============================================================ | | | Crystallography & NMR System (CNS) | | CNSsolve | | | ============================================================ Version: 1.1 Status: Developmental version ============================================================ Written by: A.T.Brunger, P.D.Adams, G.M.Clore, W.L.DeLano, P.Gros, R.W.Grosse-Kunstleve, J.-S.Jiang, J.Kuszewski, M.Nilges, N.S.Pannu, R.J.Read, L.M.Rice, T.Simonson, G.L.Warren. Copyright (c) 1997-1999 Yale University ============================================================ Running on machine: cesg-master.biochem.wisc.edu (Linux,32-bit) Program started by: volkman Program started at: 23:42:36 on 26-Dec-04 ============================================================ FFT3C: Using FFTPACK4.1 CNSsolve>define( DEFINE>{* selection of atoms other than hydrogens for which coordinates DEFINE> will be generated *} DEFINE>{* to generate coordinates for all unknown atoms use: (not(known)) *} DEFINE>{===>} atom_build=(not(known)); DEFINE>{============================= output files ================================} DEFINE> DEFINE>{* input coordinate file *} DEFINE>{===>} coordinate_infile="1xxx_12.pdb"; DEFINE> DEFINE>{* output coordinate file *} DEFINE>{===>} coordinate_outfile="1xxx_12_cns.pdb"; DEFINE>) CNSsolve> CNSsolve> checkversion 1.1 Program version= 1.1 File version= 1.1 CNSsolve> CNSsolve> evaluate ($log_level=verbose) Assuming literal string "VERBOSE" EVALUATE: symbol $LOG_LEVEL set to "VERBOSE" (string) CNSsolve> evaluate ($par_nonbonded="PROLSQ") EVALUATE: symbol $PAR_NONBONDED set to "PROLSQ" (string) CNSsolve> CNSsolve> !@generateProtonsJFD.inp CNSsolve> CNSsolve>{===========================================================================} CNSsolve>{ things below this line do not need to be changed } CNSsolve>{===========================================================================} CNSsolve> CNSsolve>remarks changed Tue Sep 2 09:48:07 CDT 2003 CNSsolve>remarks by jfd to include a fes residue CNSsolve> CNSsolve>!@generate_tmoc.inp CNSsolve> CNSsolve>topology reset end CNSsolve>structure reset end Status of internal molecular topology database: -> NATOM= 0(MAXA= 40000) NBOND= 0(MAXB= 40000) -> NTHETA= 0(MAXT= 80000) NGRP= 0(MAXGRP= 40000) -> NPHI= 0(MAXP= 80000) NIMPHI= 0(MAXIMP= 40000) -> NNB= 0(MAXNB= 40000) CNSsolve> CNSsolve>topology RTFRDR>{===>} @TOPPAR:topallhdg5.3.pro ASSFIL: file /u/volkman/waterrefine/toppar/topallhdg5.3.pro opened. RTFRDR>remark file topallhdg.pro version 5.3 date 23-Sept-02 RTFRDR>remark for file parallhdg.pro version 5.3 date 13-Feb-02 or later RTFRDR>remark Geometric energy function parameters for distance geometry and RTFRDR>remark simulated annealing. RTFRDR>remark Author: Michael Nilges, EMBL Heidelberg; Institut Pasteur, Paris RTFRDR>remark This file contains modifications from M. Williams, UCL London RTFRDR>remark Last modification 16-Sept-02 RTFRDR> RTFRDR>set echo off message off end RTFRDR>end CNSsolve> CNSsolve>! no chain id. CNSsolve>segment name=" " SEGMENT> chain CHAIN> @TOPPAR:topallhdg5.3.pep CHAIN>REMARKS TOPH19.pep -MACRO for protein sequence CHAIN>SET ECHO=FALSE END CHAIN> sequence SEQUENCE> @1xxx.seq SEQUENCE>MET SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =TRP SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =TRP SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =CYS SEQUence-element (terminate with END) = end SEGMNT: 102 residues were inserted into segment " " CHAIN> end SEGMENT>end Status of internal molecular topology database: -> NATOM= 1677(MAXA= 40000) NBOND= 1701(MAXB= 40000) -> NTHETA= 3064(MAXT= 80000) NGRP= 104(MAXGRP= 40000) -> NPHI= 2502(MAXP= 80000) NIMPHI= 926(MAXIMP= 40000) -> NNB= 648(MAXNB= 40000) CNSsolve> CNSsolve>! turn peptide from trans to cis CNSsolve>!patch CISP reference=nil=( resid 80 ) end CNSsolve> CNSsolve>coor @&coordinate_infile COOR>HEADER Structures from CYANA 26-12-2004 COOR>REMARK model 12 COOR>ATOM 2149 N MET A 1 1.325 0.000 0.000 1.00 0.00 %READC-ERR: atom 1 MET HN not found in molecular structure %READC-ERR: atom 1 MET 2HB not found in molecular structure %READC-ERR: atom 1 MET 3HB not found in molecular structure %READC-ERR: atom 1 MET QB not found in molecular structure %READC-ERR: atom 1 MET 2HG not found in molecular structure %READC-ERR: atom 1 MET 3HG not found in molecular structure %READC-ERR: atom 1 MET QG not found in molecular structure %READC-ERR: atom 1 MET QE not found in molecular structure %READC-ERR: atom 1 MET 1HE not found in molecular structure %READC-ERR: atom 1 MET 2HE not found in molecular structure %READC-ERR: atom 1 MET 3HE not found in molecular structure %READC-ERR: atom 2 ALA QB not found in molecular structure %READC-ERR: atom 2 ALA 1HB not found in molecular structure %READC-ERR: atom 2 ALA 2HB not found in molecular structure %READC-ERR: atom 2 ALA 3HB not found in molecular structure %READC-ERR: atom 3 ASP 2HB not found in molecular structure %READC-ERR: atom 3 ASP 3HB not found in molecular structure %READC-ERR: atom 3 ASP QB not found in molecular structure %READC-ERR: atom 4 THR QG2 not found in molecular structure %READC-ERR: atom 4 THR 1HG2 not found in molecular structure %READC-ERR: atom 4 THR 2HG2 not found in molecular structure %READC-ERR: atom 4 THR 3HG2 not found in molecular structure %READC-ERR: atom 5 GLY 1HA not found in molecular structure %READC-ERR: atom 5 GLY 2HA not found in molecular structure %READC-ERR: atom 5 GLY QA not found in molecular structure %READC-ERR: atom 6 GLU 2HB not found in molecular structure %READC-ERR: atom 6 GLU 3HB not found in molecular structure %READC-ERR: atom 6 GLU QB not found in molecular structure %READC-ERR: atom 6 GLU 2HG not found in molecular structure %READC-ERR: atom 6 GLU 3HG not found in molecular structure %READC-ERR: atom 6 GLU QG not found in molecular structure %READC-ERR: atom 7 VAL QG1 not found in molecular structure %READC-ERR: atom 7 VAL QG2 not found in molecular structure %READC-ERR: atom 7 VAL 1HG1 not found in molecular structure %READC-ERR: atom 7 VAL 2HG1 not found in molecular structure %READC-ERR: atom 7 VAL 3HG1 not found in molecular structure %READC-ERR: atom 7 VAL 1HG2 not found in molecular structure %READC-ERR: atom 7 VAL 2HG2 not found in molecular structure %READC-ERR: atom 7 VAL 3HG2 not found in molecular structure %READC-ERR: atom 7 VAL QQG not found in molecular structure %READC-ERR: atom 8 GLN 2HB not found in molecular structure %READC-ERR: atom 8 GLN 3HB not found in molecular structure %READC-ERR: atom 8 GLN QB not found in molecular structure %READC-ERR: atom 8 GLN 2HG not found in molecular structure %READC-ERR: atom 8 GLN 3HG not found in molecular structure %READC-ERR: atom 8 GLN QG not found in molecular structure %READC-ERR: atom 8 GLN 1HE2 not found in molecular structure %READC-ERR: atom 8 GLN 2HE2 not found in molecular structure %READC-ERR: atom 8 GLN QE2 not found in molecular structure %READC-ERR: atom 9 PHE 2HB not found in molecular structure %READC-ERR: atom 9 PHE 3HB not found in molecular structure %READC-ERR: atom 9 PHE QB not found in molecular structure %READC-ERR: atom 9 PHE QD not found in molecular structure %READC-ERR: atom 9 PHE QE not found in molecular structure %READC-ERR: atom 9 PHE QR not found in molecular structure %READC-ERR: atom 10 MET 2HB not found in molecular structure %READC-ERR: atom 10 MET 3HB not found in molecular structure %READC-ERR: atom 10 MET QB not found in molecular structure %READC-ERR: atom 10 MET 2HG not found in molecular structure %READC-ERR: atom 10 MET 3HG not found in molecular structure %READC-ERR: atom 10 MET QG not found in molecular structure %READC-ERR: atom 10 MET QE not found in molecular structure %READC-ERR: atom 10 MET 1HE not found in molecular structure %READC-ERR: atom 10 MET 2HE not found in molecular structure %READC-ERR: atom 10 MET 3HE not found in molecular structure %READC-ERR: atom 11 LYS 2HB not found in molecular structure %READC-ERR: atom 11 LYS 3HB not found in molecular structure %READC-ERR: atom 11 LYS QB not found in molecular structure %READC-ERR: atom 11 LYS 2HG not found in molecular structure %READC-ERR: atom 11 LYS 3HG not found in molecular structure %READC-ERR: atom 11 LYS QG not found in molecular structure %READC-ERR: atom 11 LYS 2HD not found in molecular structure %READC-ERR: atom 11 LYS 3HD not found in molecular structure %READC-ERR: atom 11 LYS QD not found in molecular structure %READC-ERR: atom 11 LYS 2HE not found in molecular structure %READC-ERR: atom 11 LYS 3HE not found in molecular structure %READC-ERR: atom 11 LYS QE not found in molecular structure %READC-ERR: atom 11 LYS 1HZ not found in molecular structure %READC-ERR: atom 11 LYS 2HZ not found in molecular structure %READC-ERR: atom 11 LYS 3HZ not found in molecular structure %READC-ERR: atom 11 LYS QZ not found in molecular structure %READC-ERR: atom 12 PRO 2HB not found in molecular structure %READC-ERR: atom 12 PRO 3HB not found in molecular structure %READC-ERR: atom 12 PRO QB not found in molecular structure %READC-ERR: atom 12 PRO 2HG not found in molecular structure %READC-ERR: atom 12 PRO 3HG not found in molecular structure %READC-ERR: atom 12 PRO QG not found in molecular structure %READC-ERR: atom 12 PRO 2HD not found in molecular structure %READC-ERR: atom 12 PRO 3HD not found in molecular structure %READC-ERR: atom 12 PRO QD not found in molecular structure %READC-ERR: atom 13 PHE 2HB not found in molecular structure %READC-ERR: atom 13 PHE 3HB not found in molecular structure %READC-ERR: atom 13 PHE QB not found in molecular structure %READC-ERR: atom 13 PHE QD not found in molecular structure %READC-ERR: atom 13 PHE QE not found in molecular structure %READC-ERR: atom 13 PHE QR not found in molecular structure %READC-ERR: atom 14 ILE QG2 not found in molecular structure %READC-ERR: atom 14 ILE 1HG2 not found in molecular structure %READC-ERR: atom 14 ILE 2HG2 not found in molecular structure %READC-ERR: atom 14 ILE 3HG2 not found in molecular structure %READC-ERR: atom 14 ILE 2HG1 not found in molecular structure %READC-ERR: atom 14 ILE 3HG1 not found in molecular structure %READC-ERR: atom 14 ILE QG1 not found in molecular structure %READC-ERR: atom 14 ILE QD1 not found in molecular structure %READC-ERR: atom 14 ILE 1HD1 not found in molecular structure %READC-ERR: atom 14 ILE 2HD1 not found in molecular structure %READC-ERR: atom 14 ILE 3HD1 not found in molecular structure %READC-ERR: atom 15 SER 2HB not found in molecular structure %READC-ERR: atom 15 SER 3HB not found in molecular structure %READC-ERR: atom 15 SER QB not found in molecular structure %READC-ERR: atom 16 GLU 2HB not found in molecular structure %READC-ERR: atom 16 GLU 3HB not found in molecular structure %READC-ERR: atom 16 GLU QB not found in molecular structure %READC-ERR: atom 16 GLU 2HG not found in molecular structure %READC-ERR: atom 16 GLU 3HG not found in molecular structure %READC-ERR: atom 16 GLU QG not found in molecular structure %READC-ERR: atom 17 LYS 2HB not found in molecular structure %READC-ERR: atom 17 LYS 3HB not found in molecular structure %READC-ERR: atom 17 LYS QB not found in molecular structure %READC-ERR: atom 17 LYS 2HG not found in molecular structure %READC-ERR: atom 17 LYS 3HG not found in molecular structure %READC-ERR: atom 17 LYS QG not found in molecular structure %READC-ERR: atom 17 LYS 2HD not found in molecular structure %READC-ERR: atom 17 LYS 3HD not found in molecular structure %READC-ERR: atom 17 LYS QD not found in molecular structure %READC-ERR: atom 17 LYS 2HE not found in molecular structure %READC-ERR: atom 17 LYS 3HE not found in molecular structure %READC-ERR: atom 17 LYS QE not found in molecular structure %READC-ERR: atom 17 LYS 1HZ not found in molecular structure %READC-ERR: atom 17 LYS 2HZ not found in molecular structure %READC-ERR: atom 17 LYS 3HZ not found in molecular structure %READC-ERR: atom 17 LYS QZ not found in molecular structure %READC-ERR: atom 18 SER 2HB not found in molecular structure %READC-ERR: atom 18 SER 3HB not found in molecular structure %READC-ERR: atom 18 SER QB not found in molecular structure %READC-ERR: atom 19 SER 2HB not found in molecular structure %READC-ERR: atom 19 SER 3HB not found in molecular structure %READC-ERR: atom 19 SER QB not found in molecular structure %READC-ERR: atom 20 LYS 2HB not found in molecular structure %READC-ERR: atom 20 LYS 3HB not found in molecular structure %READC-ERR: atom 20 LYS QB not found in molecular structure %READC-ERR: atom 20 LYS 2HG not found in molecular structure %READC-ERR: atom 20 LYS 3HG not found in molecular structure %READC-ERR: atom 20 LYS QG not found in molecular structure %READC-ERR: atom 20 LYS 2HD not found in molecular structure %READC-ERR: atom 20 LYS 3HD not found in molecular structure %READC-ERR: atom 20 LYS QD not found in molecular structure %READC-ERR: atom 20 LYS 2HE not found in molecular structure %READC-ERR: atom 20 LYS 3HE not found in molecular structure %READC-ERR: atom 20 LYS QE not found in molecular structure %READC-ERR: atom 20 LYS 1HZ not found in molecular structure %READC-ERR: atom 20 LYS 2HZ not found in molecular structure %READC-ERR: atom 20 LYS 3HZ not found in molecular structure %READC-ERR: atom 20 LYS QZ not found in molecular structure %READC-ERR: atom 21 SER 2HB not found in molecular structure %READC-ERR: atom 21 SER 3HB not found in molecular structure %READC-ERR: atom 21 SER QB not found in molecular structure %READC-ERR: atom 22 LEU 2HB not found in molecular structure %READC-ERR: atom 22 LEU 3HB not found in molecular structure %READC-ERR: atom 22 LEU QB not found in molecular structure %READC-ERR: atom 22 LEU QD1 not found in molecular structure %READC-ERR: atom 22 LEU QD2 not found in molecular structure %READC-ERR: atom 22 LEU 1HD1 not found in molecular structure %READC-ERR: atom 22 LEU 2HD1 not found in molecular structure %READC-ERR: atom 22 LEU 3HD1 not found in molecular structure %READC-ERR: atom 22 LEU 1HD2 not found in molecular structure %READC-ERR: atom 22 LEU 2HD2 not found in molecular structure %READC-ERR: atom 22 LEU 3HD2 not found in molecular structure %READC-ERR: atom 22 LEU QQD not found in molecular structure %READC-ERR: atom 23 GLU 2HB not found in molecular structure %READC-ERR: atom 23 GLU 3HB not found in molecular structure %READC-ERR: atom 23 GLU QB not found in molecular structure %READC-ERR: atom 23 GLU 2HG not found in molecular structure %READC-ERR: atom 23 GLU 3HG not found in molecular structure %READC-ERR: atom 23 GLU QG not found in molecular structure %READC-ERR: atom 24 ILE QG2 not found in molecular structure %READC-ERR: atom 24 ILE 1HG2 not found in molecular structure %READC-ERR: atom 24 ILE 2HG2 not found in molecular structure %READC-ERR: atom 24 ILE 3HG2 not found in molecular structure %READC-ERR: atom 24 ILE 2HG1 not found in molecular structure %READC-ERR: atom 24 ILE 3HG1 not found in molecular structure %READC-ERR: atom 24 ILE QG1 not found in molecular structure %READC-ERR: atom 24 ILE QD1 not found in molecular structure %READC-ERR: atom 24 ILE 1HD1 not found in molecular structure %READC-ERR: atom 24 ILE 2HD1 not found in molecular structure %READC-ERR: atom 24 ILE 3HD1 not found in molecular structure %READC-ERR: atom 25 PRO 2HB not found in molecular structure %READC-ERR: atom 25 PRO 3HB not found in molecular structure %READC-ERR: atom 25 PRO QB not found in molecular structure %READC-ERR: atom 25 PRO 2HG not found in molecular structure %READC-ERR: atom 25 PRO 3HG not found in molecular structure %READC-ERR: atom 25 PRO QG not found in molecular structure %READC-ERR: atom 25 PRO 2HD not found in molecular structure %READC-ERR: atom 25 PRO 3HD not found in molecular structure %READC-ERR: atom 25 PRO QD not found in molecular structure %READC-ERR: atom 26 LEU 2HB not found in molecular structure %READC-ERR: atom 26 LEU 3HB not found in molecular structure %READC-ERR: atom 26 LEU QB not found in molecular structure %READC-ERR: atom 26 LEU QD1 not found in molecular structure %READC-ERR: atom 26 LEU QD2 not found in molecular structure %READC-ERR: atom 26 LEU 1HD1 not found in molecular structure %READC-ERR: atom 26 LEU 2HD1 not found in molecular structure %READC-ERR: atom 26 LEU 3HD1 not found in molecular structure %READC-ERR: atom 26 LEU 1HD2 not found in molecular structure %READC-ERR: atom 26 LEU 2HD2 not found in molecular structure %READC-ERR: atom 26 LEU 3HD2 not found in molecular structure %READC-ERR: atom 26 LEU QQD not found in molecular structure %READC-ERR: atom 27 GLY 1HA not found in molecular structure %READC-ERR: atom 27 GLY 2HA not found in molecular structure %READC-ERR: atom 27 GLY QA not found in molecular structure %READC-ERR: atom 28 PHE 2HB not found in molecular structure %READC-ERR: atom 28 PHE 3HB not found in molecular structure %READC-ERR: atom 28 PHE QB not found in molecular structure %READC-ERR: atom 28 PHE QD not found in molecular structure %READC-ERR: atom 28 PHE QE not found in molecular structure %READC-ERR: atom 28 PHE QR not found in molecular structure %READC-ERR: atom 29 ASN 2HB not found in molecular structure %READC-ERR: atom 29 ASN 3HB not found in molecular structure %READC-ERR: atom 29 ASN QB not found in molecular structure %READC-ERR: atom 29 ASN 1HD2 not found in molecular structure %READC-ERR: atom 29 ASN 2HD2 not found in molecular structure %READC-ERR: atom 29 ASN QD2 not found in molecular structure %READC-ERR: atom 30 GLU 2HB not found in molecular structure %READC-ERR: atom 30 GLU 3HB not found in molecular structure %READC-ERR: atom 30 GLU QB not found in molecular structure %READC-ERR: atom 30 GLU 2HG not found in molecular structure %READC-ERR: atom 30 GLU 3HG not found in molecular structure %READC-ERR: atom 30 GLU QG not found in molecular structure %READC-ERR: atom 31 TYR 2HB not found in molecular structure %READC-ERR: atom 31 TYR 3HB not found in molecular structure %READC-ERR: atom 31 TYR QB not found in molecular structure %READC-ERR: atom 31 TYR QD not found in molecular structure %READC-ERR: atom 31 TYR QE not found in molecular structure %READC-ERR: atom 31 TYR QR not found in molecular structure %READC-ERR: atom 32 PHE 2HB not found in molecular structure %READC-ERR: atom 32 PHE 3HB not found in molecular structure %READC-ERR: atom 32 PHE QB not found in molecular structure %READC-ERR: atom 32 PHE QD not found in molecular structure %READC-ERR: atom 32 PHE QE not found in molecular structure %READC-ERR: atom 32 PHE QR not found in molecular structure %READC-ERR: atom 33 PRO 2HB not found in molecular structure %READC-ERR: atom 33 PRO 3HB not found in molecular structure %READC-ERR: atom 33 PRO QB not found in molecular structure %READC-ERR: atom 33 PRO 2HG not found in molecular structure %READC-ERR: atom 33 PRO 3HG not found in molecular structure %READC-ERR: atom 33 PRO QG not found in molecular structure %READC-ERR: atom 33 PRO 2HD not found in molecular structure %READC-ERR: atom 33 PRO 3HD not found in molecular structure %READC-ERR: atom 33 PRO QD not found in molecular structure %READC-ERR: atom 34 ALA QB not found in molecular structure %READC-ERR: atom 34 ALA 1HB not found in molecular structure %READC-ERR: atom 34 ALA 2HB not found in molecular structure %READC-ERR: atom 34 ALA 3HB not found in molecular structure %READC-ERR: atom 35 PRO 2HB not found in molecular structure %READC-ERR: atom 35 PRO 3HB not found in molecular structure %READC-ERR: atom 35 PRO QB not found in molecular structure %READC-ERR: atom 35 PRO 2HG not found in molecular structure %READC-ERR: atom 35 PRO 3HG not found in molecular structure %READC-ERR: atom 35 PRO QG not found in molecular structure %READC-ERR: atom 35 PRO 2HD not found in molecular structure %READC-ERR: atom 35 PRO 3HD not found in molecular structure %READC-ERR: atom 35 PRO QD not found in molecular structure %READC-ERR: atom 36 PHE 2HB not found in molecular structure %READC-ERR: atom 36 PHE 3HB not found in molecular structure %READC-ERR: atom 36 PHE QB not found in molecular structure %READC-ERR: atom 36 PHE QD not found in molecular structure %READC-ERR: atom 36 PHE QE not found in molecular structure %READC-ERR: atom 36 PHE QR not found in molecular structure %READC-ERR: atom 37 PRO 2HB not found in molecular structure %READC-ERR: atom 37 PRO 3HB not found in molecular structure %READC-ERR: atom 37 PRO QB not found in molecular structure %READC-ERR: atom 37 PRO 2HG not found in molecular structure %READC-ERR: atom 37 PRO 3HG not found in molecular structure %READC-ERR: atom 37 PRO QG not found in molecular structure %READC-ERR: atom 37 PRO 2HD not found in molecular structure %READC-ERR: atom 37 PRO 3HD not found in molecular structure %READC-ERR: atom 37 PRO QD not found in molecular structure %READC-ERR: atom 38 ILE QG2 not found in molecular structure %READC-ERR: atom 38 ILE 1HG2 not found in molecular structure %READC-ERR: atom 38 ILE 2HG2 not found in molecular structure %READC-ERR: atom 38 ILE 3HG2 not found in molecular structure %READC-ERR: atom 38 ILE 2HG1 not found in molecular structure %READC-ERR: atom 38 ILE 3HG1 not found in molecular structure %READC-ERR: atom 38 ILE QG1 not found in molecular structure %READC-ERR: atom 38 ILE QD1 not found in molecular structure %READC-ERR: atom 38 ILE 1HD1 not found in molecular structure %READC-ERR: atom 38 ILE 2HD1 not found in molecular structure %READC-ERR: atom 38 ILE 3HD1 not found in molecular structure %READC-ERR: atom 39 THR QG2 not found in molecular structure %READC-ERR: atom 39 THR 1HG2 not found in molecular structure %READC-ERR: atom 39 THR 2HG2 not found in molecular structure %READC-ERR: atom 39 THR 3HG2 not found in molecular structure %READC-ERR: atom 40 VAL QG1 not found in molecular structure %READC-ERR: atom 40 VAL QG2 not found in molecular structure %READC-ERR: atom 40 VAL 1HG1 not found in molecular structure %READC-ERR: atom 40 VAL 2HG1 not found in molecular structure %READC-ERR: atom 40 VAL 3HG1 not found in molecular structure %READC-ERR: atom 40 VAL 1HG2 not found in molecular structure %READC-ERR: atom 40 VAL 2HG2 not found in molecular structure %READC-ERR: atom 40 VAL 3HG2 not found in molecular structure %READC-ERR: atom 40 VAL QQG not found in molecular structure %READC-ERR: atom 41 ASP 2HB not found in molecular structure %READC-ERR: atom 41 ASP 3HB not found in molecular structure %READC-ERR: atom 41 ASP QB not found in molecular structure %READC-ERR: atom 42 LEU 2HB not found in molecular structure %READC-ERR: atom 42 LEU 3HB not found in molecular structure %READC-ERR: atom 42 LEU QB not found in molecular structure %READC-ERR: atom 42 LEU QD1 not found in molecular structure %READC-ERR: atom 42 LEU QD2 not found in molecular structure %READC-ERR: atom 42 LEU 1HD1 not found in molecular structure %READC-ERR: atom 42 LEU 2HD1 not found in molecular structure %READC-ERR: atom 42 LEU 3HD1 not found in molecular structure %READC-ERR: atom 42 LEU 1HD2 not found in molecular structure %READC-ERR: atom 42 LEU 2HD2 not found in molecular structure %READC-ERR: atom 42 LEU 3HD2 not found in molecular structure %READC-ERR: atom 42 LEU QQD not found in molecular structure %READC-ERR: atom 43 LEU 2HB not found in molecular structure %READC-ERR: atom 43 LEU 3HB not found in molecular structure %READC-ERR: atom 43 LEU QB not found in molecular structure %READC-ERR: atom 43 LEU QD1 not found in molecular structure %READC-ERR: atom 43 LEU QD2 not found in molecular structure %READC-ERR: atom 43 LEU 1HD1 not found in molecular structure %READC-ERR: atom 43 LEU 2HD1 not found in molecular structure %READC-ERR: atom 43 LEU 3HD1 not found in molecular structure %READC-ERR: atom 43 LEU 1HD2 not found in molecular structure %READC-ERR: atom 43 LEU 2HD2 not found in molecular structure %READC-ERR: atom 43 LEU 3HD2 not found in molecular structure %READC-ERR: atom 43 LEU QQD not found in molecular structure %READC-ERR: atom 44 ASP 2HB not found in molecular structure %READC-ERR: atom 44 ASP 3HB not found in molecular structure %READC-ERR: atom 44 ASP QB not found in molecular structure %READC-ERR: atom 45 TYR 2HB not found in molecular structure %READC-ERR: atom 45 TYR 3HB not found in molecular structure %READC-ERR: atom 45 TYR QB not found in molecular structure %READC-ERR: atom 45 TYR QD not found in molecular structure %READC-ERR: atom 45 TYR QE not found in molecular structure %READC-ERR: atom 45 TYR QR not found in molecular structure %READC-ERR: atom 46 SER 2HB not found in molecular structure %READC-ERR: atom 46 SER 3HB not found in molecular structure %READC-ERR: atom 46 SER QB not found in molecular structure %READC-ERR: atom 47 GLY 1HA not found in molecular structure %READC-ERR: atom 47 GLY 2HA not found in molecular structure %READC-ERR: atom 47 GLY QA not found in molecular structure %READC-ERR: atom 48 ARG 2HB not found in molecular structure %READC-ERR: atom 48 ARG 3HB not found in molecular structure %READC-ERR: atom 48 ARG QB not found in molecular structure %READC-ERR: atom 48 ARG 2HG not found in molecular structure %READC-ERR: atom 48 ARG 3HG not found in molecular structure %READC-ERR: atom 48 ARG QG not found in molecular structure %READC-ERR: atom 48 ARG 2HD not found in molecular structure %READC-ERR: atom 48 ARG 3HD not found in molecular structure %READC-ERR: atom 48 ARG QD not found in molecular structure %READC-ERR: atom 48 ARG 1HH1 not found in molecular structure %READC-ERR: atom 48 ARG 2HH1 not found in molecular structure %READC-ERR: atom 48 ARG QH1 not found in molecular structure %READC-ERR: atom 48 ARG 1HH2 not found in molecular structure %READC-ERR: atom 48 ARG 2HH2 not found in molecular structure %READC-ERR: atom 48 ARG QH2 not found in molecular structure %READC-ERR: atom 49 SER 2HB not found in molecular structure %READC-ERR: atom 49 SER 3HB not found in molecular structure %READC-ERR: atom 49 SER QB not found in molecular structure %READC-ERR: atom 50 TRP 2HB not found in molecular structure %READC-ERR: atom 50 TRP 3HB not found in molecular structure %READC-ERR: atom 50 TRP QB not found in molecular structure %READC-ERR: atom 51 THR QG2 not found in molecular structure %READC-ERR: atom 51 THR 1HG2 not found in molecular structure %READC-ERR: atom 51 THR 2HG2 not found in molecular structure %READC-ERR: atom 51 THR 3HG2 not found in molecular structure %READC-ERR: atom 52 VAL QG1 not found in molecular structure %READC-ERR: atom 52 VAL QG2 not found in molecular structure %READC-ERR: atom 52 VAL 1HG1 not found in molecular structure %READC-ERR: atom 52 VAL 2HG1 not found in molecular structure %READC-ERR: atom 52 VAL 3HG1 not found in molecular structure %READC-ERR: atom 52 VAL 1HG2 not found in molecular structure %READC-ERR: atom 52 VAL 2HG2 not found in molecular structure %READC-ERR: atom 52 VAL 3HG2 not found in molecular structure %READC-ERR: atom 52 VAL QQG not found in molecular structure %READC-ERR: atom 53 ARG 2HB not found in molecular structure %READC-ERR: atom 53 ARG 3HB not found in molecular structure %READC-ERR: atom 53 ARG QB not found in molecular structure %READC-ERR: atom 53 ARG 2HG not found in molecular structure %READC-ERR: atom 53 ARG 3HG not found in molecular structure %READC-ERR: atom 53 ARG QG not found in molecular structure %READC-ERR: atom 53 ARG 2HD not found in molecular structure %READC-ERR: atom 53 ARG 3HD not found in molecular structure %READC-ERR: atom 53 ARG QD not found in molecular structure %READC-ERR: atom 53 ARG 1HH1 not found in molecular structure %READC-ERR: atom 53 ARG 2HH1 not found in molecular structure %READC-ERR: atom 53 ARG QH1 not found in molecular structure %READC-ERR: atom 53 ARG 1HH2 not found in molecular structure %READC-ERR: atom 53 ARG 2HH2 not found in molecular structure %READC-ERR: atom 53 ARG QH2 not found in molecular structure %READC-ERR: atom 54 MET 2HB not found in molecular structure %READC-ERR: atom 54 MET 3HB not found in molecular structure %READC-ERR: atom 54 MET QB not found in molecular structure %READC-ERR: atom 54 MET 2HG not found in molecular structure %READC-ERR: atom 54 MET 3HG not found in molecular structure %READC-ERR: atom 54 MET QG not found in molecular structure %READC-ERR: atom 54 MET QE not found in molecular structure %READC-ERR: atom 54 MET 1HE not found in molecular structure %READC-ERR: atom 54 MET 2HE not found in molecular structure %READC-ERR: atom 54 MET 3HE not found in molecular structure %READC-ERR: atom 55 LYS 2HB not found in molecular structure %READC-ERR: atom 55 LYS 3HB not found in molecular structure %READC-ERR: atom 55 LYS QB not found in molecular structure %READC-ERR: atom 55 LYS 2HG not found in molecular structure %READC-ERR: atom 55 LYS 3HG not found in molecular structure %READC-ERR: atom 55 LYS QG not found in molecular structure %READC-ERR: atom 55 LYS 2HD not found in molecular structure %READC-ERR: atom 55 LYS 3HD not found in molecular structure %READC-ERR: atom 55 LYS QD not found in molecular structure %READC-ERR: atom 55 LYS 2HE not found in molecular structure %READC-ERR: atom 55 LYS 3HE not found in molecular structure %READC-ERR: atom 55 LYS QE not found in molecular structure %READC-ERR: atom 55 LYS 1HZ not found in molecular structure %READC-ERR: atom 55 LYS 2HZ not found in molecular structure %READC-ERR: atom 55 LYS 3HZ not found in molecular structure %READC-ERR: atom 55 LYS QZ not found in molecular structure %READC-ERR: atom 56 LYS 2HB not found in molecular structure %READC-ERR: atom 56 LYS 3HB not found in molecular structure %READC-ERR: atom 56 LYS QB not found in molecular structure %READC-ERR: atom 56 LYS 2HG not found in molecular structure %READC-ERR: atom 56 LYS 3HG not found in molecular structure %READC-ERR: atom 56 LYS QG not found in molecular structure %READC-ERR: atom 56 LYS 2HD not found in molecular structure %READC-ERR: atom 56 LYS 3HD not found in molecular structure %READC-ERR: atom 56 LYS QD not found in molecular structure %READC-ERR: atom 56 LYS 2HE not found in molecular structure %READC-ERR: atom 56 LYS 3HE not found in molecular structure %READC-ERR: atom 56 LYS QE not found in molecular structure %READC-ERR: atom 56 LYS 1HZ not found in molecular structure %READC-ERR: atom 56 LYS 2HZ not found in molecular structure %READC-ERR: atom 56 LYS 3HZ not found in molecular structure %READC-ERR: atom 56 LYS QZ not found in molecular structure %READC-ERR: atom 57 ARG 2HB not found in molecular structure %READC-ERR: atom 57 ARG 3HB not found in molecular structure %READC-ERR: atom 57 ARG QB not found in molecular structure %READC-ERR: atom 57 ARG 2HG not found in molecular structure %READC-ERR: atom 57 ARG 3HG not found in molecular structure %READC-ERR: atom 57 ARG QG not found in molecular structure %READC-ERR: atom 57 ARG 2HD not found in molecular structure %READC-ERR: atom 57 ARG 3HD not found in molecular structure %READC-ERR: atom 57 ARG QD not found in molecular structure %READC-ERR: atom 57 ARG 1HH1 not found in molecular structure %READC-ERR: atom 57 ARG 2HH1 not found in molecular structure %READC-ERR: atom 57 ARG QH1 not found in molecular structure %READC-ERR: atom 57 ARG 1HH2 not found in molecular structure %READC-ERR: atom 57 ARG 2HH2 not found in molecular structure %READC-ERR: atom 57 ARG QH2 not found in molecular structure %READC-ERR: atom 58 GLY 1HA not found in molecular structure %READC-ERR: atom 58 GLY 2HA not found in molecular structure %READC-ERR: atom 58 GLY QA not found in molecular structure %READC-ERR: atom 59 GLU 2HB not found in molecular structure %READC-ERR: atom 59 GLU 3HB not found in molecular structure %READC-ERR: atom 59 GLU QB not found in molecular structure %READC-ERR: atom 59 GLU 2HG not found in molecular structure %READC-ERR: atom 59 GLU 3HG not found in molecular structure %READC-ERR: atom 59 GLU QG not found in molecular structure %READC-ERR: atom 60 LYS 2HB not found in molecular structure %READC-ERR: atom 60 LYS 3HB not found in molecular structure %READC-ERR: atom 60 LYS QB not found in molecular structure %READC-ERR: atom 60 LYS 2HG not found in molecular structure %READC-ERR: atom 60 LYS 3HG not found in molecular structure %READC-ERR: atom 60 LYS QG not found in molecular structure %READC-ERR: atom 60 LYS 2HD not found in molecular structure %READC-ERR: atom 60 LYS 3HD not found in molecular structure %READC-ERR: atom 60 LYS QD not found in molecular structure %READC-ERR: atom 60 LYS 2HE not found in molecular structure %READC-ERR: atom 60 LYS 3HE not found in molecular structure %READC-ERR: atom 60 LYS QE not found in molecular structure %READC-ERR: atom 60 LYS 1HZ not found in molecular structure %READC-ERR: atom 60 LYS 2HZ not found in molecular structure %READC-ERR: atom 60 LYS 3HZ not found in molecular structure %READC-ERR: atom 60 LYS QZ not found in molecular structure %READC-ERR: atom 61 VAL QG1 not found in molecular structure %READC-ERR: atom 61 VAL QG2 not found in molecular structure %READC-ERR: atom 61 VAL 1HG1 not found in molecular structure %READC-ERR: atom 61 VAL 2HG1 not found in molecular structure %READC-ERR: atom 61 VAL 3HG1 not found in molecular structure %READC-ERR: atom 61 VAL 1HG2 not found in molecular structure %READC-ERR: atom 61 VAL 2HG2 not found in molecular structure %READC-ERR: atom 61 VAL 3HG2 not found in molecular structure %READC-ERR: atom 61 VAL QQG not found in molecular structure %READC-ERR: atom 62 PHE 2HB not found in molecular structure %READC-ERR: atom 62 PHE 3HB not found in molecular structure %READC-ERR: atom 62 PHE QB not found in molecular structure %READC-ERR: atom 62 PHE QD not found in molecular structure %READC-ERR: atom 62 PHE QE not found in molecular structure %READC-ERR: atom 62 PHE QR not found in molecular structure %READC-ERR: atom 63 LEU 2HB not found in molecular structure %READC-ERR: atom 63 LEU 3HB not found in molecular structure %READC-ERR: atom 63 LEU QB not found in molecular structure %READC-ERR: atom 63 LEU QD1 not found in molecular structure %READC-ERR: atom 63 LEU QD2 not found in molecular structure %READC-ERR: atom 63 LEU 1HD1 not found in molecular structure %READC-ERR: atom 63 LEU 2HD1 not found in molecular structure %READC-ERR: atom 63 LEU 3HD1 not found in molecular structure %READC-ERR: atom 63 LEU 1HD2 not found in molecular structure %READC-ERR: atom 63 LEU 2HD2 not found in molecular structure %READC-ERR: atom 63 LEU 3HD2 not found in molecular structure %READC-ERR: atom 63 LEU QQD not found in molecular structure %READC-ERR: atom 64 THR QG2 not found in molecular structure %READC-ERR: atom 64 THR 1HG2 not found in molecular structure %READC-ERR: atom 64 THR 2HG2 not found in molecular structure %READC-ERR: atom 64 THR 3HG2 not found in molecular structure %READC-ERR: atom 65 VAL QG1 not found in molecular structure %READC-ERR: atom 65 VAL QG2 not found in molecular structure %READC-ERR: atom 65 VAL 1HG1 not found in molecular structure %READC-ERR: atom 65 VAL 2HG1 not found in molecular structure %READC-ERR: atom 65 VAL 3HG1 not found in molecular structure %READC-ERR: atom 65 VAL 1HG2 not found in molecular structure %READC-ERR: atom 65 VAL 2HG2 not found in molecular structure %READC-ERR: atom 65 VAL 3HG2 not found in molecular structure %READC-ERR: atom 65 VAL QQG not found in molecular structure %READC-ERR: atom 66 GLY 1HA not found in molecular structure %READC-ERR: atom 66 GLY 2HA not found in molecular structure %READC-ERR: atom 66 GLY QA not found in molecular structure %READC-ERR: atom 67 TRP 2HB not found in molecular structure %READC-ERR: atom 67 TRP 3HB not found in molecular structure %READC-ERR: atom 67 TRP QB not found in molecular structure %READC-ERR: atom 68 GLU 2HB not found in molecular structure %READC-ERR: atom 68 GLU 3HB not found in molecular structure %READC-ERR: atom 68 GLU QB not found in molecular structure %READC-ERR: atom 68 GLU 2HG not found in molecular structure %READC-ERR: atom 68 GLU 3HG not found in molecular structure %READC-ERR: atom 68 GLU QG not found in molecular structure %READC-ERR: atom 69 ASN 2HB not found in molecular structure %READC-ERR: atom 69 ASN 3HB not found in molecular structure %READC-ERR: atom 69 ASN QB not found in molecular structure %READC-ERR: atom 69 ASN 1HD2 not found in molecular structure %READC-ERR: atom 69 ASN 2HD2 not found in molecular structure %READC-ERR: atom 69 ASN QD2 not found in molecular structure %READC-ERR: atom 70 PHE 2HB not found in molecular structure %READC-ERR: atom 70 PHE 3HB not found in molecular structure %READC-ERR: atom 70 PHE QB not found in molecular structure %READC-ERR: atom 70 PHE QD not found in molecular structure %READC-ERR: atom 70 PHE QE not found in molecular structure %READC-ERR: atom 70 PHE QR not found in molecular structure %READC-ERR: atom 71 VAL QG1 not found in molecular structure %READC-ERR: atom 71 VAL QG2 not found in molecular structure %READC-ERR: atom 71 VAL 1HG1 not found in molecular structure %READC-ERR: atom 71 VAL 2HG1 not found in molecular structure %READC-ERR: atom 71 VAL 3HG1 not found in molecular structure %READC-ERR: atom 71 VAL 1HG2 not found in molecular structure %READC-ERR: atom 71 VAL 2HG2 not found in molecular structure %READC-ERR: atom 71 VAL 3HG2 not found in molecular structure %READC-ERR: atom 71 VAL QQG not found in molecular structure %READC-ERR: atom 72 LYS 2HB not found in molecular structure %READC-ERR: atom 72 LYS 3HB not found in molecular structure %READC-ERR: atom 72 LYS QB not found in molecular structure %READC-ERR: atom 72 LYS 2HG not found in molecular structure %READC-ERR: atom 72 LYS 3HG not found in molecular structure %READC-ERR: atom 72 LYS QG not found in molecular structure %READC-ERR: atom 72 LYS 2HD not found in molecular structure %READC-ERR: atom 72 LYS 3HD not found in molecular structure %READC-ERR: atom 72 LYS QD not found in molecular structure %READC-ERR: atom 72 LYS 2HE not found in molecular structure %READC-ERR: atom 72 LYS 3HE not found in molecular structure %READC-ERR: atom 72 LYS QE not found in molecular structure %READC-ERR: atom 72 LYS 1HZ not found in molecular structure %READC-ERR: atom 72 LYS 2HZ not found in molecular structure %READC-ERR: atom 72 LYS 3HZ not found in molecular structure %READC-ERR: atom 72 LYS QZ not found in molecular structure %READC-ERR: atom 73 ASP 2HB not found in molecular structure %READC-ERR: atom 73 ASP 3HB not found in molecular structure %READC-ERR: atom 73 ASP QB not found in molecular structure %READC-ERR: atom 74 ASN 2HB not found in molecular structure %READC-ERR: atom 74 ASN 3HB not found in molecular structure %READC-ERR: atom 74 ASN QB not found in molecular structure %READC-ERR: atom 74 ASN 1HD2 not found in molecular structure %READC-ERR: atom 74 ASN 2HD2 not found in molecular structure %READC-ERR: atom 74 ASN QD2 not found in molecular structure %READC-ERR: atom 75 ASN 2HB not found in molecular structure %READC-ERR: atom 75 ASN 3HB not found in molecular structure %READC-ERR: atom 75 ASN QB not found in molecular structure %READC-ERR: atom 75 ASN 1HD2 not found in molecular structure %READC-ERR: atom 75 ASN 2HD2 not found in molecular structure %READC-ERR: atom 75 ASN QD2 not found in molecular structure %READC-ERR: atom 76 LEU 2HB not found in molecular structure %READC-ERR: atom 76 LEU 3HB not found in molecular structure %READC-ERR: atom 76 LEU QB not found in molecular structure %READC-ERR: atom 76 LEU QD1 not found in molecular structure %READC-ERR: atom 76 LEU QD2 not found in molecular structure %READC-ERR: atom 76 LEU 1HD1 not found in molecular structure %READC-ERR: atom 76 LEU 2HD1 not found in molecular structure %READC-ERR: atom 76 LEU 3HD1 not found in molecular structure %READC-ERR: atom 76 LEU 1HD2 not found in molecular structure %READC-ERR: atom 76 LEU 2HD2 not found in molecular structure %READC-ERR: atom 76 LEU 3HD2 not found in molecular structure %READC-ERR: atom 76 LEU QQD not found in molecular structure %READC-ERR: atom 77 GLU 2HB not found in molecular structure %READC-ERR: atom 77 GLU 3HB not found in molecular structure %READC-ERR: atom 77 GLU QB not found in molecular structure %READC-ERR: atom 77 GLU 2HG not found in molecular structure %READC-ERR: atom 77 GLU 3HG not found in molecular structure %READC-ERR: atom 77 GLU QG not found in molecular structure %READC-ERR: atom 78 ASP 2HB not found in molecular structure %READC-ERR: atom 78 ASP 3HB not found in molecular structure %READC-ERR: atom 78 ASP QB not found in molecular structure %READC-ERR: atom 79 GLY 1HA not found in molecular structure %READC-ERR: atom 79 GLY 2HA not found in molecular structure %READC-ERR: atom 79 GLY QA not found in molecular structure %READC-ERR: atom 80 LYS 2HB not found in molecular structure %READC-ERR: atom 80 LYS 3HB not found in molecular structure %READC-ERR: atom 80 LYS QB not found in molecular structure %READC-ERR: atom 80 LYS 2HG not found in molecular structure %READC-ERR: atom 80 LYS 3HG not found in molecular structure %READC-ERR: atom 80 LYS QG not found in molecular structure %READC-ERR: atom 80 LYS 2HD not found in molecular structure %READC-ERR: atom 80 LYS 3HD not found in molecular structure %READC-ERR: atom 80 LYS QD not found in molecular structure %READC-ERR: atom 80 LYS 2HE not found in molecular structure %READC-ERR: atom 80 LYS 3HE not found in molecular structure %READC-ERR: atom 80 LYS QE not found in molecular structure %READC-ERR: atom 80 LYS 1HZ not found in molecular structure %READC-ERR: atom 80 LYS 2HZ not found in molecular structure %READC-ERR: atom 80 LYS 3HZ not found in molecular structure %READC-ERR: atom 80 LYS QZ not found in molecular structure %READC-ERR: atom 81 TYR 2HB not found in molecular structure %READC-ERR: atom 81 TYR 3HB not found in molecular structure %READC-ERR: atom 81 TYR QB not found in molecular structure %READC-ERR: atom 81 TYR QD not found in molecular structure %READC-ERR: atom 81 TYR QE not found in molecular structure %READC-ERR: atom 81 TYR QR not found in molecular structure %READC-ERR: atom 82 LEU 2HB not found in molecular structure %READC-ERR: atom 82 LEU 3HB not found in molecular structure %READC-ERR: atom 82 LEU QB not found in molecular structure %READC-ERR: atom 82 LEU QD1 not found in molecular structure %READC-ERR: atom 82 LEU QD2 not found in molecular structure %READC-ERR: atom 82 LEU 1HD1 not found in molecular structure %READC-ERR: atom 82 LEU 2HD1 not found in molecular structure %READC-ERR: atom 82 LEU 3HD1 not found in molecular structure %READC-ERR: atom 82 LEU 1HD2 not found in molecular structure %READC-ERR: atom 82 LEU 2HD2 not found in molecular structure %READC-ERR: atom 82 LEU 3HD2 not found in molecular structure %READC-ERR: atom 82 LEU QQD not found in molecular structure %READC-ERR: atom 83 GLN 2HB not found in molecular structure %READC-ERR: atom 83 GLN 3HB not found in molecular structure %READC-ERR: atom 83 GLN QB not found in molecular structure %READC-ERR: atom 83 GLN 2HG not found in molecular structure %READC-ERR: atom 83 GLN 3HG not found in molecular structure %READC-ERR: atom 83 GLN QG not found in molecular structure %READC-ERR: atom 83 GLN 1HE2 not found in molecular structure %READC-ERR: atom 83 GLN 2HE2 not found in molecular structure %READC-ERR: atom 83 GLN QE2 not found in molecular structure %READC-ERR: atom 84 PHE 2HB not found in molecular structure %READC-ERR: atom 84 PHE 3HB not found in molecular structure %READC-ERR: atom 84 PHE QB not found in molecular structure %READC-ERR: atom 84 PHE QD not found in molecular structure %READC-ERR: atom 84 PHE QE not found in molecular structure %READC-ERR: atom 84 PHE QR not found in molecular structure %READC-ERR: atom 85 ILE QG2 not found in molecular structure %READC-ERR: atom 85 ILE 1HG2 not found in molecular structure %READC-ERR: atom 85 ILE 2HG2 not found in molecular structure %READC-ERR: atom 85 ILE 3HG2 not found in molecular structure %READC-ERR: atom 85 ILE 2HG1 not found in molecular structure %READC-ERR: atom 85 ILE 3HG1 not found in molecular structure %READC-ERR: atom 85 ILE QG1 not found in molecular structure %READC-ERR: atom 85 ILE QD1 not found in molecular structure %READC-ERR: atom 85 ILE 1HD1 not found in molecular structure %READC-ERR: atom 85 ILE 2HD1 not found in molecular structure %READC-ERR: atom 85 ILE 3HD1 not found in molecular structure %READC-ERR: atom 86 TYR 2HB not found in molecular structure %READC-ERR: atom 86 TYR 3HB not found in molecular structure %READC-ERR: atom 86 TYR QB not found in molecular structure %READC-ERR: atom 86 TYR QD not found in molecular structure %READC-ERR: atom 86 TYR QE not found in molecular structure %READC-ERR: atom 86 TYR QR not found in molecular structure %READC-ERR: atom 87 ASP 2HB not found in molecular structure %READC-ERR: atom 87 ASP 3HB not found in molecular structure %READC-ERR: atom 87 ASP QB not found in molecular structure %READC-ERR: atom 88 ARG 2HB not found in molecular structure %READC-ERR: atom 88 ARG 3HB not found in molecular structure %READC-ERR: atom 88 ARG QB not found in molecular structure %READC-ERR: atom 88 ARG 2HG not found in molecular structure %READC-ERR: atom 88 ARG 3HG not found in molecular structure %READC-ERR: atom 88 ARG QG not found in molecular structure %READC-ERR: atom 88 ARG 2HD not found in molecular structure %READC-ERR: atom 88 ARG 3HD not found in molecular structure %READC-ERR: atom 88 ARG QD not found in molecular structure %READC-ERR: atom 88 ARG 1HH1 not found in molecular structure %READC-ERR: atom 88 ARG 2HH1 not found in molecular structure %READC-ERR: atom 88 ARG QH1 not found in molecular structure %READC-ERR: atom 88 ARG 1HH2 not found in molecular structure %READC-ERR: atom 88 ARG 2HH2 not found in molecular structure %READC-ERR: atom 88 ARG QH2 not found in molecular structure %READC-ERR: atom 89 ASP 2HB not found in molecular structure %READC-ERR: atom 89 ASP 3HB not found in molecular structure %READC-ERR: atom 89 ASP QB not found in molecular structure %READC-ERR: atom 90 ARG 2HB not found in molecular structure %READC-ERR: atom 90 ARG 3HB not found in molecular structure %READC-ERR: atom 90 ARG QB not found in molecular structure %READC-ERR: atom 90 ARG 2HG not found in molecular structure %READC-ERR: atom 90 ARG 3HG not found in molecular structure %READC-ERR: atom 90 ARG QG not found in molecular structure %READC-ERR: atom 90 ARG 2HD not found in molecular structure %READC-ERR: atom 90 ARG 3HD not found in molecular structure %READC-ERR: atom 90 ARG QD not found in molecular structure %READC-ERR: atom 90 ARG 1HH1 not found in molecular structure %READC-ERR: atom 90 ARG 2HH1 not found in molecular structure %READC-ERR: atom 90 ARG QH1 not found in molecular structure %READC-ERR: atom 90 ARG 1HH2 not found in molecular structure %READC-ERR: atom 90 ARG 2HH2 not found in molecular structure %READC-ERR: atom 90 ARG QH2 not found in molecular structure %READC-ERR: atom 91 THR QG2 not found in molecular structure %READC-ERR: atom 91 THR 1HG2 not found in molecular structure %READC-ERR: atom 91 THR 2HG2 not found in molecular structure %READC-ERR: atom 91 THR 3HG2 not found in molecular structure %READC-ERR: atom 92 PHE 2HB not found in molecular structure %READC-ERR: atom 92 PHE 3HB not found in molecular structure %READC-ERR: atom 92 PHE QB not found in molecular structure %READC-ERR: atom 92 PHE QD not found in molecular structure %READC-ERR: atom 92 PHE QE not found in molecular structure %READC-ERR: atom 92 PHE QR not found in molecular structure %READC-ERR: atom 93 TYR 2HB not found in molecular structure %READC-ERR: atom 93 TYR 3HB not found in molecular structure %READC-ERR: atom 93 TYR QB not found in molecular structure %READC-ERR: atom 93 TYR QD not found in molecular structure %READC-ERR: atom 93 TYR QE not found in molecular structure %READC-ERR: atom 93 TYR QR not found in molecular structure %READC-ERR: atom 94 VAL QG1 not found in molecular structure %READC-ERR: atom 94 VAL QG2 not found in molecular structure %READC-ERR: atom 94 VAL 1HG1 not found in molecular structure %READC-ERR: atom 94 VAL 2HG1 not found in molecular structure %READC-ERR: atom 94 VAL 3HG1 not found in molecular structure %READC-ERR: atom 94 VAL 1HG2 not found in molecular structure %READC-ERR: atom 94 VAL 2HG2 not found in molecular structure %READC-ERR: atom 94 VAL 3HG2 not found in molecular structure %READC-ERR: atom 94 VAL QQG not found in molecular structure %READC-ERR: atom 95 ILE QG2 not found in molecular structure %READC-ERR: atom 95 ILE 1HG2 not found in molecular structure %READC-ERR: atom 95 ILE 2HG2 not found in molecular structure %READC-ERR: atom 95 ILE 3HG2 not found in molecular structure %READC-ERR: atom 95 ILE 2HG1 not found in molecular structure %READC-ERR: atom 95 ILE 3HG1 not found in molecular structure %READC-ERR: atom 95 ILE QG1 not found in molecular structure %READC-ERR: atom 95 ILE QD1 not found in molecular structure %READC-ERR: atom 95 ILE 1HD1 not found in molecular structure %READC-ERR: atom 95 ILE 2HD1 not found in molecular structure %READC-ERR: atom 95 ILE 3HD1 not found in molecular structure %READC-ERR: atom 96 ILE QG2 not found in molecular structure %READC-ERR: atom 96 ILE 1HG2 not found in molecular structure %READC-ERR: atom 96 ILE 2HG2 not found in molecular structure %READC-ERR: atom 96 ILE 3HG2 not found in molecular structure %READC-ERR: atom 96 ILE 2HG1 not found in molecular structure %READC-ERR: atom 96 ILE 3HG1 not found in molecular structure %READC-ERR: atom 96 ILE QG1 not found in molecular structure %READC-ERR: atom 96 ILE QD1 not found in molecular structure %READC-ERR: atom 96 ILE 1HD1 not found in molecular structure %READC-ERR: atom 96 ILE 2HD1 not found in molecular structure %READC-ERR: atom 96 ILE 3HD1 not found in molecular structure %READC-ERR: atom 97 TYR 2HB not found in molecular structure %READC-ERR: atom 97 TYR 3HB not found in molecular structure %READC-ERR: atom 97 TYR QB not found in molecular structure %READC-ERR: atom 97 TYR QD not found in molecular structure %READC-ERR: atom 97 TYR QE not found in molecular structure %READC-ERR: atom 97 TYR QR not found in molecular structure %READC-ERR: atom 98 GLY 1HA not found in molecular structure %READC-ERR: atom 98 GLY 2HA not found in molecular structure %READC-ERR: atom 98 GLY QA not found in molecular structure %READC-ERR: atom 99 HIS 2HB not found in molecular structure %READC-ERR: atom 99 HIS 3HB not found in molecular structure %READC-ERR: atom 99 HIS QB not found in molecular structure %READC-ERR: atom 100 ASN 2HB not found in molecular structure %READC-ERR: atom 100 ASN 3HB not found in molecular structure %READC-ERR: atom 100 ASN QB not found in molecular structure %READC-ERR: atom 100 ASN 1HD2 not found in molecular structure %READC-ERR: atom 100 ASN 2HD2 not found in molecular structure %READC-ERR: atom 100 ASN QD2 not found in molecular structure %READC-ERR: atom 101 MET 2HB not found in molecular structure %READC-ERR: atom 101 MET 3HB not found in molecular structure %READC-ERR: atom 101 MET QB not found in molecular structure %READC-ERR: atom 101 MET 2HG not found in molecular structure %READC-ERR: atom 101 MET 3HG not found in molecular structure %READC-ERR: atom 101 MET QG not found in molecular structure %READC-ERR: atom 101 MET QE not found in molecular structure %READC-ERR: atom 101 MET 1HE not found in molecular structure %READC-ERR: atom 101 MET 2HE not found in molecular structure %READC-ERR: atom 101 MET 3HE not found in molecular structure %READC-ERR: atom 102 CYS 2HB not found in molecular structure %READC-ERR: atom 102 CYS 3HB not found in molecular structure %READC-ERR: atom 102 CYS QB not found in molecular structure %READC-ERR: atom 102 CYS O not found in molecular structure COOR>END CNSsolve>parameter @TOPPAR:parallhdg5.3.pro end PARRDR>! JFD adds FES complex parameters from Milo Westler's calculations PARRDR>! and standard topology. PARRDR> PARRDR>remark file protein-allhdg-ucl.param version UCL date 07-JUL-01 PARRDR>remark for file protein-allhdg-ucl.top version UCL date 14-MAR-00 PARRDR>remark for file protein-allhdg-dih-ucl.top version UCL date 07-JUL-01 PARRDR>remark Geometric energy function parameters for distance geometry and PARRDR>remark simulated annealing. PARRDR>remark Original author: Michael Nilges, EMBL Heidelberg PARRDR>remark Modifications: Mark A. Williams, UCL London PARRDR> PARRDR>set echo off message off end SHOW: sum over selected elements = 2.000000 CNSsolve> CNSsolve> if ( $log_level = verbose ) then CNSsolve> set message=normal echo=on end CNSsolve> else CNSsolve> set message=off echo=off end CNSsolve> end if CNSsolve> CNSsolve> CNSsolve> identity (store1) (none) SELRPN: 0 atoms have been selected out of 1677 CNSsolve> CNSsolve> identity (store1) (&atom_build) SELRPN: 507 atoms have been selected out of 1677 CNSsolve> identity (store1) (store1 or hydrogen) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> CNSsolve> show sum(1) (store1) SELRPN: 830 atoms have been selected out of 1677 SHOW: sum over selected elements = 830.000000 CNSsolve> evaluate ($tobuild=$result) EVALUATE: symbol $TOBUILD set to 830.000 (real) CNSsolve> CNSsolve> !evaluate ($tobuild=0) CNSsolve> CNSsolve> if ( $tobuild > 0 ) then NEXTCD: condition evaluated as true CNSsolve> CNSsolve> fix selection=(not(store1)) end SELRPN: 847 atoms have been selected out of 1677 CNSsolve> CNSsolve> show sum(1) (store1) SELRPN: 830 atoms have been selected out of 1677 SHOW: sum over selected elements = 830.000000 CNSsolve> evaluate ($moving=$result) EVALUATE: symbol $MOVING set to 830.000 (real) CNSsolve> CNSsolve> if ( $moving > 0 ) then NEXTCD: condition evaluated as true CNSsolve> for $id in id (tag and byres(store1)) loop avco SELRPN: 102 atoms have been selected out of 1677 FOR ID LOOP: symbol ID set to 1.00000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = 3.011222 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 3.01122 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -0.645444 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.645444 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -0.550444 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.550444 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 20.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1677 SHOW: average of selected elements = 2.269429 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 2.26943 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1677 SHOW: average of selected elements = -1.940429 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.94043 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1677 SHOW: average of selected elements = -4.383000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -4.38300 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 30.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 5.130800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 5.13080 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -3.136000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.13600 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -6.089700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.08970 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 42.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 3.981273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 3.98127 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -5.952818 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.95282 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -9.799182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.79918 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 56.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = 7.350400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 7.35040 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -6.292800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -6.29280 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -10.777400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -10.7774 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 63.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 11.468364 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 11.4684 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -7.227909 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.22791 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -12.668091 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -12.6681 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 78.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 8.554400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 8.55440 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -10.183400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.1834 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -15.048400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -15.0484 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 94.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 11.383000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 11.3830 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -12.441000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -12.4410 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -17.086545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -17.0865 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 111.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = 8.299000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 8.29900 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -12.369833 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -12.3698 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -21.446056 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -21.4461 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 131.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 10.252100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 10.2521 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -17.633500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -17.6335 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -23.714900 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -23.7149 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 148.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 8.077727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 8.07773 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -15.854909 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -15.8549 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -28.013545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -28.0135 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 170.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = 8.214000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 8.21400 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = -19.109625 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -19.1096 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = -29.595250 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -29.5953 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 184.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = 12.314111 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 12.3141 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -17.692444 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -17.6924 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -32.967444 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -32.9674 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 204.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 8.923909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 8.92391 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -19.220273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -19.2203 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -36.634636 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -36.6346 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 223.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = 12.460778 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 12.4608 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -18.472778 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -18.4728 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -39.604556 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -39.6046 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 234.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 8.397545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 8.39755 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -19.090909 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -19.0909 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -41.989909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -41.9899 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 249.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 6.869909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 6.86991 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -15.367364 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -15.3674 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -40.552545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -40.5525 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 271.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = 10.841000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 10.8410 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -14.132889 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.1329 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -37.572000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -37.5720 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 282.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = 12.841889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 12.8419 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -14.415000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.4150 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -41.661444 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -41.6614 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 293.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 12.579545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 12.5795 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -10.584273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.5843 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -42.344818 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -42.3448 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 315.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = 8.457222 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 8.45722 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -10.644222 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.6442 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -40.020556 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -40.0206 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 326.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 8.037455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 8.03745 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -10.056727 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.0567 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -35.216182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -35.2162 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 345.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 4.892545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 4.89255 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -13.335455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -13.3355 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -34.945545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -34.9455 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 360.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 3.217182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 3.21718 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -9.989545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.98955 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -31.660909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -31.6609 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 379.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = 1.358375 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 1.35838 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = -12.871125 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -12.8711 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = -29.323750 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -29.3238 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 393.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -3.266818 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -3.26682 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -11.789636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -11.7896 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -29.186909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -29.1869 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 412.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -1.014800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -1.01480 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -12.168000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -12.1680 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -25.459800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -25.4598 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 419.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = 3.306778 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 3.30678 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -11.385556 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -11.3856 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -25.628389 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -25.6284 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 439.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -1.681800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -1.68180 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -7.220500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.22050 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -27.591600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -27.5916 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 453.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -4.060455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -4.06045 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -7.629273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.62927 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -23.540091 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -23.5401 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 468.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = 1.840158 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 1.84016 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = -8.511895 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -8.51189 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = -20.624947 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -20.6249 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 489.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = 1.811833 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 1.81183 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -4.695278 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.69528 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -26.335278 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -26.3353 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 509.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = 1.926750 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 1.92675 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = -0.664500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.664500 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = -22.686250 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -22.6863 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 523.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1677 SHOW: average of selected elements = 0.069714 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 0.697143E-01 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1677 SHOW: average of selected elements = 1.677000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.67700 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1677 SHOW: average of selected elements = -24.200571 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -24.2006 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 533.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = -2.865875 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -2.86588 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = 1.872250 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.87225 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = -26.502250 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -26.5023 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 547.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -1.037222 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -1.03722 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = 4.306833 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 4.30683 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -31.591444 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -31.5914 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 567.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = 2.187500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 2.18750 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = 2.416625 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 2.41663 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = -29.748750 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -29.7488 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 581.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 4.316091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 4.31609 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 5.652455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 5.65245 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -31.678000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -31.6780 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 600.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 8.118182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 8.11818 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 4.545727 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 4.54573 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -30.912727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -30.9127 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 614.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 9.695300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 9.69530 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 1.148600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.14860 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -29.035300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -29.0353 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 630.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 13.942100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 13.9421 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 0.867200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.867200 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -27.248500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -27.2485 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 642.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 14.858000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 14.8580 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -3.172636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.17264 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -28.108727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -28.1087 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 661.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 18.223273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 18.2233 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -2.968273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.96827 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -25.364364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -25.3644 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 680.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 21.002400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 21.0024 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -6.516700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -6.51670 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -27.339700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -27.3397 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 692.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = 23.739158 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 23.7392 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = -9.061263 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.06126 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = -23.044158 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -23.0442 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 713.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = 25.981889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 25.9819 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -7.255000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.25500 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -28.919667 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -28.9197 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 724.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = 25.679600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 25.6796 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -3.405000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.40500 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -28.872200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -28.8722 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 731.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = 24.181286 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 24.1813 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = -3.017071 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.01707 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = -33.655214 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -33.6552 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 755.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = 21.373889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 21.3739 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -0.205667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.205667 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1677 SHOW: average of selected elements = -31.323333 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -31.3233 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 766.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1677 SHOW: average of selected elements = 18.733818 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 18.7338 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1677 SHOW: average of selected elements = -3.499091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.49909 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1677 SHOW: average of selected elements = -32.640864 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -32.6409 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 790.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 15.010455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 15.0105 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 1.899091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.89909 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -33.921545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -33.9215 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 804.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 11.843300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 11.8433 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -1.269600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.26960 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -32.817400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -32.8174 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 820.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = 8.031214 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 8.03121 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = 1.724643 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.72464 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = -35.950214 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -35.9502 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 844.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 5.052000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 5.05200 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -1.279600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.27960 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -31.948900 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -31.9489 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 861.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 1.885273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 1.88527 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -0.655727 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.655727 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -36.406364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -36.4064 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 883.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -1.133000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -1.13300 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -2.050455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.05045 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -33.410000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -33.4100 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 905.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = -3.295214 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -3.29521 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = -2.602929 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.60293 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = -39.629786 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -39.6298 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 929.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -6.291000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -6.29100 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -5.395200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.39520 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -36.238400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -36.2384 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 936.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -7.591818 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -7.59182 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -9.199727 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.19973 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -33.995727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -33.9957 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 951.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -2.515182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -2.51518 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -10.285273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.2853 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -34.662182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -34.6622 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 973.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 0.462800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 0.462800 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -7.218600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.21860 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -33.241100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -33.2411 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 989.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = 2.238889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 2.23889 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -6.204722 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -6.20472 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -37.696611 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -37.6966 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1009.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 7.509273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 7.50927 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -5.537455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.53745 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -35.065545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -35.0655 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1028.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 7.526909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 7.52691 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -3.142545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.14255 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -38.830545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -38.8305 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1042.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 10.807400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 10.8074 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -1.443900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.44390 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -39.831400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -39.8314 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1058.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = 13.766000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 13.7660 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -2.844000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.84400 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -37.340600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -37.3406 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1065.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1677 SHOW: average of selected elements = 12.594409 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 12.5944 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1677 SHOW: average of selected elements = -8.529727 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -8.52973 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1677 SHOW: average of selected elements = -34.964182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -34.9642 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1089.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 13.824091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 13.8241 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -6.153818 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -6.15382 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -40.058909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -40.0589 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1104.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 17.761200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 17.7612 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -4.435400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.43540 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -38.222100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -38.2221 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1118.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = 16.843833 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 16.8438 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -7.854222 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.85422 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -32.624444 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -32.6244 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1138.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 16.055900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 16.0559 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -10.132700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.1327 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -36.375700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -36.3757 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1154.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 19.366636 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 19.3666 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -10.420545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.4205 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -39.817545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -39.8175 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1176.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 21.764700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 21.7647 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -8.541900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -8.54190 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -35.234500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -35.2345 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1188.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 20.642100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 20.6421 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -11.497800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -11.4978 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -33.149400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -33.1494 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1202.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 19.898100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 19.8981 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -14.565900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.5659 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -37.054800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -37.0548 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1216.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 16.406545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 16.4065 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -14.240182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.2402 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -34.317636 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -34.3176 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1235.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 16.715455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 16.7155 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -18.457636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -18.4576 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -37.935455 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -37.9355 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1250.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 14.777100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 14.7771 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -22.086800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -22.0868 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -36.848100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -36.8481 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1262.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = 16.530000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 16.5300 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -22.448600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -22.4486 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -33.225000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -33.2250 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1269.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 18.723636 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 18.7236 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -19.808455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -19.8085 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -31.548364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -31.5484 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1291.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = 15.025211 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 15.0252 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = -21.288737 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -21.2887 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = -28.083842 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -28.0838 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1312.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 13.150182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 13.1502 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -14.812455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.8125 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -27.934000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -27.9340 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1331.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 14.090091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 14.0901 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -13.971636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -13.9716 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -23.260182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -23.2602 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1348.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = 10.733444 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 10.7334 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -10.113778 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.1138 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -25.405944 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -25.4059 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1368.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 13.531636 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 13.5316 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -9.151455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.15145 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -20.263727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -20.2637 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1387.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = 8.277263 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 8.27726 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = -5.119895 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.11989 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = -19.027632 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -19.0276 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1408.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 11.777800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 11.7778 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -3.695000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.69500 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -16.364900 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -16.3649 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1420.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = 6.814786 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 6.81479 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = -1.880714 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.88071 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = -14.410071 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -14.4101 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1444.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 10.080400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 10.0804 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 1.052800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.05280 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -18.385000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -18.3850 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1456.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = 8.549643 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 8.54964 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = 3.142000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 3.14200 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1677 SHOW: average of selected elements = -23.064071 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -23.0641 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1480.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 13.322909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 13.3229 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -0.087545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.875455E-01 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -21.925455 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -21.9255 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1494.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = 11.168333 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 11.1683 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -4.523056 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.52306 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1677 SHOW: average of selected elements = -24.374833 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -24.3748 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1514.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = 17.126421 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 17.1264 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = -5.088842 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.08884 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = -21.059632 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -21.0596 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1535.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 17.550300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 17.5503 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -8.860500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -8.86050 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -25.822600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -25.8226 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1551.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 18.205000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 18.2050 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -12.431727 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -12.4317 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -23.417636 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -23.4176 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1570.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = 20.084364 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 20.0844 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -15.260000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -15.2600 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1677 SHOW: average of selected elements = -26.498909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -26.4989 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1589.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = 17.699000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 17.6990 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = -18.728474 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -18.7285 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1677 SHOW: average of selected elements = -23.213789 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -23.2138 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1610.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = 23.405600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 23.4056 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -20.279800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -20.2798 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1677 SHOW: average of selected elements = -23.973000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -23.9730 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1617.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1677 SHOW: average of selected elements = 28.454067 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 28.4541 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1677 SHOW: average of selected elements = -20.635267 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -20.6353 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 15 atoms have been selected out of 1677 SHOW: average of selected elements = -23.793800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -23.7938 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1635.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 28.162200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 28.1622 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -16.623000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -16.6230 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -26.778300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -26.7783 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1649.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = 26.816200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 26.8162 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -16.311400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -16.3114 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1677 SHOW: average of selected elements = -31.238700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -31.2387 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1666.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = 28.336625 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 28.3366 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = -19.891750 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -19.8918 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1677 SHOW: average of selected elements = -32.185875 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -32.1859 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1677 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) CNSsolve> evaluate ($ave_x=$result) CNSsolve> show ave(y) (byres(id $id) and known) CNSsolve> evaluate ($ave_y=$result) CNSsolve> show ave(z) (byres(id $id) and known) CNSsolve> evaluate ($ave_z=$result) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) CNSsolve> do (y=$ave_y) (byres(id $id) and store1) CNSsolve> do (z=$ave_z) (byres(id $id) and store1) CNSsolve> CNSsolve> end loop avco CNSsolve> CNSsolve> do (x=x+random(2.0)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> do (y=y+random(2.0)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> do (z=z+random(2.0)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> CNSsolve> {- start parameter for the side chain building -} CNSsolve> parameter PARRDR> nbonds NBDSET> rcon=20. nbxmod=-2 repel=0.9 wmin=0.1 tolerance=1. NBDSET> rexp=2 irexp=2 inhibit=0.25 NBDSET> end PARRDR> end CNSsolve> CNSsolve> {- Friction coefficient, in 1/ps. -} CNSsolve> do (fbeta=100) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> CNSsolve> evaluate ($bath=300.0) EVALUATE: symbol $BATH set to 300.000 (real) CNSsolve> evaluate ($nstep=500) EVALUATE: symbol $NSTEP set to 500.000 (real) CNSsolve> evaluate ($timestep=0.0005) EVALUATE: symbol $TIMESTEP set to 0.500000E-03 (real) CNSsolve> CNSsolve> do (refy=mass) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> CNSsolve> do (mass=20) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> CNSsolve> igroup interaction SELRPN> (store1) (store1 or known) SELRPN: 830 atoms have been selected out of 1677 SELRPN: 1677 atoms have been selected out of 1677 IGROup> end CNSsolve> CNSsolve> {- turn on initial energy terms -} CNSsolve> flags exclude * include bond angle vdw end CNSsolve> CNSsolve> minimize powell nstep=50 nprint=10 end POWELL: number of degrees of freedom= 2490 NBONDS: generating intra-molecular exclusion list with mode=-2 MAKINB: mode -2 found 830 exclusions and 0 interactions(1-4) %atoms " -9 -PHE -HD2 " and " -9 -PHE -HZ " only 0.10 A apart %atoms " -11 -LYS -HA " and " -11 -LYS -HZ1 " only 0.05 A apart %atoms " -22 -LEU -HD11" and " -22 -LEU -HD22" only 0.06 A apart %atoms " -28 -PHE -HE1 " and " -28 -PHE -HE2 " only 0.09 A apart %atoms " -48 -ARG -HD2 " and " -48 -ARG -HH11" only 0.09 A apart %atoms " -55 -LYS -HD1 " and " -55 -LYS -HE1 " only 0.08 A apart %atoms " -68 -GLU -HN " and " -68 -GLU -HG2 " only 0.07 A apart %atoms " -85 -ILE -HG11" and " -85 -ILE -HG23" only 0.07 A apart %atoms " -88 -ARG -HH12" and " -88 -ARG -HH22" only 0.07 A apart %atoms " -93 -TYR -HD2 " and " -93 -TYR -HE1 " only 0.07 A apart %atoms " -94 -VAL -HN " and " -94 -VAL -HG21" only 0.07 A apart NBONDS: found 107935 intra-atom interactions NBONDS: found 11 nonbonded violations %atoms " -22 -LEU -HA " and " -22 -LEU -CB " only 0.06 A apart NBONDS: found 106398 intra-atom interactions NBONDS: found 1 nonbonded violations %atoms " -43 -LEU -N " and " -43 -LEU -HB2 " only 0.09 A apart NBONDS: found 101299 intra-atom interactions NBONDS: found 1 nonbonded violations NBONDS: found 98018 intra-atom interactions NBONDS: found 98815 intra-atom interactions NBONDS: found 98494 intra-atom interactions --------------- cycle= 10 ------ stepsize= 0.0000 ----------------------- | Etotal =415026.939 grad(E)=576.075 E(BOND)=71095.556 E(ANGL)=188270.727 | | E(VDW )=155660.656 | ------------------------------------------------------------------------------- NBONDS: found 98622 intra-atom interactions NBONDS: found 98530 intra-atom interactions NBONDS: found 98396 intra-atom interactions --------------- cycle= 20 ------ stepsize= 0.0000 ----------------------- | Etotal =153500.240 grad(E)=330.147 E(BOND)=23791.716 E(ANGL)=52846.298 | | E(VDW )=76862.226 | ------------------------------------------------------------------------------- NBONDS: found 98312 intra-atom interactions NBONDS: found 98253 intra-atom interactions NBONDS: found 98230 intra-atom interactions --------------- cycle= 30 ------ stepsize= -0.0001 ----------------------- | Etotal =128972.083 grad(E)=307.715 E(BOND)=22305.688 E(ANGL)=38598.185 | | E(VDW )=68068.210 | ------------------------------------------------------------------------------- NBONDS: found 98261 intra-atom interactions --------------- cycle= 40 ------ stepsize= -0.0004 ----------------------- | Etotal =126206.703 grad(E)=301.419 E(BOND)=21061.025 E(ANGL)=37104.830 | | E(VDW )=68040.848 | ------------------------------------------------------------------------------- --------------- cycle= 50 ------ stepsize= 0.0001 ----------------------- | Etotal =126052.511 grad(E)=301.426 E(BOND)=21064.998 E(ANGL)=37057.756 | | E(VDW )=67929.757 | ------------------------------------------------------------------------------- POWELL: STEP number limit. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> CNSsolve> flags exclude vdw include impr end CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=50 Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=536838.082 E(kin)=768.346 temperature=310.562 | | Etotal =536069.736 grad(E)=740.067 E(BOND)=21064.998 E(ANGL)=37057.756 | | E(IMPR)=477946.981 | ------------------------------------------------------------------------------- -------------------- final step= 50 at 0.02500 ps --------------------- | E(kin)+E(total)=345313.155 E(kin)=57613.888 temperature=23287.251 | | Etotal =287699.267 grad(E)=424.361 E(BOND)=36773.923 E(ANGL)=112105.327 | | E(IMPR)=138820.017 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 10.35398 -8.14769 -29.33314 velocity [A/ps] : 0.41361 -0.96691 1.04308 ang. mom. [amu A/ps] : -28732.71869 -25488.31727 284471.75012 kin. ener. [Kcal/mol] : 43.52363 CNSsolve> CNSsolve> flags include vdw end CNSsolve> CNSsolve> minimize powell nstep=50 nprint=10 end POWELL: number of degrees of freedom= 2490 NBONDS: found 97991 intra-atom interactions NBONDS: found 97754 intra-atom interactions NBONDS: found 97952 intra-atom interactions NBONDS: found 98020 intra-atom interactions NBONDS: found 98158 intra-atom interactions --------------- cycle= 10 ------ stepsize= 0.0002 ----------------------- | Etotal =253502.936 grad(E)=406.079 E(BOND)=46069.509 E(ANGL)=69289.724 | | E(IMPR)=96072.373 E(VDW )=42071.330 | ------------------------------------------------------------------------------- NBONDS: found 98276 intra-atom interactions NBONDS: found 98300 intra-atom interactions NBONDS: found 98253 intra-atom interactions --------------- cycle= 20 ------ stepsize= 0.0000 ----------------------- | Etotal =147658.784 grad(E)=265.727 E(BOND)=21477.015 E(ANGL)=23798.982 | | E(IMPR)=60382.506 E(VDW )=42000.282 | ------------------------------------------------------------------------------- NBONDS: found 98282 intra-atom interactions NBONDS: found 98288 intra-atom interactions NBONDS: found 98320 intra-atom interactions --------------- cycle= 30 ------ stepsize= 0.0004 ----------------------- | Etotal =133662.823 grad(E)=264.432 E(BOND)=19591.703 E(ANGL)=20297.100 | | E(IMPR)=52050.870 E(VDW )=41723.150 | ------------------------------------------------------------------------------- NBONDS: found 98365 intra-atom interactions NBONDS: found 98283 intra-atom interactions NBONDS: found 98247 intra-atom interactions --------------- cycle= 40 ------ stepsize= 0.0003 ----------------------- | Etotal =120801.306 grad(E)=262.678 E(BOND)=18833.147 E(ANGL)=16872.975 | | E(IMPR)=44368.469 E(VDW )=40726.715 | ------------------------------------------------------------------------------- NBONDS: found 98309 intra-atom interactions NBONDS: found 98309 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0001 ----------------------- | Etotal =113303.129 grad(E)=260.906 E(BOND)=18877.991 E(ANGL)=15694.077 | | E(IMPR)=38471.809 E(VDW )=40259.253 | ------------------------------------------------------------------------------- POWELL: STEP number limit. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=50 Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=114062.764 E(kin)=759.635 temperature=307.041 | | Etotal =113303.129 grad(E)=260.906 E(BOND)=18877.991 E(ANGL)=15694.077 | | E(IMPR)=38471.809 E(VDW )=40259.253 | ------------------------------------------------------------------------------- NBONDS: found 98325 intra-atom interactions NBONDS: found 98280 intra-atom interactions -------------------- final step= 50 at 0.02500 ps --------------------- | E(kin)+E(total)=111036.894 E(kin)=2068.997 temperature=836.278 | | Etotal =108967.897 grad(E)=260.772 E(BOND)=19012.018 E(ANGL)=14240.346 | | E(IMPR)=35565.320 E(VDW )=40150.213 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 10.36711 -8.12727 -29.32700 velocity [A/ps] : 0.10045 0.25814 0.17642 ang. mom. [amu A/ps] : -57294.30304 154323.78618 -33488.55542 kin. ener. [Kcal/mol] : 2.13949 CNSsolve> CNSsolve> parameter PARRDR> nbonds NBDSET> rcon=2. nbxmod=-3 repel=0.75 NBDSET> end PARRDR> end CNSsolve> CNSsolve> minimize powell nstep=100 nprint=25 end POWELL: number of degrees of freedom= 2490 NBONDS: generating intra-molecular exclusion list with mode=-3 MAKINB: mode -3 found 2719 exclusions and 0 interactions(1-4) NBONDS: found 96387 intra-atom interactions NBONDS: found 97026 intra-atom interactions NBONDS: found 96939 intra-atom interactions NBONDS: found 96994 intra-atom interactions --------------- cycle= 25 ------ stepsize= 0.0000 ----------------------- | Etotal =36560.484 grad(E)=85.647 E(BOND)=2286.401 E(ANGL)=11303.970 | | E(IMPR)=22961.612 E(VDW )=8.502 | ------------------------------------------------------------------------------- --------------- cycle= 50 ------ stepsize= 0.0000 ----------------------- | Etotal =35080.018 grad(E)=69.999 E(BOND)=2050.094 E(ANGL)=10335.341 | | E(IMPR)=22688.041 E(VDW )=6.542 | ------------------------------------------------------------------------------- --------------- cycle= 75 ------ stepsize= 0.0000 ----------------------- | Etotal =35080.008 grad(E)=69.999 E(BOND)=2050.090 E(ANGL)=10335.335 | | E(IMPR)=22688.040 E(VDW )=6.542 | ------------------------------------------------------------------------------- POWELL: Line search terminated POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=$nstep Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=35823.764 E(kin)=743.757 temperature=300.623 | | Etotal =35080.008 grad(E)=69.999 E(BOND)=2050.090 E(ANGL)=10335.335 | | E(IMPR)=22688.040 E(VDW )=6.542 | ------------------------------------------------------------------------------- NBONDS: found 97060 intra-atom interactions NBONDS: found 97063 intra-atom interactions NBONDS: found 96983 intra-atom interactions NBONDS: found 97115 intra-atom interactions NBONDS: found 97128 intra-atom interactions NBONDS: found 97104 intra-atom interactions NBONDS: found 97114 intra-atom interactions NBONDS: found 97114 intra-atom interactions NBONDS: found 97024 intra-atom interactions NBONDS: found 97011 intra-atom interactions NBONDS: found 97003 intra-atom interactions NBONDS: found 97002 intra-atom interactions NBONDS: found 96988 intra-atom interactions NBONDS: found 96998 intra-atom interactions NBONDS: found 97000 intra-atom interactions NBONDS: found 97004 intra-atom interactions NBONDS: found 96983 intra-atom interactions NBONDS: found 96976 intra-atom interactions NBONDS: found 96998 intra-atom interactions NBONDS: found 97007 intra-atom interactions NBONDS: found 96996 intra-atom interactions NBONDS: found 96980 intra-atom interactions NBONDS: found 96945 intra-atom interactions NBONDS: found 96930 intra-atom interactions NBONDS: found 96978 intra-atom interactions NBONDS: found 96982 intra-atom interactions NBONDS: found 96996 intra-atom interactions NBONDS: found 96975 intra-atom interactions NBONDS: found 96947 intra-atom interactions NBONDS: found 96921 intra-atom interactions NBONDS: found 96932 intra-atom interactions NBONDS: found 96951 intra-atom interactions NBONDS: found 96964 intra-atom interactions NBONDS: found 96963 intra-atom interactions NBONDS: found 96968 intra-atom interactions NBONDS: found 96968 intra-atom interactions NBONDS: found 96982 intra-atom interactions NBONDS: found 97018 intra-atom interactions NBONDS: found 97042 intra-atom interactions NBONDS: found 97040 intra-atom interactions NBONDS: found 97019 intra-atom interactions -------------------- final step= 500 at 0.25000 ps --------------------- | E(kin)+E(total)=11787.114 E(kin)=4209.049 temperature=1701.277 | | Etotal =7578.065 grad(E)=116.034 E(BOND)=1198.717 E(ANGL)=2177.646 | | E(IMPR)=4200.531 E(VDW )=1.171 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 10.36798 -8.13075 -29.32061 velocity [A/ps] : 0.10389 0.45712 -0.42590 ang. mom. [amu A/ps] :-140040.30939 12886.98026 66815.14684 kin. ener. [Kcal/mol] : 7.95771 CNSsolve> CNSsolve> {- turn on all energy terms -} CNSsolve> flags include dihe ? end EFLAGS: the following energy flags are set EFLAGS: BOND ANGL DIHE IMPR VDW CNSsolve> CNSsolve> {- set repel to ~vdw radii -} CNSsolve> parameter PARRDR> nbonds NBDSET> repel=0.89 NBDSET> end PARRDR> end CNSsolve> CNSsolve> minimize powell nstep=500 nprint=50 end POWELL: number of degrees of freedom= 2490 NBONDS: generating intra-molecular exclusion list with mode=-3 MAKINB: mode -3 found 2719 exclusions and 0 interactions(1-4) NBONDS: found 97002 intra-atom interactions NBONDS: found 96983 intra-atom interactions NBONDS: found 96982 intra-atom interactions NBONDS: found 96986 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0000 ----------------------- | Etotal =3304.644 grad(E)=54.718 E(BOND)=24.444 E(ANGL)=1626.659 | | E(DIHE)=72.722 E(IMPR)=1501.587 E(VDW )=79.232 | ------------------------------------------------------------------------------- POWELL: Line search terminated POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> flags exclude * include bond angl impr dihe vdw end CNSsolve> CNSsolve> {- return masses to something sensible -} CNSsolve> do (mass=refy) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=$nstep Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=4030.156 E(kin)=725.515 temperature=293.250 | | Etotal =3304.641 grad(E)=54.718 E(BOND)=24.444 E(ANGL)=1626.655 | | E(DIHE)=72.722 E(IMPR)=1501.589 E(VDW )=79.232 | ------------------------------------------------------------------------------- NBONDS: found 97011 intra-atom interactions NBONDS: found 97013 intra-atom interactions NBONDS: found 97042 intra-atom interactions NBONDS: found 97033 intra-atom interactions NBONDS: found 97019 intra-atom interactions NBONDS: found 96955 intra-atom interactions NBONDS: found 96920 intra-atom interactions NBONDS: found 96929 intra-atom interactions NBONDS: found 96954 intra-atom interactions NBONDS: found 96968 intra-atom interactions NBONDS: found 96979 intra-atom interactions NBONDS: found 97001 intra-atom interactions NBONDS: found 97021 intra-atom interactions NBONDS: found 97048 intra-atom interactions NBONDS: found 97045 intra-atom interactions NBONDS: found 96995 intra-atom interactions NBONDS: found 96992 intra-atom interactions NBONDS: found 96949 intra-atom interactions NBONDS: found 96912 intra-atom interactions NBONDS: found 96897 intra-atom interactions NBONDS: found 96899 intra-atom interactions NBONDS: found 96882 intra-atom interactions NBONDS: found 96897 intra-atom interactions NBONDS: found 96941 intra-atom interactions NBONDS: found 96965 intra-atom interactions NBONDS: found 96993 intra-atom interactions NBONDS: found 97038 intra-atom interactions NBONDS: found 97071 intra-atom interactions NBONDS: found 96980 intra-atom interactions NBONDS: found 96951 intra-atom interactions NBONDS: found 96910 intra-atom interactions NBONDS: found 96880 intra-atom interactions NBONDS: found 96841 intra-atom interactions NBONDS: found 96868 intra-atom interactions NBONDS: found 96920 intra-atom interactions NBONDS: found 96961 intra-atom interactions NBONDS: found 96980 intra-atom interactions NBONDS: found 96984 intra-atom interactions NBONDS: found 96988 intra-atom interactions NBONDS: found 97017 intra-atom interactions NBONDS: found 96963 intra-atom interactions NBONDS: found 96930 intra-atom interactions NBONDS: found 96898 intra-atom interactions NBONDS: found 96882 intra-atom interactions NBONDS: found 96859 intra-atom interactions NBONDS: found 96907 intra-atom interactions NBONDS: found 96941 intra-atom interactions NBONDS: found 96979 intra-atom interactions NBONDS: found 97034 intra-atom interactions NBONDS: found 97065 intra-atom interactions NBONDS: found 97098 intra-atom interactions NBONDS: found 97121 intra-atom interactions NBONDS: found 97079 intra-atom interactions NBONDS: found 97038 intra-atom interactions NBONDS: found 96982 intra-atom interactions NBONDS: found 96925 intra-atom interactions NBONDS: found 96895 intra-atom interactions NBONDS: found 96886 intra-atom interactions NBONDS: found 96856 intra-atom interactions NBONDS: found 96867 intra-atom interactions NBONDS: found 96901 intra-atom interactions NBONDS: found 96916 intra-atom interactions NBONDS: found 96951 intra-atom interactions NBONDS: found 97008 intra-atom interactions NBONDS: found 97065 intra-atom interactions NBONDS: found 97004 intra-atom interactions NBONDS: found 96981 intra-atom interactions NBONDS: found 96934 intra-atom interactions NBONDS: found 96904 intra-atom interactions NBONDS: found 96874 intra-atom interactions NBONDS: found 96856 intra-atom interactions NBONDS: found 96866 intra-atom interactions NBONDS: found 96894 intra-atom interactions NBONDS: found 96941 intra-atom interactions NBONDS: found 96968 intra-atom interactions NBONDS: found 96997 intra-atom interactions NBONDS: found 96998 intra-atom interactions NBONDS: found 96988 intra-atom interactions NBONDS: found 96973 intra-atom interactions NBONDS: found 96955 intra-atom interactions NBONDS: found 96928 intra-atom interactions NBONDS: found 96918 intra-atom interactions NBONDS: found 96910 intra-atom interactions NBONDS: found 96910 intra-atom interactions NBONDS: found 96929 intra-atom interactions NBONDS: found 96939 intra-atom interactions NBONDS: found 96951 intra-atom interactions NBONDS: found 96954 intra-atom interactions NBONDS: found 96925 intra-atom interactions NBONDS: found 96901 intra-atom interactions NBONDS: found 96880 intra-atom interactions NBONDS: found 96851 intra-atom interactions NBONDS: found 96837 intra-atom interactions NBONDS: found 96842 intra-atom interactions NBONDS: found 96862 intra-atom interactions NBONDS: found 96888 intra-atom interactions NBONDS: found 96924 intra-atom interactions NBONDS: found 96935 intra-atom interactions NBONDS: found 96961 intra-atom interactions NBONDS: found 96978 intra-atom interactions NBONDS: found 96984 intra-atom interactions NBONDS: found 96931 intra-atom interactions NBONDS: found 96909 intra-atom interactions NBONDS: found 96893 intra-atom interactions NBONDS: found 96862 intra-atom interactions NBONDS: found 96848 intra-atom interactions NBONDS: found 96850 intra-atom interactions NBONDS: found 96826 intra-atom interactions NBONDS: found 96815 intra-atom interactions NBONDS: found 96815 intra-atom interactions NBONDS: found 96847 intra-atom interactions NBONDS: found 96883 intra-atom interactions NBONDS: found 96909 intra-atom interactions NBONDS: found 96968 intra-atom interactions NBONDS: found 96999 intra-atom interactions NBONDS: found 96991 intra-atom interactions NBONDS: found 96974 intra-atom interactions NBONDS: found 96952 intra-atom interactions NBONDS: found 96926 intra-atom interactions NBONDS: found 96901 intra-atom interactions NBONDS: found 96872 intra-atom interactions NBONDS: found 96846 intra-atom interactions NBONDS: found 96828 intra-atom interactions NBONDS: found 96812 intra-atom interactions NBONDS: found 96801 intra-atom interactions NBONDS: found 96813 intra-atom interactions NBONDS: found 96831 intra-atom interactions NBONDS: found 96844 intra-atom interactions NBONDS: found 96862 intra-atom interactions NBONDS: found 96881 intra-atom interactions NBONDS: found 96898 intra-atom interactions NBONDS: found 96898 intra-atom interactions NBONDS: found 96881 intra-atom interactions NBONDS: found 96873 intra-atom interactions NBONDS: found 96878 intra-atom interactions NBONDS: found 96870 intra-atom interactions NBONDS: found 96869 intra-atom interactions NBONDS: found 96877 intra-atom interactions NBONDS: found 96909 intra-atom interactions NBONDS: found 96937 intra-atom interactions NBONDS: found 96941 intra-atom interactions NBONDS: found 96978 intra-atom interactions NBONDS: found 97015 intra-atom interactions NBONDS: found 96999 intra-atom interactions NBONDS: found 96921 intra-atom interactions NBONDS: found 96886 intra-atom interactions NBONDS: found 96827 intra-atom interactions NBONDS: found 96795 intra-atom interactions NBONDS: found 96764 intra-atom interactions NBONDS: found 96799 intra-atom interactions NBONDS: found 96823 intra-atom interactions NBONDS: found 96854 intra-atom interactions NBONDS: found 96908 intra-atom interactions NBONDS: found 96946 intra-atom interactions NBONDS: found 96962 intra-atom interactions NBONDS: found 96984 intra-atom interactions NBONDS: found 97009 intra-atom interactions NBONDS: found 96961 intra-atom interactions NBONDS: found 96928 intra-atom interactions NBONDS: found 96879 intra-atom interactions NBONDS: found 96854 intra-atom interactions NBONDS: found 96819 intra-atom interactions NBONDS: found 96829 intra-atom interactions NBONDS: found 96880 intra-atom interactions NBONDS: found 96927 intra-atom interactions NBONDS: found 96952 intra-atom interactions NBONDS: found 96953 intra-atom interactions NBONDS: found 96945 intra-atom interactions NBONDS: found 96914 intra-atom interactions NBONDS: found 96905 intra-atom interactions NBONDS: found 96901 intra-atom interactions NBONDS: found 96887 intra-atom interactions NBONDS: found 96874 intra-atom interactions NBONDS: found 96892 intra-atom interactions NBONDS: found 96892 intra-atom interactions NBONDS: found 96901 intra-atom interactions NBONDS: found 96911 intra-atom interactions NBONDS: found 96910 intra-atom interactions NBONDS: found 96900 intra-atom interactions NBONDS: found 96895 intra-atom interactions NBONDS: found 96892 intra-atom interactions NBONDS: found 96933 intra-atom interactions NBONDS: found 96965 intra-atom interactions NBONDS: found 96965 intra-atom interactions NBONDS: found 96942 intra-atom interactions NBONDS: found 96924 intra-atom interactions NBONDS: found 96908 intra-atom interactions NBONDS: found 96882 intra-atom interactions NBONDS: found 96872 intra-atom interactions NBONDS: found 96872 intra-atom interactions NBONDS: found 96877 intra-atom interactions NBONDS: found 96874 intra-atom interactions NBONDS: found 96875 intra-atom interactions NBONDS: found 96879 intra-atom interactions NBONDS: found 96877 intra-atom interactions NBONDS: found 96861 intra-atom interactions NBONDS: found 96856 intra-atom interactions NBONDS: found 96848 intra-atom interactions NBONDS: found 96849 intra-atom interactions NBONDS: found 96857 intra-atom interactions NBONDS: found 96869 intra-atom interactions NBONDS: found 96876 intra-atom interactions NBONDS: found 96881 intra-atom interactions NBONDS: found 96910 intra-atom interactions NBONDS: found 96936 intra-atom interactions NBONDS: found 96950 intra-atom interactions NBONDS: found 96909 intra-atom interactions NBONDS: found 96875 intra-atom interactions NBONDS: found 96834 intra-atom interactions NBONDS: found 96832 intra-atom interactions NBONDS: found 96847 intra-atom interactions NBONDS: found 96877 intra-atom interactions NBONDS: found 96924 intra-atom interactions NBONDS: found 96922 intra-atom interactions NBONDS: found 96898 intra-atom interactions NBONDS: found 96885 intra-atom interactions NBONDS: found 96898 intra-atom interactions NBONDS: found 96924 intra-atom interactions NBONDS: found 96933 intra-atom interactions NBONDS: found 96916 intra-atom interactions NBONDS: found 96894 intra-atom interactions NBONDS: found 96864 intra-atom interactions NBONDS: found 96848 intra-atom interactions NBONDS: found 96883 intra-atom interactions NBONDS: found 96911 intra-atom interactions NBONDS: found 96945 intra-atom interactions NBONDS: found 96975 intra-atom interactions NBONDS: found 96985 intra-atom interactions NBONDS: found 96924 intra-atom interactions NBONDS: found 96899 intra-atom interactions NBONDS: found 96864 intra-atom interactions NBONDS: found 96843 intra-atom interactions NBONDS: found 96822 intra-atom interactions NBONDS: found 96821 intra-atom interactions NBONDS: found 96849 intra-atom interactions NBONDS: found 96881 intra-atom interactions NBONDS: found 96904 intra-atom interactions NBONDS: found 96930 intra-atom interactions NBONDS: found 96947 intra-atom interactions NBONDS: found 96939 intra-atom interactions NBONDS: found 96903 intra-atom interactions NBONDS: found 96865 intra-atom interactions NBONDS: found 96839 intra-atom interactions NBONDS: found 96812 intra-atom interactions NBONDS: found 96846 intra-atom interactions NBONDS: found 96892 intra-atom interactions NBONDS: found 96916 intra-atom interactions NBONDS: found 96924 intra-atom interactions NBONDS: found 96913 intra-atom interactions NBONDS: found 96868 intra-atom interactions NBONDS: found 96847 intra-atom interactions NBONDS: found 96820 intra-atom interactions NBONDS: found 96821 intra-atom interactions NBONDS: found 96833 intra-atom interactions NBONDS: found 96855 intra-atom interactions NBONDS: found 96879 intra-atom interactions NBONDS: found 96915 intra-atom interactions NBONDS: found 96929 intra-atom interactions NBONDS: found 96924 intra-atom interactions NBONDS: found 96898 intra-atom interactions NBONDS: found 96852 intra-atom interactions NBONDS: found 96828 intra-atom interactions NBONDS: found 96838 intra-atom interactions NBONDS: found 96893 intra-atom interactions NBONDS: found 96924 intra-atom interactions NBONDS: found 96945 intra-atom interactions NBONDS: found 96956 intra-atom interactions NBONDS: found 96962 intra-atom interactions NBONDS: found 96962 intra-atom interactions NBONDS: found 96952 intra-atom interactions NBONDS: found 96909 intra-atom interactions NBONDS: found 96911 intra-atom interactions NBONDS: found 96903 intra-atom interactions NBONDS: found 96919 intra-atom interactions NBONDS: found 96938 intra-atom interactions NBONDS: found 96952 intra-atom interactions NBONDS: found 96958 intra-atom interactions NBONDS: found 96950 intra-atom interactions NBONDS: found 96904 intra-atom interactions NBONDS: found 96841 intra-atom interactions NBONDS: found 96795 intra-atom interactions NBONDS: found 96779 intra-atom interactions NBONDS: found 96763 intra-atom interactions NBONDS: found 96771 intra-atom interactions NBONDS: found 96799 intra-atom interactions NBONDS: found 96849 intra-atom interactions NBONDS: found 96883 intra-atom interactions NBONDS: found 96917 intra-atom interactions NBONDS: found 96934 intra-atom interactions NBONDS: found 96953 intra-atom interactions NBONDS: found 96980 intra-atom interactions NBONDS: found 96954 intra-atom interactions NBONDS: found 96926 intra-atom interactions NBONDS: found 96896 intra-atom interactions NBONDS: found 96862 intra-atom interactions NBONDS: found 96838 intra-atom interactions NBONDS: found 96821 intra-atom interactions NBONDS: found 96794 intra-atom interactions NBONDS: found 96800 intra-atom interactions NBONDS: found 96812 intra-atom interactions NBONDS: found 96832 intra-atom interactions NBONDS: found 96841 intra-atom interactions NBONDS: found 96858 intra-atom interactions NBONDS: found 96871 intra-atom interactions NBONDS: found 96878 intra-atom interactions NBONDS: found 96889 intra-atom interactions NBONDS: found 96893 intra-atom interactions NBONDS: found 96898 intra-atom interactions NBONDS: found 96897 intra-atom interactions NBONDS: found 96884 intra-atom interactions NBONDS: found 96885 intra-atom interactions NBONDS: found 96893 intra-atom interactions NBONDS: found 96874 intra-atom interactions NBONDS: found 96867 intra-atom interactions NBONDS: found 96872 intra-atom interactions NBONDS: found 96881 intra-atom interactions NBONDS: found 96871 intra-atom interactions NBONDS: found 96878 intra-atom interactions NBONDS: found 96885 intra-atom interactions NBONDS: found 96879 intra-atom interactions NBONDS: found 96859 intra-atom interactions NBONDS: found 96822 intra-atom interactions NBONDS: found 96803 intra-atom interactions NBONDS: found 96782 intra-atom interactions NBONDS: found 96780 intra-atom interactions NBONDS: found 96791 intra-atom interactions NBONDS: found 96808 intra-atom interactions NBONDS: found 96836 intra-atom interactions NBONDS: found 96871 intra-atom interactions NBONDS: found 96893 intra-atom interactions NBONDS: found 96919 intra-atom interactions NBONDS: found 96935 intra-atom interactions NBONDS: found 96943 intra-atom interactions NBONDS: found 96942 intra-atom interactions NBONDS: found 96939 intra-atom interactions NBONDS: found 96930 intra-atom interactions NBONDS: found 96895 intra-atom interactions NBONDS: found 96863 intra-atom interactions NBONDS: found 96825 intra-atom interactions NBONDS: found 96812 intra-atom interactions NBONDS: found 96810 intra-atom interactions NBONDS: found 96835 intra-atom interactions NBONDS: found 96854 intra-atom interactions NBONDS: found 96887 intra-atom interactions NBONDS: found 96927 intra-atom interactions NBONDS: found 96968 intra-atom interactions NBONDS: found 97002 intra-atom interactions NBONDS: found 97009 intra-atom interactions NBONDS: found 96945 intra-atom interactions NBONDS: found 96919 intra-atom interactions NBONDS: found 96876 intra-atom interactions NBONDS: found 96830 intra-atom interactions NBONDS: found 96804 intra-atom interactions NBONDS: found 96782 intra-atom interactions NBONDS: found 96791 intra-atom interactions NBONDS: found 96821 intra-atom interactions NBONDS: found 96846 intra-atom interactions NBONDS: found 96895 intra-atom interactions NBONDS: found 96916 intra-atom interactions NBONDS: found 96953 intra-atom interactions NBONDS: found 96958 intra-atom interactions NBONDS: found 96936 intra-atom interactions NBONDS: found 96897 intra-atom interactions NBONDS: found 96874 intra-atom interactions NBONDS: found 96846 intra-atom interactions NBONDS: found 96810 intra-atom interactions NBONDS: found 96783 intra-atom interactions NBONDS: found 96762 intra-atom interactions -------------------- final step= 500 at 0.25000 ps --------------------- | E(kin)+E(total)=40558.287 E(kin)=12877.503 temperature=5205.024 | | Etotal =27680.784 grad(E)=240.626 E(BOND)=22313.754 E(ANGL)=1237.240 | | E(DIHE)=6.196 E(IMPR)=4066.929 E(VDW )=56.666 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 11.00240 -8.58145 -29.34315 velocity [A/ps] : -0.63649 3.30419 -2.98568 ang. mom. [amu A/ps] : -24520.28603 -52599.81705 -15601.19380 kin. ener. [Kcal/mol] : 20.95827 CNSsolve> CNSsolve> {- some final minimisation -} CNSsolve> minimize powell POWELL> nstep=500 POWELL> drop=40.0 POWELL> nprint=50 POWELL> end POWELL: number of degrees of freedom= 2490 NBONDS: found 96796 intra-atom interactions NBONDS: found 96854 intra-atom interactions NBONDS: found 96949 intra-atom interactions NBONDS: found 96891 intra-atom interactions NBONDS: found 96900 intra-atom interactions NBONDS: found 96923 intra-atom interactions NBONDS: found 96902 intra-atom interactions NBONDS: found 96923 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0000 ----------------------- | Etotal =2522.102 grad(E)=62.052 E(BOND)=332.509 E(ANGL)=2044.512 | | E(DIHE)=6.215 E(IMPR)=51.248 E(VDW )=87.618 | ------------------------------------------------------------------------------- POWELL: Line search terminated POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> print thres=0.02 bonds (atom-i |atom-j ) dist. equil. delta energy const. ( 48 NE | 48 HE ) 1.255 0.980 0.275 75.763 1000.000 ( 53 NE | 53 HE ) 1.126 0.980 0.146 21.342 1000.000 ( 57 NE | 57 HE ) 1.336 0.980 0.356 127.027 1000.000 ( 88 NE | 88 HE ) 1.282 0.980 0.302 90.980 1000.000 ( 90 NE | 90 HE ) 1.106 0.980 0.126 15.936 1000.000 Number of violations greater 0.020: 5 RMS deviation= 0.020 CNSsolve> print thres=5. angles (atom-i |atom-j |atom-k ) angle equil. delta energy const. ( 48 CD | 48 NE | 48 HE ) 92.910 118.099 -25.189 96.635 500.000 ( 48 HE | 48 NE | 48 CZ ) 141.691 119.249 22.442 76.710 500.000 ( 53 CD | 53 NE | 53 HE ) 77.079 118.099 -41.020 256.279 500.000 ( 53 HE | 53 NE | 53 CZ ) 157.772 119.249 38.523 226.027 500.000 ( 57 CD | 57 NE | 57 HE ) 89.381 118.099 -28.718 125.610 500.000 ( 57 HE | 57 NE | 57 CZ ) 145.766 119.249 26.517 107.099 500.000 ( 88 CD | 88 NE | 88 HE ) 92.700 118.099 -25.399 98.256 500.000 ( 88 HE | 88 NE | 88 CZ ) 142.619 119.249 23.370 83.185 500.000 ( 90 CD | 90 NE | 90 HE ) 63.087 118.099 -55.012 460.927 500.000 ( 90 HE | 90 NE | 90 CZ ) 171.441 119.249 52.192 414.892 500.000 Number of violations greater 5.000: 10 RMS deviation= 2.666 CNSsolve> CNSsolve> end if CNSsolve> CNSsolve> fix selection=( none ) end SELRPN: 0 atoms have been selected out of 1677 CNSsolve> CNSsolve> end if CNSsolve> CNSsolve> set echo=false end SELRPN: 0 atoms have been selected out of 1677 SHOW: zero atoms selected NEXTCD: condition evaluated as true SELRPN: 0 atoms have been selected out of 1677 CNSsolve> CNSsolve> if (&set_bfactor=true) then NEXTCD: condition evaluated as false CNSsolve> do (b=&bfactor) ( all ) CNSsolve> else CNSsolve> show ave(b) (known and not(store1)) SELRPN: 847 atoms have been selected out of 1677 SHOW: average of selected elements = 0.000000 CNSsolve> do (b=$result) (store1 and (attr b < 0.01)) SELRPN: 830 atoms have been selected out of 1677 CNSsolve> end if CNSsolve> CNSsolve> if (&set_occupancy=true) then NEXTCD: condition evaluated as false CNSsolve> do (q=&occupancy) ( all ) CNSsolve> end if CNSsolve> CNSsolve> set echo=false end SELRPN: 830 atoms have been selected out of 1677 SHOW: sum over selected elements = 830.000000 NEXTCD: condition evaluated as false CNSsolve> CNSsolve> set remarks=reset end CNSsolve> CNSsolve> buffer message BUFFER> to=remarks BUFFER> dump BUFFER> end CNSsolve> CNSsolve> write coordinates output=&coordinate_outfile end ASSFIL: file 1xxx_12_cns.pdb opened. CNSsolve> CNSsolve>stop HEAP: maximum use = 1117020 current use = 0 bytes HEAP: maximum overhead = 960 current overhead = 64 bytes ============================================================ Maximum dynamic memory allocation: 1117020 bytes Maximum dynamic memory overhead: 960 bytes Program started at: 23:42:36 on 26-Dec-04 Program stopped at: 23:43:01 on 26-Dec-04 CPU time used: 24.9500 seconds ============================================================