86 TYR QB not found in molecular structure %READC-ERR: atom 86 TYR QD not found in molecular structure %READC-ERR: atom 86 TYR QE not found in molecular structure %READC-ERR: atom 86 TYR QR not found in molecular structure %READC-ERR: atom 87 ASP 2HB not found in molecular structure %READC-ERR: atom 87 ASP 3HB not found in molecular structure %READC-ERR: atom 87 ASP QB not found in molecular structure %READC-ERR: atom 88 ARG 2HB not found in molecular structure %READC-ERR: atom 88 ARG 3HB not found in molecular structure %READC-ERR: atom 88 ARG QB not found in molecular structure %READC-ERR: atom 88 ARG 2HG not found in molecular structure %READC-ERR: atom 88 ARG 3HG not found in molecular structure %READC-ERR: atom 88 ARG QG not found in molecular structure %READC-ERR: atom 88 ARG 2HD not found in molecular structure %READC-ERR: atom 88 ARG 3HD not found in molecular structure %READC-ERR: atom 88 ARG QD not found in molecular structure %READC-ERR: atom 88 ARG 1HH1 not found in molecular structure %READC-ERR: atom 88 ARG 2HH1 not found in molecular structure %READC-ERR: atom 88 ARG QH1 not found in molecular structure %READC-ERR: atom 88 ARG 1HH2 not found in molecular structure %READC-ERR: atom 88 ARG 2HH2 not found in molecular structure %READC-ERR: atom 88 ARG QH2 not found in molecular structure %READC-ERR: atom 89 ASP 2HB not found in molecular structure %READC-ERR: atom 89 ASP 3HB not found in molecular structure %READC-ERR: atom 89 ASP QB not found in molecular structure %READC-ERR: atom 90 ARG 2HB not found in molecular structure %READC-ERR: atom 90 ARG 3HB not found in molecular structure %READC-ERR: atom 90 ARG QB not found in molecular structure %READC-ERR: atom 90 ARG 2HG not found in molecular structure %READC-ERR: atom 90 ARG 3HG not found in molecular structure %READC-ERR: atom 90 ARG QG not found in molecular structure %READC-ERR: atom 90 ARG 2HD not found in molecular structure %READC-ERR: atom 90 ARG 3HD not found in molecular structure %READC-ERR: atom 90 ARG QD not found in molecular structure %READC-ERR: atom 90 ARG 1HH1 not found in molecular structure %READC-ERR: atom 90 ARG 2HH1 not found in molecular structure %READC-ERR: atom 90 ARG QH1 not found in molecular structure %READC-ERR: atom 90 ARG 1HH2 not found in molecular structure %READC-ERR: atom 90 ARG 2HH2 not found in molecular structure %READC-ERR: atom 90 ARG QH2 not found in molecular structure %READC-ERR: atom 91 THR QG2 not found in molecular structure %READC-ERR: atom 91 THR 1HG2 not found in molecular structure %READC-ERR: atom 91 THR 2HG2 not found in molecular structure %READC-ERR: atom 91 THR 3HG2 not found in molecular structure %READC-ERR: atom 92 PHE 2HB not found in molecular structure %READC-ERR: atom 92 PHE 3HB not found in molecular structure %READC-ERR: atom 92 PHE QB not found in molecular structure %READC-ERR: atom 92 PHE QD not found in molecular structure %READC-ERR: atom 92 PHE QE not found in molecular structure %READC-ERR: atom 92 PHE QR not found in molecular structure %READC-ERR: atom 93 TYR 2HB not found in molecular structure %READC-ERR: atom 93 TYR 3HB not found in molecular structure %READC-ERR: atom 93 TYR QB not found in molecular structure %READC-ERR: atom 93 TYR QD not found in molecular structure %READC-ERR: atom 93 TYR QE not found in molecular structure %READC-ERR: atom 93 TYR QR not found in molecular structure %READC-ERR: atom 94 VAL QG1 not found in molecular structure %READC-ERR: atom 94 VAL QG2 not found in molecular structure %READC-ERR: atom 94 VAL 1HG1 not found in molecular structure %READC-ERR: atom 94 VAL 2HG1 not found in molecular structure %READC-ERR: atom 94 VAL 3HG1 not found in molecular structure %READC-ERR: atom 94 VAL 1HG2 not found in molecular structure %READC-ERR: atom 94 VAL 2HG2 not found in molecular structure %READC-ERR: atom 94 VAL 3HG2 not found in molecular structure %READC-ERR: atom 94 VAL QQG not found in molecular structure %READC-ERR: atom 95 ILE QG2 not found in molecular structure %READC-ERR: atom 95 ILE 1HG2 not found in molecular structure %READC-ERR: atom 95 ILE 2HG2 not found in molecular structure %READC-ERR: atom 95 ILE 3HG2 not found in molecular structure %READC-ERR: atom 95 ILE 2HG1 not found in molecular structure %READC-ERR: atom 95 ILE 3HG1 not found in molecular structure %READC-ERR: atom 95 ILE QG1 not found in molecular structure %READC-ERR: atom 95 ILE QD1 not found in molecular structure %READC-ERR: atom 95 ILE 1HD1 not found in molecular structure %READC-ERR: atom 95 ILE 2HD1 not found in molecular structure %READC-ERR: atom 95 ILE 3HD1 not found in molecular structure %READC-ERR: atom 96 ILE QG2 not found in molecular structure %READC-ERR: atom 96 ILE 1HG2 not found in molecular structure %READC-ERR: atom 96 ILE 2HG2 not found in molecular structure %READC-ERR: atom 96 ILE 3HG2 not found in molecular structure %READC-ERR: atom 96 ILE 2HG1 not found in molecular structure %READC-ERR: atom 96 ILE 3HG1 not found in molecular structure %READC-ERR: atom 96 ILE QG1 not found in molecular structure %READC-ERR: atom 96 ILE QD1 not found in molecular structure %READC-ERR: atom 96 ILE 1HD1 not found in molecular structure %READC-ERR: atom 96 ILE 2HD1 not found in molecular structure %READC-ERR: atom 96 ILE 3HD1 not found in molecular structure %READC-ERR: atom 97 TYR 2HB not found in molecular structure %READC-ERR: atom 97 TYR 3HB not found in molecular structure %READC-ERR: atom 97 TYR QB not found in molecular structure %READC-ERR: atom 97 TYR QD not found in molecular structure %READC-ERR: atom 97 TYR QE not found in molecular structure %READC-ERR: atom 97 TYR QR not found in molecular structure %READC-ERR: atom 98 GLY 1HA not found in molecular structure %READC-ERR: atom 98 GLY 2HA not found in molecular structure %READC-ERR: atom 98 GLY QA not found in molecular structure %READC-ERR: atom 99 HIS 2HB not found in molecular structure %READC-ERR: atom 99 HIS 3HB not found in molecular structure %READC-ERR: atom 99 HIS QB not found in molecular structure %READC-ERR: atom 100 ASN 2HB not found in molecular structure %READC-ERR: atom 100 ASN 3HB not found in molecular structure %READC-ERR: atom 100 ASN QB not found in molecular structure %READC-ERR: atom 100 ASN 1HD2 not found in molecular structure %READC-ERR: atom 100 ASN 2HD2 not found in molecular structure %READC-ERR: atom 100 ASN QD2 not found in molecular structure %READC-ERR: atom 101 MET 2HB not found in molecular structure %READC-ERR: atom 101 MET 3HB not found in molecular structure %READC-ERR: atom 101 MET QB not found in molecular structure %READC-ERR: atom 101 MET 2HG not found in molecular structure %READC-ERR: atom 101 MET 3HG not found in molecular structure %READC-ERR: atom 101 MET QG not found in molecular structure %READC-ERR: atom 101 MET QE not found in molecular structure %READC-ERR: atom 101 MET 1HE not found in molecular structure %READC-ERR: atom 101 MET 2HE not found in molecular structure %READC-ERR: atom 101 MET 3HE not found in molecular structure %READC-ERR: atom 102 CYS 2HB not found in molecular structure %READC-ERR: atom 102 CYS 3HB not found in molecular structure %READC-ERR: atom 102 CYS QB not found in molecular structure %READC-ERR: atom 102 CYS O not found in molecular structure COOR>END CNSsolve>parameter @TOPPAR:parallhdg5.3.pro end PARRDR>! JFD adds FES complex parameters from Milo Westler's calculations PARRDR>! and standard topology. PARRDR> PARRDR>remark file protein-allhdg-ucl.param version UCL date 07-JUL-01 PARRDR>remark for file protein-allhdg-ucl.top version UCL date 14-MAR-00 PARRDR>remark for file protein-allhdg-dih-ucl.top version UCL date 07-JUL-01 PARRDR>remark Geometric energy function parameters for distance geometry and PARRDR>remark simulated annealing. PARRDR>remark Original author: Michael Nilges, EMBL Heidelberg PARRDR>remark Modifications: Mark A. Williams, UCL London PARRDR> PARRDR>set echo off message off end SHOW: sum over selected elements = 2.000000 CNSsolve> CNSsolve> if ( $log_level = verbose ) then CNSsolve> set message=normal echo=on end CNSsolve> else CNSsolve> set message=off echo=off end CNSsolve> end if CNSsolve> CNSsolve> CNSsolve> identity (store1) (none) SELRPN: 0 atoms have been selected out of 1677 CNSsolve> CNSsolve> identity (store1) (&atom_build) SELRPN: 507 atoms have been selected out of 1677 CNSsolve> identity (store1) (store1 or hydrogen) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> CNSsolve> show sum(1) (store1) SELRPN: 830 atoms have been selected out of 1677 SHOW: sum over selected elements = 830.000000 CNSsolve> evaluate ($tobuild=$result) EVALUATE: symbol $TOBUILD set to 830.000 (real) CNSsolve> CNSsolve> !evaluate ($tobuild=0) CNSsolve> CNSsolve> if ( $tobuild > 0 ) then NEXTCD: condition evaluated as true CNSsolve> CNSsolve> fix selection=(not(store1)) end SELRPN: 847 atoms have been selected out of 1677 CNSsolve> CNSsolve> show sum(1) (store1) SELRPN: 830 atoms have been selected out of 1677 SHOW: sum over selected elements = 830.000000 CNSsolve> evaluate ($moving=$result) EVALUATE: symbol $MOVING set to 830.000 (real) CNSsolve> CNSsolve> if ( $moving > 0 ) then NEXTCD: condition evaluated as true CNSsolve> for $id in id (tag and byres(store1)) loop avco SELRPN: 102 atoms have been selected out of 1677 FOR ID LOOP: symbol ID set to 1.00000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = 2.435556 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 2.43556 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = 0.834000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.834000 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -2.016667 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.01667 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 20.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1677 SHOW: average of selected elements = 5.121143 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 5.12114 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1677 SHOW: average of selected elements = -1.224714 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.22471 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1677 SHOW: average of selected elements = 0.523143 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 0.523143 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 30.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 4.738600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 4.73860 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -5.153800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.15380 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 1.790400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.79040 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 42.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 0.695545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 0.695545 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -4.532818 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.53282 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 2.681273 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 2.68127 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 56.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -0.009600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -0.960000E-02 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -7.968200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.96820 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = 1.656600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.65660 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 63.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 1.538545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 1.53855 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -11.855364 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -11.8554 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 0.507818 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 0.507818 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 78.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -2.228400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -2.22840 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -13.336600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -13.3366 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 2.702100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 2.70210 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 94.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -0.918909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -0.918909 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -17.387727 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -17.3877 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 2.872455 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 2.87245 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 111.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -7.058833 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -7.05883 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -20.413444 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -20.4134 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = 4.260056 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 4.26006 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 131.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -4.571000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -4.57100 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -23.766500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -23.7665 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 5.576000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 5.57600 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 148.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -8.928818 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -8.92882 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -25.755909 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -25.7559 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 4.643727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 4.64373 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 170.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = -9.110375 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -9.11037 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = -29.210625 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -29.2106 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = 6.110000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 6.11000 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 184.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -8.074222 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -8.07422 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -31.445611 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -31.4456 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = 1.059278 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.05928 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 204.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -12.626545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -12.6265 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -33.682818 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -33.6828 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 3.590091 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 3.59009 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 223.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -12.948222 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -12.9482 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -37.000556 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -37.0006 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = 0.115444 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 0.115444 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 234.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -16.924091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -16.9241 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -36.961273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -36.9613 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 2.841545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 2.84155 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 249.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -17.290818 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -17.2908 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -32.561273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -32.5613 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 1.202727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.20273 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 271.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -13.211667 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -13.2117 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -32.986667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -32.9867 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -2.114111 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.11411 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 282.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -15.631778 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -15.6318 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -36.530444 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -36.5304 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -3.477000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.47700 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 293.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -17.788091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -17.7881 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -34.606364 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -34.6064 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -7.050364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.05036 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 315.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -17.416667 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -17.4167 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -31.167667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -31.1677 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -3.831222 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.83122 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 326.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -15.192818 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -15.1928 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -27.153909 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -27.1539 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -2.658182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.65818 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 345.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -15.498455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -15.4985 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -27.284364 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -27.2844 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 1.810364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.81036 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 360.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -16.355273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -16.3553 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -22.436273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -22.4363 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 0.945727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 0.945727 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 379.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = -14.760625 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -14.7606 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = -21.347875 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -21.3479 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = 4.585000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 4.58500 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 393.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -18.113273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -18.1133 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -19.060000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -19.0600 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 6.961545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 6.96155 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 412.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -14.187600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -14.1876 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -17.158000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -17.1580 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = 6.915600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 6.91560 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 419.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -11.747944 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -11.7479 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -17.132444 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -17.1324 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = 2.291611 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 2.29161 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 439.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -17.830900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -17.8309 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -15.990800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -15.9908 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 3.095700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 3.09570 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 453.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -17.228364 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -17.2284 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -12.236636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -12.2366 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 5.953909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 5.95391 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 468.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = -10.898526 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -10.8985 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = -11.959158 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -11.9592 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = 3.830105 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 3.83011 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 489.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -16.057056 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -16.0571 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -14.217111 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.2171 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -0.630667 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.630667 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 509.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = -16.068500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -16.0685 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = -9.488000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.48800 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = -2.523375 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.52338 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 523.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1677 SHOW: average of selected elements = -18.638571 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -18.6386 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1677 SHOW: average of selected elements = -6.638571 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -6.63857 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1677 SHOW: average of selected elements = -2.095429 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.09543 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 533.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = -19.581500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -19.5815 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = -7.320000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.32000 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = -5.279125 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -5.27913 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 547.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -22.310778 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -22.3108 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -12.601667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -12.6017 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -7.506222 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.50622 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 567.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = -18.861875 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -18.8619 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = -13.219125 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -13.2191 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = -7.414125 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.41413 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 581.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -19.210545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -19.2105 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -14.319000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.3190 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -11.712909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.7129 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 600.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -16.174818 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -16.1748 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -16.722364 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -16.7224 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -12.542273 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -12.5423 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 614.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -12.739900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -12.7399 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -17.887200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -17.8872 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -10.397200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -10.3972 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 630.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -9.436600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -9.43660 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -18.837300 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -18.8373 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -12.737700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -12.7377 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 642.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -7.877909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -7.87791 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -21.891727 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -21.8917 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -9.490545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.49055 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 661.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -3.439909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -3.43991 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -22.193273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -22.1933 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -11.045545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.0455 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 680.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -2.419600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -2.41960 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -26.883200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -26.8832 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -10.737700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -10.7377 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 692.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = 2.671684 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 2.67168 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = -28.921947 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -28.9219 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = -8.427737 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -8.42774 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 713.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = 0.470889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 0.470889 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -28.796556 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -28.7966 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -14.160222 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -14.1602 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 724.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -0.815600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -0.815600 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -26.997800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -26.9978 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -16.979400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -16.9794 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 731.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = -4.039286 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -4.03929 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = -29.387429 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -29.3874 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = -17.724786 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -17.7248 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 755.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -6.675556 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -6.67556 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -25.044889 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -25.0449 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -16.684889 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -16.6849 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 766.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1677 SHOW: average of selected elements = -8.424545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -8.42455 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1677 SHOW: average of selected elements = -26.827727 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -26.8277 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1677 SHOW: average of selected elements = -12.997000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -12.9970 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 790.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -13.406545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -13.4065 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -23.141182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -23.1412 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -15.324091 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -15.3241 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 804.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -14.062300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -14.0623 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -22.783600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -22.7836 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -10.833500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -10.8335 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 820.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = -19.818214 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -19.8182 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = -21.236000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -21.2360 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = -12.254214 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -12.2542 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 844.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -18.335300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -18.3353 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -19.395400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -19.3954 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -6.884600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.88460 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 861.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -22.768455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -22.7685 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -20.331000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -20.3310 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -7.502182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.50218 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 883.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -23.396000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -23.3960 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -17.545636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -17.5456 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -3.611636 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.61164 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 905.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = -28.795071 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -28.7951 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = -21.943429 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -21.9434 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = -3.355786 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.35579 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 929.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -27.825200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -27.8252 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -19.571200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -19.5712 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = 1.165400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.16540 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 936.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -26.331545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -26.3315 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -19.250091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -19.2501 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 5.562182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 5.56218 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 951.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -22.266182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -22.2662 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -22.017909 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -22.0179 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 3.484636 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 3.48464 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 973.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -20.453600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -20.4536 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -20.594200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -20.5942 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -0.273500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.273500 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 989.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -21.032556 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -21.0326 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -24.967667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -24.9677 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -0.348889 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.348889 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1009.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -17.305545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -17.3055 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -24.554727 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -24.5547 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -5.809000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -5.80900 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1028.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -20.435455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -20.4355 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -26.190091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -26.1901 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -8.406545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -8.40655 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1042.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -19.347800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -19.3478 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -27.548500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -27.5485 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -11.831400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.8314 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1058.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -15.210200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -15.2102 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -27.682600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -27.6826 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -11.883200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.8832 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1065.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1677 SHOW: average of selected elements = -12.505591 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -12.5056 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1677 SHOW: average of selected elements = -28.390455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -28.3905 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1677 SHOW: average of selected elements = -6.289909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.28991 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1089.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -15.402636 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -15.4026 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -32.265091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -32.2651 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -10.704273 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -10.7043 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1104.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -12.356600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -12.3566 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -31.076600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -31.0766 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -13.236900 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -13.2369 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1118.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -8.368167 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -8.36817 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -28.182889 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -28.1829 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -8.749944 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -8.74994 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1138.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -10.751400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -10.7514 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -32.044600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -32.0446 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -7.315200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.31520 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1154.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -10.208182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -10.2082 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -36.160000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -36.1600 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -10.094273 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -10.0943 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1176.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -6.562700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -6.56270 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -32.767600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -32.7676 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -11.458600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.4586 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1188.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -4.745500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -4.74550 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -32.677600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -32.6776 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -7.872600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.87260 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1202.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -7.196200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -7.19620 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -36.567800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -36.5678 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -6.207600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.20760 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1216.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -7.554364 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -7.55436 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -33.019545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -33.0195 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -4.047182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -4.04718 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1235.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -8.525182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -8.52518 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -38.028909 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -38.0289 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -1.801727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -1.80173 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1250.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -8.187100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -8.18710 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -38.808800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -38.8088 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 1.993300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.99330 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1262.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -4.339600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -4.33960 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -36.878000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -36.8780 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = 2.813600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 2.81360 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1269.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -2.714545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -2.71455 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -34.993818 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -34.9938 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 0.236545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 0.236545 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1291.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = -2.604211 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -2.60421 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = -31.503842 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -31.5038 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = 4.521316 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 4.52132 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1312.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -5.490636 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -5.49064 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -27.488545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -27.4885 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 1.346636 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.34664 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1331.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -2.038091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -2.03809 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -24.048182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -24.0482 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 1.011000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.01100 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1348.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -6.241722 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -6.24172 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -21.929444 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -21.9294 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -0.946556 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.946556 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1368.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -1.134818 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -1.13482 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -18.671273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -18.6713 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -2.119455 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.11945 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1387.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = -5.048368 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -5.04837 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = -12.976842 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -12.9768 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = -1.934895 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -1.93489 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1408.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -0.818900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -0.818900 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -11.602000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -11.6020 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -3.206400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.20640 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1420.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = -4.411643 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -4.41164 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = -7.897571 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.89757 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = -3.131429 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.13143 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1444.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -4.900200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -4.90020 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -10.702900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.7029 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -8.321000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -8.32100 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1456.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = -9.567786 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -9.56779 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = -11.671429 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -11.6714 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = -9.848571 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.84857 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1480.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -5.087455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -5.08745 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -15.854545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -15.8545 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -9.811545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.81155 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1494.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -6.785889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -6.78589 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -18.409278 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -18.4093 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -5.295833 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -5.29583 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1514.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = -1.162211 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -1.16221 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = -19.419053 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -19.4191 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = -8.372684 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -8.37268 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1535.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -2.767700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -2.76770 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -25.073100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -25.0731 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -5.986500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -5.98650 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1551.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 0.761000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 0.761000 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -26.131545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -26.1315 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -3.328091 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.32809 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1570.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 0.396000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 0.396000 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -30.328545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -30.3285 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -3.548091 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.54809 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1589.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = 2.785263 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 2.78526 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = -29.384474 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -29.3845 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = 0.785526 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 0.785526 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1610.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = 5.904800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 5.90480 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -33.812000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -33.8120 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -1.403800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -1.40380 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1617.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1677 SHOW: average of selected elements = 7.738533 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 7.73853 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1677 SHOW: average of selected elements = -37.951667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -37.9517 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1677 SHOW: average of selected elements = -4.104533 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -4.10453 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1635.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 8.845200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 8.84520 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -34.408900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -34.4089 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -7.243700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.24370 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1649.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 7.573300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 7.57330 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -38.218600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -38.2186 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -9.302700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.30270 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1666.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = 10.030500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 10.0305 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = -36.776125 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -36.7761 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = -12.489625 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -12.4896 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) CNSsolve> evaluate ($ave_x=$result) CNSsolve> show ave(y) (byres(id $id) and known) CNSsolve> evaluate ($ave_y=$result) CNSsolve> show ave(z) (byres(id $id) and known) CNSsolve> evaluate ($ave_z=$result) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) CNSsolve> do (y=$ave_y) (byres(id $id) and store1) CNSsolve> do (z=$ave_z) (byres(id $id) and store1) CNSsolve> CNSsolve> end loop avco CNSsolve> CNSsolve> do (x=x+random(2.0)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> do (y=y+random(2.0)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> do (z=z+random(2.0)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> CNSsolve> {- start parameter for the side chain building -} CNSsolve> parameter PARRDR> nbonds NBDSET> rcon=20. nbxmod=-2 repel=0.9 wmin=0.1 tolerance=1. NBDSET> rexp=2 irexp=2 inhibit=0.25 NBDSET> end PARRDR> end CNSsolve> CNSsolve> {- Friction coefficient, in 1/ps. -} CNSsolve> do (fbeta=100) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> CNSsolve> evaluate ($bath=300.0) EVALUATE: symbol $BATH set to 300.000 (real) CNSsolve> evaluate ($nstep=500) EVALUATE: symbol $NSTEP set to 500.000 (real) CNSsolve> evaluate ($timestep=0.0005) EVALUATE: symbol $TIMESTEP set to 0.500000E-03 (real) CNSsolve> CNSsolve> do (refy=mass) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> CNSsolve> do (mass=20) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> CNSsolve> igroup interaction SELRPN> (store1) (store1 or known) SELRPN: 830 atoms have been selected out of 1677 SELRPN: 1677 atoms have been selected out of 1677 IGROup> end CNSsolve> CNSsolve> {- turn on initial energy terms -} CNSsolve> flags exclude * include bond angle vdw end CNSsolve> CNSsolve> minimize powell nstep=50 nprint=10 end POWELL: number of degrees of freedom= 2490 NBONDS: generating intra-molecular exclusion list with mode=-2 MAKINB: mode -2 found 830 exclusions and 0 interactions(1-4) %atoms " -9 -PHE -HD2 " and " -9 -PHE -HZ " only 0.10 A apart %atoms " -11 -LYS -HA " and " -11 -LYS -HZ1 " only 0.05 A apart %atoms " -22 -LEU -HD11" and " -22 -LEU -HD22" only 0.06 A apart %atoms " -28 -PHE -HE1 " and " -28 -PHE -HE2 " only 0.09 A apart %atoms " -48 -ARG -HD2 " and " -48 -ARG -HH11" only 0.09 A apart %atoms " -55 -LYS -HD1 " and " -55 -LYS -HE1 " only 0.08 A apart %atoms " -68 -GLU -HN " and " -68 -GLU -HG2 " only 0.07 A apart %atoms " -85 -ILE -HG11" and " -85 -ILE -HG23" only 0.07 A apart %atoms " -88 -ARG -HH12" and " -88 -ARG -HH22" only 0.07 A apart %atoms " -93 -TYR -HD2 " and " -93 -TYR -HE1 " only 0.07 A apart %atoms " -94 -VAL -HN " and " -94 -VAL -HG21" only 0.07 A apart NBONDS: found 102333 intra-atom interactions NBONDS: found 11 nonbonded violations %atoms " -71 -VAL -HA " and " -71 -VAL -HG23" only 0.07 A apart %atoms " -88 -ARG -NE " and " -88 -ARG -HH11" only 0.09 A apart NBONDS: found 100228 intra-atom interactions NBONDS: found 2 nonbonded violations NBONDS: found 95374 intra-atom interactions NBONDS: found 92838 intra-atom interactions NBONDS: found 93285 intra-atom interactions --------------- cycle= 10 ------ stepsize= 0.0000 ----------------------- | Etotal =461464.901 grad(E)=623.466 E(BOND)=82853.532 E(ANGL)=216736.265 | | E(VDW )=161875.103 | ------------------------------------------------------------------------------- NBONDS: found 93726 intra-atom interactions NBONDS: found 93777 intra-atom interactions NBONDS: found 93686 intra-atom interactions --------------- cycle= 20 ------ stepsize= 0.0000 ----------------------- | Etotal =157524.791 grad(E)=336.497 E(BOND)=24253.125 E(ANGL)=53957.614 | | E(VDW )=79314.052 | ------------------------------------------------------------------------------- NBONDS: found 93833 intra-atom interactions NBONDS: found 93836 intra-atom interactions NBONDS: found 93848 intra-atom interactions --------------- cycle= 30 ------ stepsize= 0.0000 ----------------------- | Etotal =129791.498 grad(E)=302.758 E(BOND)=20778.455 E(ANGL)=38849.690 | | E(VDW )=70163.354 | ------------------------------------------------------------------------------- NBONDS: found 93848 intra-atom interactions --------------- cycle= 40 ------ stepsize= -0.0001 ----------------------- | Etotal =128795.795 grad(E)=302.274 E(BOND)=20872.906 E(ANGL)=38464.151 | | E(VDW )=69458.738 | ------------------------------------------------------------------------------- --------------- cycle= 50 ------ stepsize= 0.0000 ----------------------- | Etotal =128555.679 grad(E)=302.135 E(BOND)=20984.164 E(ANGL)=38394.727 | | E(VDW )=69176.788 | ------------------------------------------------------------------------------- POWELL: STEP number limit. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> CNSsolve> flags exclude vdw include impr end CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=50 Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=539598.993 E(kin)=768.346 temperature=310.562 | | Etotal =538830.647 grad(E)=710.284 E(BOND)=20984.164 E(ANGL)=38394.727 | | E(IMPR)=479451.757 | ------------------------------------------------------------------------------- -------------------- final step= 50 at 0.02500 ps --------------------- | E(kin)+E(total)=353960.587 E(kin)=53665.061 temperature=21691.154 | | Etotal =300295.525 grad(E)=414.273 E(BOND)=37901.367 E(ANGL)=112665.803 | | E(IMPR)=149728.356 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : -10.08128 -23.31842 -3.91279 velocity [A/ps] : 0.88604 0.08081 -1.67439 ang. mom. [amu A/ps] : 308065.91315 -27694.04346 -60212.28152 kin. ener. [Kcal/mol] : 71.31969 CNSsolve> CNSsolve> flags include vdw end CNSsolve> CNSsolve> minimize powell nstep=50 nprint=10 end POWELL: number of degrees of freedom= 2490 NBONDS: found 93682 intra-atom interactions NBONDS: found 93626 intra-atom interactions NBONDS: found 93731 intra-atom interactions NBONDS: found 93533 intra-atom interactions NBONDS: found 93552 intra-atom interactions --------------- cycle= 10 ------ stepsize= 0.0006 ----------------------- | Etotal =367672.984 grad(E)=612.120 E(BOND)=137815.384 E(ANGL)=78251.116 | | E(IMPR)=111838.434 E(VDW )=39768.050 | ------------------------------------------------------------------------------- NBONDS: found 93620 intra-atom interactions NBONDS: found 93873 intra-atom interactions NBONDS: found 93941 intra-atom interactions NBONDS: found 93854 intra-atom interactions --------------- cycle= 20 ------ stepsize= 0.0004 ----------------------- | Etotal =177152.616 grad(E)=275.820 E(BOND)=23898.435 E(ANGL)=31171.304 | | E(IMPR)=78966.217 E(VDW )=43116.660 | ------------------------------------------------------------------------------- NBONDS: found 93845 intra-atom interactions NBONDS: found 93865 intra-atom interactions --------------- cycle= 30 ------ stepsize= 0.0001 ----------------------- | Etotal =164827.821 grad(E)=396.473 E(BOND)=18935.708 E(ANGL)=25912.636 | | E(IMPR)=76404.863 E(VDW )=43574.615 | ------------------------------------------------------------------------------- --------------- cycle= 40 ------ stepsize= 0.0000 ----------------------- | Etotal =160715.525 grad(E)=260.674 E(BOND)=18935.922 E(ANGL)=25952.545 | | E(IMPR)=72140.153 E(VDW )=43686.905 | ------------------------------------------------------------------------------- --------------- cycle= 50 ------ stepsize= 0.0000 ----------------------- | Etotal =160711.516 grad(E)=260.670 E(BOND)=18935.820 E(ANGL)=25952.097 | | E(IMPR)=72137.772 E(VDW )=43685.828 | ------------------------------------------------------------------------------- POWELL: STEP number limit. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=50 Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=161471.151 E(kin)=759.635 temperature=307.041 | | Etotal =160711.516 grad(E)=260.670 E(BOND)=18935.820 E(ANGL)=25952.097 | | E(IMPR)=72137.772 E(VDW )=43685.828 | ------------------------------------------------------------------------------- NBONDS: found 93888 intra-atom interactions NBONDS: found 93935 intra-atom interactions NBONDS: found 93877 intra-atom interactions NBONDS: found 93894 intra-atom interactions -------------------- final step= 50 at 0.02500 ps --------------------- | E(kin)+E(total)=154141.308 E(kin)=5304.394 temperature=2144.010 | | Etotal =148836.914 grad(E)=273.519 E(BOND)=20496.429 E(ANGL)=24470.197 | | E(IMPR)=61306.753 E(VDW )=42563.535 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : -10.07473 -23.30190 -3.90555 velocity [A/ps] : 0.47191 0.47800 -0.33532 ang. mom. [amu A/ps] : -34003.78958 -19610.54568 -50911.15429 kin. ener. [Kcal/mol] : 11.18085 CNSsolve> CNSsolve> parameter PARRDR> nbonds NBDSET> rcon=2. nbxmod=-3 repel=0.75 NBDSET> end PARRDR> end CNSsolve> CNSsolve> minimize powell nstep=100 nprint=25 end POWELL: number of degrees of freedom= 2490 NBONDS: generating intra-molecular exclusion list with mode=-3 MAKINB: mode -3 found 2719 exclusions and 0 interactions(1-4) NBONDS: found 92024 intra-atom interactions NBONDS: found 92585 intra-atom interactions NBONDS: found 92594 intra-atom interactions NBONDS: found 92479 intra-atom interactions NBONDS: found 92529 intra-atom interactions --------------- cycle= 25 ------ stepsize= 0.0000 ----------------------- | Etotal =53112.746 grad(E)=95.706 E(BOND)=2121.769 E(ANGL)=14610.073 | | E(IMPR)=36374.667 E(VDW )=6.237 | ------------------------------------------------------------------------------- --------------- cycle= 50 ------ stepsize= 0.0000 ----------------------- | Etotal =53018.452 grad(E)=95.165 E(BOND)=2128.314 E(ANGL)=14512.736 | | E(IMPR)=36371.270 E(VDW )=6.132 | ------------------------------------------------------------------------------- POWELL: Line search terminated POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=$nstep Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=53762.205 E(kin)=743.757 temperature=300.623 | | Etotal =53018.448 grad(E)=95.165 E(BOND)=2128.314 E(ANGL)=14512.735 | | E(IMPR)=36371.268 E(VDW )=6.132 | ------------------------------------------------------------------------------- NBONDS: found 92530 intra-atom interactions NBONDS: found 92547 intra-atom interactions NBONDS: found 92502 intra-atom interactions NBONDS: found 92488 intra-atom interactions NBONDS: found 92504 intra-atom interactions NBONDS: found 92510 intra-atom interactions NBONDS: found 92547 intra-atom interactions NBONDS: found 92568 intra-atom interactions NBONDS: found 92564 intra-atom interactions NBONDS: found 92568 intra-atom interactions NBONDS: found 92569 intra-atom interactions NBONDS: found 92566 intra-atom interactions NBONDS: found 92608 intra-atom interactions NBONDS: found 92570 intra-atom interactions NBONDS: found 92573 intra-atom interactions NBONDS: found 92587 intra-atom interactions NBONDS: found 92639 intra-atom interactions NBONDS: found 92678 intra-atom interactions NBONDS: found 92658 intra-atom interactions NBONDS: found 92642 intra-atom interactions NBONDS: found 92627 intra-atom interactions NBONDS: found 92631 intra-atom interactions NBONDS: found 92571 intra-atom interactions NBONDS: found 92553 intra-atom interactions NBONDS: found 92549 intra-atom interactions NBONDS: found 92542 intra-atom interactions NBONDS: found 92568 intra-atom interactions NBONDS: found 92580 intra-atom interactions NBONDS: found 92628 intra-atom interactions NBONDS: found 92588 intra-atom interactions NBONDS: found 92577 intra-atom interactions NBONDS: found 92556 intra-atom interactions NBONDS: found 92580 intra-atom interactions NBONDS: found 92595 intra-atom interactions NBONDS: found 92610 intra-atom interactions NBONDS: found 92628 intra-atom interactions NBONDS: found 92641 intra-atom interactions NBONDS: found 92605 intra-atom interactions NBONDS: found 92583 intra-atom interactions NBONDS: found 92568 intra-atom interactions NBONDS: found 92584 intra-atom interactions NBONDS: found 92613 intra-atom interactions NBONDS: found 92586 intra-atom interactions NBONDS: found 92586 intra-atom interactions NBONDS: found 92593 intra-atom interactions NBONDS: found 92587 intra-atom interactions NBONDS: found 92595 intra-atom interactions -------------------- final step= 500 at 0.25000 ps --------------------- | E(kin)+E(total)=10351.915 E(kin)=3030.139 temperature=1224.767 | | Etotal =7321.776 grad(E)=115.432 E(BOND)=996.727 E(ANGL)=2440.248 | | E(IMPR)=3871.878 E(VDW )=12.923 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : -10.06629 -23.30010 -3.91722 velocity [A/ps] : -0.28161 -0.06726 0.07679 ang. mom. [amu A/ps] : -21372.59217 71658.09670 -11598.60589 kin. ener. [Kcal/mol] : 1.77993 CNSsolve> CNSsolve> {- turn on all energy terms -} CNSsolve> flags include dihe ? end EFLAGS: the following energy flags are set EFLAGS: BOND ANGL DIHE IMPR VDW CNSsolve> CNSsolve> {- set repel to ~vdw radii -} CNSsolve> parameter PARRDR> nbonds NBDSET> repel=0.89 NBDSET> end PARRDR> end CNSsolve> CNSsolve> minimize powell nstep=500 nprint=50 end POWELL: number of degrees of freedom= 2490 NBONDS: generating intra-molecular exclusion list with mode=-3 MAKINB: mode -3 found 2719 exclusions and 0 interactions(1-4) NBONDS: found 92584 intra-atom interactions NBONDS: found 92584 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0000 ----------------------- | Etotal =6031.633 grad(E)=217.255 E(BOND)=71.437 E(ANGL)=1730.118 | | E(DIHE)=73.398 E(IMPR)=4075.300 E(VDW )=81.380 | ------------------------------------------------------------------------------- POWELL: Line search terminated POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> flags exclude * include bond angl impr dihe vdw end CNSsolve> CNSsolve> {- return masses to something sensible -} CNSsolve> do (mass=refy) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=$nstep Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=4972.519 E(kin)=725.515 temperature=293.250 | | Etotal =4247.004 grad(E)=69.872 E(BOND)=71.437 E(ANGL)=1730.118 | | E(DIHE)=73.398 E(IMPR)=2290.672 E(VDW )=81.380 | ------------------------------------------------------------------------------- NBONDS: found 92649 intra-atom interactions NBONDS: found 92668 intra-atom interactions NBONDS: found 92615 intra-atom interactions NBONDS: found 92571 intra-atom interactions NBONDS: found 92567 intra-atom interactions NBONDS: found 92596 intra-atom interactions NBONDS: found 92584 intra-atom interactions NBONDS: found 92556 intra-atom interactions NBONDS: found 92554 intra-atom interactions NBONDS: found 92550 intra-atom interactions NBONDS: found 92541 intra-atom interactions NBONDS: found 92566 intra-atom interactions NBONDS: found 92625 intra-atom interactions NBONDS: found 92599 intra-atom interactions NBONDS: found 92556 intra-atom interactions NBONDS: found 92541 intra-atom interactions NBONDS: found 92529 intra-atom interactions NBONDS: found 92534 intra-atom interactions NBONDS: found 92545 intra-atom interactions NBONDS: found 92556 intra-atom interactions NBONDS: found 92554 intra-atom interactions NBONDS: found 92570 intra-atom interactions NBONDS: found 92575 intra-atom interactions NBONDS: found 92598 intra-atom interactions NBONDS: found 92606 intra-atom interactions NBONDS: found 92597 intra-atom interactions NBONDS: found 92590 intra-atom interactions NBONDS: found 92574 intra-atom interactions NBONDS: found 92550 intra-atom interactions NBONDS: found 92538 intra-atom interactions NBONDS: found 92557 intra-atom interactions NBONDS: found 92576 intra-atom interactions NBONDS: found 92576 intra-atom interactions NBONDS: found 92595 intra-atom interactions NBONDS: found 92591 intra-atom interactions NBONDS: found 92592 intra-atom interactions NBONDS: found 92583 intra-atom interactions NBONDS: found 92588 intra-atom interactions NBONDS: found 92593 intra-atom interactions NBONDS: found 92573 intra-atom interactions NBONDS: found 92560 intra-atom interactions NBONDS: found 92546 intra-atom interactions NBONDS: found 92571 intra-atom interactions NBONDS: found 92579 intra-atom interactions NBONDS: found 92591 intra-atom interactions NBONDS: found 92581 intra-atom interactions NBONDS: found 92598 intra-atom interactions NBONDS: found 92575 intra-atom interactions NBONDS: found 92570 intra-atom interactions NBONDS: found 92549 intra-atom interactions NBONDS: found 92553 intra-atom interactions NBONDS: found 92557 intra-atom interactions NBONDS: found 92567 intra-atom interactions NBONDS: found 92566 intra-atom interactions NBONDS: found 92550 intra-atom interactions NBONDS: found 92557 intra-atom interactions NBONDS: found 92569 intra-atom interactions NBONDS: found 92582 intra-atom interactions NBONDS: found 92583 intra-atom interactions NBONDS: found 92582 intra-atom interactions NBONDS: found 92562 intra-atom interactions NBONDS: found 92555 intra-atom interactions NBONDS: found 92560 intra-atom interactions NBONDS: found 92566 intra-atom interactions NBONDS: found 92576 intra-atom interactions NBONDS: found 92545 intra-atom interactions NBONDS: found 92531 intra-atom interactions NBONDS: found 92515 intra-atom interactions NBONDS: found 92527 intra-atom interactions NBONDS: found 92544 intra-atom interactions NBONDS: found 92557 intra-atom interactions NBONDS: found 92597 intra-atom interactions NBONDS: found 92604 intra-atom interactions NBONDS: found 92595 intra-atom interactions NBONDS: found 92579 intra-atom interactions NBONDS: found 92571 intra-atom interactions NBONDS: found 92577 intra-atom interactions NBONDS: found 92597 intra-atom interactions NBONDS: found 92603 intra-atom interactions NBONDS: found 92596 intra-atom interactions NBONDS: found 92570 intra-atom interactions NBONDS: found 92545 intra-atom interactions NBONDS: found 92547 intra-atom interactions NBONDS: found 92548 intra-atom interactions NBONDS: found 92571 intra-atom interactions NBONDS: found 92607 intra-atom interactions NBONDS: found 92640 intra-atom interactions NBONDS: found 92640 intra-atom interactions NBONDS: found 92603 intra-atom interactions NBONDS: found 92565 intra-atom interactions %atoms " -39 -THR -HG23" and " -53 -ARG -HE " only 0.09 A apart NBONDS: found 92560 intra-atom interactions NBONDS: found 1 nonbonded violations NBONDS: found 92564 intra-atom interactions NBONDS: found 92562 intra-atom interactions NBONDS: found 92543 intra-atom interactions NBONDS: found 92520 intra-atom interactions NBONDS: found 92508 intra-atom interactions NBONDS: found 92506 intra-atom interactions NBONDS: found 92515 intra-atom interactions NBONDS: found 92534 intra-atom interactions NBONDS: found 92556 intra-atom interactions NBONDS: found 92574 intra-atom interactions NBONDS: found 92570 intra-atom interactions NBONDS: found 92569 intra-atom interactions NBONDS: found 92575 intra-atom interactions NBONDS: found 92584 intra-atom interactions NBONDS: found 92565 intra-atom interactions NBONDS: found 92551 intra-atom interactions NBONDS: found 92540 intra-atom interactions NBONDS: found 92515 intra-atom interactions NBONDS: found 92474 intra-atom interactions NBONDS: found 92506 intra-atom interactions NBONDS: found 92530 intra-atom interactions NBONDS: found 92576 intra-atom interactions NBONDS: found 92596 intra-atom interactions NBONDS: found 92634 intra-atom interactions NBONDS: found 92660 intra-atom interactions NBONDS: found 92620 intra-atom interactions NBONDS: found 92577 intra-atom interactions NBONDS: found 92541 intra-atom interactions NBONDS: found 92534 intra-atom interactions NBONDS: found 92519 intra-atom interactions NBONDS: found 92503 intra-atom interactions NBONDS: found 92506 intra-atom interactions NBONDS: found 92535 intra-atom interactions NBONDS: found 92542 intra-atom interactions NBONDS: found 92547 intra-atom interactions NBONDS: found 92568 intra-atom interactions NBONDS: found 92598 intra-atom interactions NBONDS: found 92589 intra-atom interactions NBONDS: found 92579 intra-atom interactions NBONDS: found 92547 intra-atom interactions NBONDS: found 92548 intra-atom interactions NBONDS: found 92541 intra-atom interactions NBONDS: found 92553 intra-atom interactions NBONDS: found 92563 intra-atom interactions NBONDS: found 92579 intra-atom interactions NBONDS: found 92586 intra-atom interactions NBONDS: found 92595 intra-atom interactions NBONDS: found 92613 intra-atom interactions NBONDS: found 92606 intra-atom interactions NBONDS: found 92585 intra-atom interactions NBONDS: found 92555 intra-atom interactions NBONDS: found 92534 intra-atom interactions NBONDS: found 92516 intra-atom interactions NBONDS: found 92509 intra-atom interactions NBONDS: found 92530 intra-atom interactions NBONDS: found 92538 intra-atom interactions NBONDS: found 92561 intra-atom interactions NBONDS: found 92573 intra-atom interactions NBONDS: found 92588 intra-atom interactions NBONDS: found 92589 intra-atom interactions NBONDS: found 92589 intra-atom interactions NBONDS: found 92572 intra-atom interactions NBONDS: found 92546 intra-atom interactions NBONDS: found 92526 intra-atom interactions NBONDS: found 92508 intra-atom interactions NBONDS: found 92488 intra-atom interactions NBONDS: found 92501 intra-atom interactions NBONDS: found 92517 intra-atom interactions NBONDS: found 92532 intra-atom interactions NBONDS: found 92549 intra-atom interactions NBONDS: found 92559 intra-atom interactions NBONDS: found 92558 intra-atom interactions NBONDS: found 92556 intra-atom interactions NBONDS: found 92575 intra-atom interactions NBONDS: found 92583 intra-atom interactions NBONDS: found 92559 intra-atom interactions NBONDS: found 92549 intra-atom interactions NBONDS: found 92529 intra-atom interactions NBONDS: found 92518 intra-atom interactions NBONDS: found 92506 intra-atom interactions NBONDS: found 92501 intra-atom interactions NBONDS: found 92519 intra-atom interactions NBONDS: found 92524 intra-atom interactions NBONDS: found 92528 intra-atom interactions NBONDS: found 92525 intra-atom interactions NBONDS: found 92561 intra-atom interactions NBONDS: found 92586 intra-atom interactions NBONDS: found 92589 intra-atom interactions NBONDS: found 92585 intra-atom interactions NBONDS: found 92576 intra-atom interactions NBONDS: found 92553 intra-atom interactions NBONDS: found 92516 intra-atom interactions NBONDS: found 92502 intra-atom interactions NBONDS: found 92509 intra-atom interactions NBONDS: found 92508 intra-atom interactions NBONDS: found 92503 intra-atom interactions NBONDS: found 92510 intra-atom interactions NBONDS: found 92513 intra-atom interactions NBONDS: found 92545 intra-atom interactions NBONDS: found 92577 intra-atom interactions NBONDS: found 92587 intra-atom interactions NBONDS: found 92594 intra-atom interactions NBONDS: found 92572 intra-atom interactions NBONDS: found 92557 intra-atom interactions NBONDS: found 92540 intra-atom interactions NBONDS: found 92532 intra-atom interactions NBONDS: found 92526 intra-atom interactions NBONDS: found 92535 intra-atom interactions NBONDS: found 92528 intra-atom interactions NBONDS: found 92524 intra-atom interactions NBONDS: found 92516 intra-atom interactions NBONDS: found 92507 intra-atom interactions NBONDS: found 92525 intra-atom interactions NBONDS: found 92542 intra-atom interactions NBONDS: found 92559 intra-atom interactions NBONDS: found 92559 intra-atom interactions NBONDS: found 92533 intra-atom interactions NBONDS: found 92518 intra-atom interactions NBONDS: found 92497 intra-atom interactions NBONDS: found 92485 intra-atom interactions NBONDS: found 92475 intra-atom interactions NBONDS: found 92486 intra-atom interactions NBONDS: found 92473 intra-atom interactions NBONDS: found 92481 intra-atom interactions NBONDS: found 92489 intra-atom interactions NBONDS: found 92521 intra-atom interactions NBONDS: found 92550 intra-atom interactions NBONDS: found 92576 intra-atom interactions NBONDS: found 92584 intra-atom interactions NBONDS: found 92604 intra-atom interactions NBONDS: found 92597 intra-atom interactions NBONDS: found 92566 intra-atom interactions NBONDS: found 92531 intra-atom interactions NBONDS: found 92511 intra-atom interactions NBONDS: found 92514 intra-atom interactions NBONDS: found 92511 intra-atom interactions NBONDS: found 92508 intra-atom interactions NBONDS: found 92500 intra-atom interactions NBONDS: found 92505 intra-atom interactions NBONDS: found 92532 intra-atom interactions NBONDS: found 92542 intra-atom interactions NBONDS: found 92552 intra-atom interactions NBONDS: found 92556 intra-atom interactions NBONDS: found 92551 intra-atom interactions NBONDS: found 92530 intra-atom interactions NBONDS: found 92522 intra-atom interactions NBONDS: found 92509 intra-atom interactions NBONDS: found 92518 intra-atom interactions NBONDS: found 92534 intra-atom interactions NBONDS: found 92529 intra-atom interactions NBONDS: found 92514 intra-atom interactions NBONDS: found 92512 intra-atom interactions NBONDS: found 92509 intra-atom interactions NBONDS: found 92516 intra-atom interactions NBONDS: found 92535 intra-atom interactions NBONDS: found 92542 intra-atom interactions NBONDS: found 92557 intra-atom interactions NBONDS: found 92537 intra-atom interactions NBONDS: found 92517 intra-atom interactions NBONDS: found 92510 intra-atom interactions NBONDS: found 92508 intra-atom interactions NBONDS: found 92515 intra-atom interactions NBONDS: found 92532 intra-atom interactions NBONDS: found 92553 intra-atom interactions NBONDS: found 92572 intra-atom interactions NBONDS: found 92559 intra-atom interactions NBONDS: found 92547 intra-atom interactions NBONDS: found 92532 intra-atom interactions NBONDS: found 92537 intra-atom interactions NBONDS: found 92544 intra-atom interactions NBONDS: found 92553 intra-atom interactions NBONDS: found 92562 intra-atom interactions NBONDS: found 92541 intra-atom interactions NBONDS: found 92526 intra-atom interactions NBONDS: found 92504 intra-atom interactions NBONDS: found 92514 intra-atom interactions NBONDS: found 92538 intra-atom interactions NBONDS: found 92551 intra-atom interactions NBONDS: found 92561 intra-atom interactions NBONDS: found 92571 intra-atom interactions NBONDS: found 92580 intra-atom interactions NBONDS: found 92582 intra-atom interactions NBONDS: found 92552 intra-atom interactions NBONDS: found 92533 intra-atom interactions NBONDS: found 92501 intra-atom interactions NBONDS: found 92476 intra-atom interactions NBONDS: found 92484 intra-atom interactions NBONDS: found 92505 intra-atom interactions NBONDS: found 92543 intra-atom interactions NBONDS: found 92553 intra-atom interactions NBONDS: found 92555 intra-atom interactions NBONDS: found 92555 intra-atom interactions NBONDS: found 92559 intra-atom interactions NBONDS: found 92550 intra-atom interactions NBONDS: found 92539 intra-atom interactions NBONDS: found 92539 intra-atom interactions NBONDS: found 92520 intra-atom interactions NBONDS: found 92506 intra-atom interactions NBONDS: found 92511 intra-atom interactions NBONDS: found 92539 intra-atom interactions NBONDS: found 92562 intra-atom interactions NBONDS: found 92576 intra-atom interactions NBONDS: found 92579 intra-atom interactions NBONDS: found 92580 intra-atom interactions NBONDS: found 92569 intra-atom interactions NBONDS: found 92562 intra-atom interactions NBONDS: found 92549 intra-atom interactions NBONDS: found 92540 intra-atom interactions NBONDS: found 92513 intra-atom interactions NBONDS: found 92502 intra-atom interactions NBONDS: found 92520 intra-atom interactions NBONDS: found 92541 intra-atom interactions NBONDS: found 92558 intra-atom interactions NBONDS: found 92553 intra-atom interactions NBONDS: found 92545 intra-atom interactions NBONDS: found 92537 intra-atom interactions NBONDS: found 92529 intra-atom interactions NBONDS: found 92535 intra-atom interactions NBONDS: found 92553 intra-atom interactions NBONDS: found 92554 intra-atom interactions NBONDS: found 92547 intra-atom interactions NBONDS: found 92546 intra-atom interactions NBONDS: found 92547 intra-atom interactions NBONDS: found 92563 intra-atom interactions NBONDS: found 92584 intra-atom interactions NBONDS: found 92586 intra-atom interactions NBONDS: found 92585 intra-atom interactions NBONDS: found 92583 intra-atom interactions NBONDS: found 92555 intra-atom interactions NBONDS: found 92545 intra-atom interactions NBONDS: found 92547 intra-atom interactions NBONDS: found 92547 intra-atom interactions NBONDS: found 92530 intra-atom interactions NBONDS: found 92528 intra-atom interactions NBONDS: found 92558 intra-atom interactions NBONDS: found 92563 intra-atom interactions NBONDS: found 92574 intra-atom interactions NBONDS: found 92572 intra-atom interactions NBONDS: found 92561 intra-atom interactions NBONDS: found 92540 intra-atom interactions NBONDS: found 92520 intra-atom interactions NBONDS: found 92523 intra-atom interactions NBONDS: found 92528 intra-atom interactions NBONDS: found 92540 intra-atom interactions NBONDS: found 92533 intra-atom interactions NBONDS: found 92527 intra-atom interactions NBONDS: found 92548 intra-atom interactions NBONDS: found 92554 intra-atom interactions NBONDS: found 92564 intra-atom interactions NBONDS: found 92556 intra-atom interactions NBONDS: found 92548 intra-atom interactions NBONDS: found 92540 intra-atom interactions NBONDS: found 92524 intra-atom interactions NBONDS: found 92527 intra-atom interactions NBONDS: found 92535 intra-atom interactions NBONDS: found 92539 intra-atom interactions NBONDS: found 92548 intra-atom interactions NBONDS: found 92534 intra-atom interactions NBONDS: found 92528 intra-atom interactions NBONDS: found 92527 intra-atom interactions NBONDS: found 92548 intra-atom interactions NBONDS: found 92562 intra-atom interactions NBONDS: found 92579 intra-atom interactions NBONDS: found 92579 intra-atom interactions NBONDS: found 92564 intra-atom interactions NBONDS: found 92541 intra-atom interactions NBONDS: found 92501 intra-atom interactions NBONDS: found 92510 intra-atom interactions NBONDS: found 92517 intra-atom interactions NBONDS: found 92531 intra-atom interactions NBONDS: found 92520 intra-atom interactions NBONDS: found 92521 intra-atom interactions NBONDS: found 92545 intra-atom interactions NBONDS: found 92559 intra-atom interactions NBONDS: found 92570 intra-atom interactions NBONDS: found 92581 intra-atom interactions NBONDS: found 92582 intra-atom interactions NBONDS: found 92577 intra-atom interactions NBONDS: found 92562 intra-atom interactions NBONDS: found 92562 intra-atom interactions NBONDS: found 92545 intra-atom interactions NBONDS: found 92542 intra-atom interactions NBONDS: found 92528 intra-atom interactions NBONDS: found 92508 intra-atom interactions NBONDS: found 92528 intra-atom interactions NBONDS: found 92558 intra-atom interactions -------------------- final step= 500 at 0.25000 ps --------------------- | E(kin)+E(total)=21793.635 E(kin)=10844.634 temperature=4383.348 | | Etotal =10949.001 grad(E)=136.397 E(BOND)=4701.378 E(ANGL)=4379.738 | | E(DIHE)=6.696 E(IMPR)=1739.525 E(VDW )=121.664 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : -9.33373 -23.69118 -4.17834 velocity [A/ps] : 3.06139 2.77543 -1.00334 ang. mom. [amu A/ps] : 19547.94348 -13964.39063 -31494.69444 kin. ener. [Kcal/mol] : 18.72625 CNSsolve> CNSsolve> {- some final minimisation -} CNSsolve> minimize powell POWELL> nstep=500 POWELL> drop=40.0 POWELL> nprint=50 POWELL> end POWELL: number of degrees of freedom= 2490 NBONDS: found 92555 intra-atom interactions NBONDS: found 92379 intra-atom interactions NBONDS: found 92547 intra-atom interactions NBONDS: found 92494 intra-atom interactions NBONDS: found 92528 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0000 ----------------------- | Etotal =5279.058 grad(E)=197.581 E(BOND)=470.100 E(ANGL)=982.595 | | E(DIHE)=6.696 E(IMPR)=3769.998 E(VDW )=49.669 | ------------------------------------------------------------------------------- POWELL: Line search terminated POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> print thres=0.02 bonds (atom-i |atom-j ) dist. equil. delta energy const. ( 48 NE | 48 HE ) 1.241 0.980 0.261 67.977 1000.000 ( 53 NE | 53 HE ) 0.393 0.980 -0.587 344.646 1000.000 ( 57 NE | 57 HE ) 1.197 0.980 0.217 46.907 1000.000 ( 88 NE | 88 HE ) 1.074 0.980 0.094 8.846 1000.000 Number of violations greater 0.020: 4 RMS deviation= 0.024 CNSsolve> print thres=5. angles (atom-i |atom-j |atom-k ) angle equil. delta energy const. ( 48 CD | 48 NE | 48 HE ) 73.609 118.099 -44.490 301.470 500.000 ( 48 HE | 48 NE | 48 CZ ) 152.930 119.249 33.682 172.786 500.000 ( 53 CD | 53 NE | 53 HE ) 97.404 118.099 -20.695 65.229 500.000 ( 53 HE | 53 NE | 53 CZ ) 129.742 119.249 10.493 16.771 500.000 ( 57 CD | 57 NE | 57 HE ) 110.825 118.099 -7.274 8.058 500.000 ( 88 CD | 88 NE | 88 HE ) 97.369 118.099 -20.729 65.449 500.000 ( 88 HE | 88 NE | 88 CZ ) 138.409 119.249 19.160 55.912 500.000 ( 90 CD | 90 NE | 90 HE ) 91.853 118.099 -26.246 104.919 500.000 ( 90 HE | 90 NE | 90 CZ ) 143.864 119.249 24.615 92.286 500.000 Number of violations greater 5.000: 9 RMS deviation= 1.848 CNSsolve> CNSsolve> end if CNSsolve> CNSsolve> fix selection=( none ) end SELRPN: 0 atoms have been selected out of 1677 CNSsolve> CNSsolve> end if CNSsolve> CNSsolve> set echo=false end SELRPN: 0 atoms have been selected out of 1677 SHOW: zero atoms selected NEXTCD: condition evaluated as true SELRPN: 0 atoms have been selected out of 1677 CNSsolve> CNSsolve> if (&set_bfactor=true) then NEXTCD: condition evaluated as false CNSsolve> do (b=&bfactor) ( all ) CNSsolve> else CNSsolve> show ave(b) (known and not(store1)) SELRPN: 847 atoms have been selected out of 1677 SHOW: average of selected elements = 0.000000 CNSsolve> do (b=$result) (store1 and (attr b < 0.01)) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> end if CNSsolve> CNSsolve> if (&set_occupancy=true) then NEXTCD: condition evaluated as false CNSsolve> do (q=&occupancy) ( all ) CNSsolve> end if CNSsolve> CNSsolve> set echo=false end SELRPN: 830 atoms have been selected out of 1677 SHOW: sum over selected elements = 830.000000 NEXTCD: condition evaluated as false CNSsolve> CNSsolve> set remarks=reset end CNSsolve> CNSsolve> buffer message BUFFER> to=remarks BUFFER> dump BUFFER> end CNSsolve> CNSsolve> write coordinates output=&coordinate_outfile end ASSFIL: file 1xxx_5_cns.pdb opened. CNSsolve> CNSsolve>stop HEAP: maximum use = 1096884 current use = 0 bytes HEAP: maximum overhead = 936 current overhead = 64 bytes ============================================================ Maximum dynamic memory allocation: 1096884 bytes Maximum dynamic memory overhead: 936 bytes Program started at: 23:47:55 on 26-Dec-04 Program stopped at: 23:48:18 on 26-Dec-04 CPU time used: 23.5700 seconds ============================================================