============================================================ | | | Crystallography & NMR System (CNS) | | CNSsolve | | | ============================================================ Version: 1.1 Status: General release ============================================================ Written by: A.T.Brunger, P.D.Adams, G.M.Clore, W.L.DeLano, P.Gros, R.W.Grosse-Kunstleve, J.-S.Jiang, J.Kuszewski, M.Nilges, N.S.Pannu, R.J.Read, L.M.Rice, T.Simonson, G.L.Warren. Copyright (c) 1997-2001 Yale University ============================================================ Running on machine: cesg-master.biochem.wisc.edu (Linux,32-bit) Program started by: volkman Program started at: 23:11:50 on 3-Feb-04 ============================================================ FFT3C: Using FFTPACK4.1 CNSsolve>define( DEFINE>{* selection of atoms other than hydrogens for which coordinates DEFINE> will be generated *} DEFINE>{* to generate coordinates for all unknown atoms use: (not(known)) *} DEFINE>{===>} atom_build=(not(known)); DEFINE>{============================= output files ================================} DEFINE> DEFINE>{* input coordinate file *} DEFINE>{===>} coordinate_infile="1xxx_13.pdb"; DEFINE> DEFINE>{* output coordinate file *} DEFINE>{===>} coordinate_outfile="1xxx_13_cns.pdb"; DEFINE>) CNSsolve> CNSsolve> checkversion 1.1 Program version= 1.1 File version= 1.1 CNSsolve> CNSsolve> evaluate ($log_level=verbose) Assuming literal string "VERBOSE" EVALUATE: symbol $LOG_LEVEL set to "VERBOSE" (string) CNSsolve> evaluate ($par_nonbonded="PROLSQ") EVALUATE: symbol $PAR_NONBONDED set to "PROLSQ" (string) CNSsolve> CNSsolve> !@generateProtonsJFD.inp CNSsolve> CNSsolve>{===========================================================================} CNSsolve>{ things below this line do not need to be changed } CNSsolve>{===========================================================================} CNSsolve> CNSsolve>remarks changed Tue Sep 2 09:48:07 CDT 2003 CNSsolve>remarks by jfd to include a fes residue CNSsolve> CNSsolve>!@generate_tmoc.inp CNSsolve> CNSsolve>topology reset end CNSsolve>structure reset end Status of internal molecular topology database: -> NATOM= 0(MAXA= 40000) NBOND= 0(MAXB= 40000) -> NTHETA= 0(MAXT= 80000) NGRP= 0(MAXGRP= 40000) -> NPHI= 0(MAXP= 80000) NIMPHI= 0(MAXIMP= 40000) -> NNB= 0(MAXNB= 40000) CNSsolve> CNSsolve>topology RTFRDR>{===>} @TOPPAR:topallhdg5.3.pro ASSFIL: file /u/volkman/waterrefine/toppar/topallhdg5.3.pro opened. RTFRDR>remark file topallhdg.pro version 5.3 date 23-Sept-02 RTFRDR>remark for file parallhdg.pro version 5.3 date 13-Feb-02 or later RTFRDR>remark Geometric energy function parameters for distance geometry and RTFRDR>remark simulated annealing. RTFRDR>remark Author: Michael Nilges, EMBL Heidelberg; Institut Pasteur, Paris RTFRDR>remark This file contains modifications from M. Williams, UCL London RTFRDR>remark Last modification 16-Sept-02 RTFRDR> RTFRDR>set echo off message off end RTFRDR>end CNSsolve> CNSsolve>! no chain id. CNSsolve>segment name=" " SEGMENT> chain CHAIN> @TOPPAR:topallhdg5.3.pep CHAIN>REMARKS TOPH19.pep -MACRO for protein sequence CHAIN>SET ECHO=FALSE END CHAIN> sequence SEQUENCE> @1xxx.seq SEQUENCE>GLU SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =TRP SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) = end SEGMNT: 101 residues were inserted into segment " " CHAIN> end SEGMENT>end Status of internal molecular topology database: -> NATOM= 1586(MAXA= 40000) NBOND= 1598(MAXB= 40000) -> NTHETA= 2925(MAXT= 80000) NGRP= 103(MAXGRP= 40000) -> NPHI= 2500(MAXP= 80000) NIMPHI= 774(MAXIMP= 40000) -> NNB= 618(MAXNB= 40000) CNSsolve> CNSsolve>! turn peptide from trans to cis CNSsolve>!patch CISP reference=nil=( resid 80 ) end CNSsolve> CNSsolve>coor @&coordinate_infile COOR>HEADER Structures from CYANA 06-01-2004 COOR>REMARK model 13 COOR>ATOM 2206 N GLU A 1 1.325 0.000 0.000 1.00 0.00 %READC-ERR: atom 1 GLU HN not found in molecular structure %READC-ERR: atom 1 GLU 2HB not found in molecular structure %READC-ERR: atom 1 GLU 3HB not found in molecular structure %READC-ERR: atom 1 GLU QB not found in molecular structure %READC-ERR: atom 1 GLU 2HG not found in molecular structure %READC-ERR: atom 1 GLU 3HG not found in molecular structure %READC-ERR: atom 1 GLU QG not found in molecular structure %READC-ERR: atom 2 ALA QB not found in molecular structure %READC-ERR: atom 2 ALA 1HB not found in molecular structure %READC-ERR: atom 2 ALA 2HB not found in molecular structure %READC-ERR: atom 2 ALA 3HB not found in molecular structure %READC-ERR: atom 3 GLU 2HB not found in molecular structure %READC-ERR: atom 3 GLU 3HB not found in molecular structure %READC-ERR: atom 3 GLU QB not found in molecular structure %READC-ERR: atom 3 GLU 2HG not found in molecular structure %READC-ERR: atom 3 GLU 3HG not found in molecular structure %READC-ERR: atom 3 GLU QG not found in molecular structure %READC-ERR: atom 4 VAL QG1 not found in molecular structure %READC-ERR: atom 4 VAL QG2 not found in molecular structure %READC-ERR: atom 4 VAL 1HG1 not found in molecular structure %READC-ERR: atom 4 VAL 2HG1 not found in molecular structure %READC-ERR: atom 4 VAL 3HG1 not found in molecular structure %READC-ERR: atom 4 VAL 1HG2 not found in molecular structure %READC-ERR: atom 4 VAL 2HG2 not found in molecular structure %READC-ERR: atom 4 VAL 3HG2 not found in molecular structure %READC-ERR: atom 4 VAL QQG not found in molecular structure %READC-ERR: atom 5 HIS 2HB not found in molecular structure %READC-ERR: atom 5 HIS 3HB not found in molecular structure %READC-ERR: atom 5 HIS QB not found in molecular structure %READC-ERR: atom 6 ASN 2HB not found in molecular structure %READC-ERR: atom 6 ASN 3HB not found in molecular structure %READC-ERR: atom 6 ASN QB not found in molecular structure %READC-ERR: atom 6 ASN 1HD2 not found in molecular structure %READC-ERR: atom 6 ASN 2HD2 not found in molecular structure %READC-ERR: atom 6 ASN QD2 not found in molecular structure %READC-ERR: atom 7 GLN 2HB not found in molecular structure %READC-ERR: atom 7 GLN 3HB not found in molecular structure %READC-ERR: atom 7 GLN QB not found in molecular structure %READC-ERR: atom 7 GLN 2HG not found in molecular structure %READC-ERR: atom 7 GLN 3HG not found in molecular structure %READC-ERR: atom 7 GLN QG not found in molecular structure %READC-ERR: atom 7 GLN 1HE2 not found in molecular structure %READC-ERR: atom 7 GLN 2HE2 not found in molecular structure %READC-ERR: atom 7 GLN QE2 not found in molecular structure %READC-ERR: atom 8 LEU 2HB not found in molecular structure %READC-ERR: atom 8 LEU 3HB not found in molecular structure %READC-ERR: atom 8 LEU QB not found in molecular structure %READC-ERR: atom 8 LEU QD1 not found in molecular structure %READC-ERR: atom 8 LEU QD2 not found in molecular structure %READC-ERR: atom 8 LEU 1HD1 not found in molecular structure %READC-ERR: atom 8 LEU 2HD1 not found in molecular structure %READC-ERR: atom 8 LEU 3HD1 not found in molecular structure %READC-ERR: atom 8 LEU 1HD2 not found in molecular structure %READC-ERR: atom 8 LEU 2HD2 not found in molecular structure %READC-ERR: atom 8 LEU 3HD2 not found in molecular structure %READC-ERR: atom 8 LEU QQD not found in molecular structure %READC-ERR: atom 9 GLU 2HB not found in molecular structure %READC-ERR: atom 9 GLU 3HB not found in molecular structure %READC-ERR: atom 9 GLU QB not found in molecular structure %READC-ERR: atom 9 GLU 2HG not found in molecular structure %READC-ERR: atom 9 GLU 3HG not found in molecular structure %READC-ERR: atom 9 GLU QG not found in molecular structure %READC-ERR: atom 10 ILE QG2 not found in molecular structure %READC-ERR: atom 10 ILE 1HG2 not found in molecular structure %READC-ERR: atom 10 ILE 2HG2 not found in molecular structure %READC-ERR: atom 10 ILE 3HG2 not found in molecular structure %READC-ERR: atom 10 ILE 2HG1 not found in molecular structure %READC-ERR: atom 10 ILE 3HG1 not found in molecular structure %READC-ERR: atom 10 ILE QG1 not found in molecular structure %READC-ERR: atom 10 ILE QD1 not found in molecular structure %READC-ERR: atom 10 ILE 1HD1 not found in molecular structure %READC-ERR: atom 10 ILE 2HD1 not found in molecular structure %READC-ERR: atom 10 ILE 3HD1 not found in molecular structure %READC-ERR: atom 11 LYS 2HB not found in molecular structure %READC-ERR: atom 11 LYS 3HB not found in molecular structure %READC-ERR: atom 11 LYS QB not found in molecular structure %READC-ERR: atom 11 LYS 2HG not found in molecular structure %READC-ERR: atom 11 LYS 3HG not found in molecular structure %READC-ERR: atom 11 LYS QG not found in molecular structure %READC-ERR: atom 11 LYS 2HD not found in molecular structure %READC-ERR: atom 11 LYS 3HD not found in molecular structure %READC-ERR: atom 11 LYS QD not found in molecular structure %READC-ERR: atom 11 LYS 2HE not found in molecular structure %READC-ERR: atom 11 LYS 3HE not found in molecular structure %READC-ERR: atom 11 LYS QE not found in molecular structure %READC-ERR: atom 11 LYS 1HZ not found in molecular structure %READC-ERR: atom 11 LYS 2HZ not found in molecular structure %READC-ERR: atom 11 LYS 3HZ not found in molecular structure %READC-ERR: atom 11 LYS QZ not found in molecular structure %READC-ERR: atom 12 PHE 2HB not found in molecular structure %READC-ERR: atom 12 PHE 3HB not found in molecular structure %READC-ERR: atom 12 PHE QB not found in molecular structure %READC-ERR: atom 12 PHE QD not found in molecular structure %READC-ERR: atom 12 PHE QE not found in molecular structure %READC-ERR: atom 12 PHE QR not found in molecular structure %READC-ERR: atom 13 ARG 2HB not found in molecular structure %READC-ERR: atom 13 ARG 3HB not found in molecular structure %READC-ERR: atom 13 ARG QB not found in molecular structure %READC-ERR: atom 13 ARG 2HG not found in molecular structure %READC-ERR: atom 13 ARG 3HG not found in molecular structure %READC-ERR: atom 13 ARG QG not found in molecular structure %READC-ERR: atom 13 ARG 2HD not found in molecular structure %READC-ERR: atom 13 ARG 3HD not found in molecular structure %READC-ERR: atom 13 ARG QD not found in molecular structure %READC-ERR: atom 13 ARG 1HH1 not found in molecular structure %READC-ERR: atom 13 ARG 2HH1 not found in molecular structure %READC-ERR: atom 13 ARG QH1 not found in molecular structure %READC-ERR: atom 13 ARG 1HH2 not found in molecular structure %READC-ERR: atom 13 ARG 2HH2 not found in molecular structure %READC-ERR: atom 13 ARG QH2 not found in molecular structure %READC-ERR: atom 14 LEU 2HB not found in molecular structure %READC-ERR: atom 14 LEU 3HB not found in molecular structure %READC-ERR: atom 14 LEU QB not found in molecular structure %READC-ERR: atom 14 LEU QD1 not found in molecular structure %READC-ERR: atom 14 LEU QD2 not found in molecular structure %READC-ERR: atom 14 LEU 1HD1 not found in molecular structure %READC-ERR: atom 14 LEU 2HD1 not found in molecular structure %READC-ERR: atom 14 LEU 3HD1 not found in molecular structure %READC-ERR: atom 14 LEU 1HD2 not found in molecular structure %READC-ERR: atom 14 LEU 2HD2 not found in molecular structure %READC-ERR: atom 14 LEU 3HD2 not found in molecular structure %READC-ERR: atom 14 LEU QQD not found in molecular structure %READC-ERR: atom 15 THR QG2 not found in molecular structure %READC-ERR: atom 15 THR 1HG2 not found in molecular structure %READC-ERR: atom 15 THR 2HG2 not found in molecular structure %READC-ERR: atom 15 THR 3HG2 not found in molecular structure %READC-ERR: atom 16 ASP 2HB not found in molecular structure %READC-ERR: atom 16 ASP 3HB not found in molecular structure %READC-ERR: atom 16 ASP QB not found in molecular structure %READC-ERR: atom 17 GLY 1HA not found in molecular structure %READC-ERR: atom 17 GLY 2HA not found in molecular structure %READC-ERR: atom 17 GLY QA not found in molecular structure %READC-ERR: atom 18 SER 2HB not found in molecular structure %READC-ERR: atom 18 SER 3HB not found in molecular structure %READC-ERR: atom 18 SER QB not found in molecular structure %READC-ERR: atom 19 ASP 2HB not found in molecular structure %READC-ERR: atom 19 ASP 3HB not found in molecular structure %READC-ERR: atom 19 ASP QB not found in molecular structure %READC-ERR: atom 20 ILE QG2 not found in molecular structure %READC-ERR: atom 20 ILE 1HG2 not found in molecular structure %READC-ERR: atom 20 ILE 2HG2 not found in molecular structure %READC-ERR: atom 20 ILE 3HG2 not found in molecular structure %READC-ERR: atom 20 ILE 2HG1 not found in molecular structure %READC-ERR: atom 20 ILE 3HG1 not found in molecular structure %READC-ERR: atom 20 ILE QG1 not found in molecular structure %READC-ERR: atom 20 ILE QD1 not found in molecular structure %READC-ERR: atom 20 ILE 1HD1 not found in molecular structure %READC-ERR: atom 20 ILE 2HD1 not found in molecular structure %READC-ERR: atom 20 ILE 3HD1 not found in molecular structure %READC-ERR: atom 21 GLY 1HA not found in molecular structure %READC-ERR: atom 21 GLY 2HA not found in molecular structure %READC-ERR: atom 21 GLY QA not found in molecular structure %READC-ERR: atom 22 PRO 2HB not found in molecular structure %READC-ERR: atom 22 PRO 3HB not found in molecular structure %READC-ERR: atom 22 PRO QB not found in molecular structure %READC-ERR: atom 22 PRO 2HG not found in molecular structure %READC-ERR: atom 22 PRO 3HG not found in molecular structure %READC-ERR: atom 22 PRO QG not found in molecular structure %READC-ERR: atom 22 PRO 2HD not found in molecular structure %READC-ERR: atom 22 PRO 3HD not found in molecular structure %READC-ERR: atom 22 PRO QD not found in molecular structure %READC-ERR: atom 23 LYS 2HB not found in molecular structure %READC-ERR: atom 23 LYS 3HB not found in molecular structure %READC-ERR: atom 23 LYS QB not found in molecular structure %READC-ERR: atom 23 LYS 2HG not found in molecular structure %READC-ERR: atom 23 LYS 3HG not found in molecular structure %READC-ERR: atom 23 LYS QG not found in molecular structure %READC-ERR: atom 23 LYS 2HD not found in molecular structure %READC-ERR: atom 23 LYS 3HD not found in molecular structure %READC-ERR: atom 23 LYS QD not found in molecular structure %READC-ERR: atom 23 LYS 2HE not found in molecular structure %READC-ERR: atom 23 LYS 3HE not found in molecular structure %READC-ERR: atom 23 LYS QE not found in molecular structure %READC-ERR: atom 23 LYS 1HZ not found in molecular structure %READC-ERR: atom 23 LYS 2HZ not found in molecular structure %READC-ERR: atom 23 LYS 3HZ not found in molecular structure %READC-ERR: atom 23 LYS QZ not found in molecular structure %READC-ERR: atom 24 ALA QB not found in molecular structure %READC-ERR: atom 24 ALA 1HB not found in molecular structure %READC-ERR: atom 24 ALA 2HB not found in molecular structure %READC-ERR: atom 24 ALA 3HB not found in molecular structure %READC-ERR: atom 25 PHE 2HB not found in molecular structure %READC-ERR: atom 25 PHE 3HB not found in molecular structure %READC-ERR: atom 25 PHE QB not found in molecular structure %READC-ERR: atom 25 PHE QD not found in molecular structure %READC-ERR: atom 25 PHE QE not found in molecular structure %READC-ERR: atom 25 PHE QR not found in molecular structure %READC-ERR: atom 26 PRO 2HB not found in molecular structure %READC-ERR: atom 26 PRO 3HB not found in molecular structure %READC-ERR: atom 26 PRO QB not found in molecular structure %READC-ERR: atom 26 PRO 2HG not found in molecular structure %READC-ERR: atom 26 PRO 3HG not found in molecular structure %READC-ERR: atom 26 PRO QG not found in molecular structure %READC-ERR: atom 26 PRO 2HD not found in molecular structure %READC-ERR: atom 26 PRO 3HD not found in molecular structure %READC-ERR: atom 26 PRO QD not found in molecular structure %READC-ERR: atom 27 ASP 2HB not found in molecular structure %READC-ERR: atom 27 ASP 3HB not found in molecular structure %READC-ERR: atom 27 ASP QB not found in molecular structure %READC-ERR: atom 28 ALA QB not found in molecular structure %READC-ERR: atom 28 ALA 1HB not found in molecular structure %READC-ERR: atom 28 ALA 2HB not found in molecular structure %READC-ERR: atom 28 ALA 3HB not found in molecular structure %READC-ERR: atom 29 THR QG2 not found in molecular structure %READC-ERR: atom 29 THR 1HG2 not found in molecular structure %READC-ERR: atom 29 THR 2HG2 not found in molecular structure %READC-ERR: atom 29 THR 3HG2 not found in molecular structure %READC-ERR: atom 30 THR QG2 not found in molecular structure %READC-ERR: atom 30 THR 1HG2 not found in molecular structure %READC-ERR: atom 30 THR 2HG2 not found in molecular structure %READC-ERR: atom 30 THR 3HG2 not found in molecular structure %READC-ERR: atom 31 VAL QG1 not found in molecular structure %READC-ERR: atom 31 VAL QG2 not found in molecular structure %READC-ERR: atom 31 VAL 1HG1 not found in molecular structure %READC-ERR: atom 31 VAL 2HG1 not found in molecular structure %READC-ERR: atom 31 VAL 3HG1 not found in molecular structure %READC-ERR: atom 31 VAL 1HG2 not found in molecular structure %READC-ERR: atom 31 VAL 2HG2 not found in molecular structure %READC-ERR: atom 31 VAL 3HG2 not found in molecular structure %READC-ERR: atom 31 VAL QQG not found in molecular structure %READC-ERR: atom 32 SER 2HB not found in molecular structure %READC-ERR: atom 32 SER 3HB not found in molecular structure %READC-ERR: atom 32 SER QB not found in molecular structure %READC-ERR: atom 33 ALA QB not found in molecular structure %READC-ERR: atom 33 ALA 1HB not found in molecular structure %READC-ERR: atom 33 ALA 2HB not found in molecular structure %READC-ERR: atom 33 ALA 3HB not found in molecular structure %READC-ERR: atom 34 LEU 2HB not found in molecular structure %READC-ERR: atom 34 LEU 3HB not found in molecular structure %READC-ERR: atom 34 LEU QB not found in molecular structure %READC-ERR: atom 34 LEU QD1 not found in molecular structure %READC-ERR: atom 34 LEU QD2 not found in molecular structure %READC-ERR: atom 34 LEU 1HD1 not found in molecular structure %READC-ERR: atom 34 LEU 2HD1 not found in molecular structure %READC-ERR: atom 34 LEU 3HD1 not found in molecular structure %READC-ERR: atom 34 LEU 1HD2 not found in molecular structure %READC-ERR: atom 34 LEU 2HD2 not found in molecular structure %READC-ERR: atom 34 LEU 3HD2 not found in molecular structure %READC-ERR: atom 34 LEU QQD not found in molecular structure %READC-ERR: atom 35 LYS 2HB not found in molecular structure %READC-ERR: atom 35 LYS 3HB not found in molecular structure %READC-ERR: atom 35 LYS QB not found in molecular structure %READC-ERR: atom 35 LYS 2HG not found in molecular structure %READC-ERR: atom 35 LYS 3HG not found in molecular structure %READC-ERR: atom 35 LYS QG not found in molecular structure %READC-ERR: atom 35 LYS 2HD not found in molecular structure %READC-ERR: atom 35 LYS 3HD not found in molecular structure %READC-ERR: atom 35 LYS QD not found in molecular structure %READC-ERR: atom 35 LYS 2HE not found in molecular structure %READC-ERR: atom 35 LYS 3HE not found in molecular structure %READC-ERR: atom 35 LYS QE not found in molecular structure %READC-ERR: atom 35 LYS 1HZ not found in molecular structure %READC-ERR: atom 35 LYS 2HZ not found in molecular structure %READC-ERR: atom 35 LYS 3HZ not found in molecular structure %READC-ERR: atom 35 LYS QZ not found in molecular structure %READC-ERR: atom 36 GLU 2HB not found in molecular structure %READC-ERR: atom 36 GLU 3HB not found in molecular structure %READC-ERR: atom 36 GLU QB not found in molecular structure %READC-ERR: atom 36 GLU 2HG not found in molecular structure %READC-ERR: atom 36 GLU 3HG not found in molecular structure %READC-ERR: atom 36 GLU QG not found in molecular structure %READC-ERR: atom 37 THR QG2 not found in molecular structure %READC-ERR: atom 37 THR 1HG2 not found in molecular structure %READC-ERR: atom 37 THR 2HG2 not found in molecular structure %READC-ERR: atom 37 THR 3HG2 not found in molecular structure %READC-ERR: atom 38 VAL QG1 not found in molecular structure %READC-ERR: atom 38 VAL QG2 not found in molecular structure %READC-ERR: atom 38 VAL 1HG1 not found in molecular structure %READC-ERR: atom 38 VAL 2HG1 not found in molecular structure %READC-ERR: atom 38 VAL 3HG1 not found in molecular structure %READC-ERR: atom 38 VAL 1HG2 not found in molecular structure %READC-ERR: atom 38 VAL 2HG2 not found in molecular structure %READC-ERR: atom 38 VAL 3HG2 not found in molecular structure %READC-ERR: atom 38 VAL QQG not found in molecular structure %READC-ERR: atom 39 ILE QG2 not found in molecular structure %READC-ERR: atom 39 ILE 1HG2 not found in molecular structure %READC-ERR: atom 39 ILE 2HG2 not found in molecular structure %READC-ERR: atom 39 ILE 3HG2 not found in molecular structure %READC-ERR: atom 39 ILE 2HG1 not found in molecular structure %READC-ERR: atom 39 ILE 3HG1 not found in molecular structure %READC-ERR: atom 39 ILE QG1 not found in molecular structure %READC-ERR: atom 39 ILE QD1 not found in molecular structure %READC-ERR: atom 39 ILE 1HD1 not found in molecular structure %READC-ERR: atom 39 ILE 2HD1 not found in molecular structure %READC-ERR: atom 39 ILE 3HD1 not found in molecular structure %READC-ERR: atom 40 SER 2HB not found in molecular structure %READC-ERR: atom 40 SER 3HB not found in molecular structure %READC-ERR: atom 40 SER QB not found in molecular structure %READC-ERR: atom 41 GLU 2HB not found in molecular structure %READC-ERR: atom 41 GLU 3HB not found in molecular structure %READC-ERR: atom 41 GLU QB not found in molecular structure %READC-ERR: atom 41 GLU 2HG not found in molecular structure %READC-ERR: atom 41 GLU 3HG not found in molecular structure %READC-ERR: atom 41 GLU QG not found in molecular structure %READC-ERR: atom 42 TRP 2HB not found in molecular structure %READC-ERR: atom 42 TRP 3HB not found in molecular structure %READC-ERR: atom 42 TRP QB not found in molecular structure %READC-ERR: atom 43 PRO 2HB not found in molecular structure %READC-ERR: atom 43 PRO 3HB not found in molecular structure %READC-ERR: atom 43 PRO QB not found in molecular structure %READC-ERR: atom 43 PRO 2HG not found in molecular structure %READC-ERR: atom 43 PRO 3HG not found in molecular structure %READC-ERR: atom 43 PRO QG not found in molecular structure %READC-ERR: atom 43 PRO 2HD not found in molecular structure %READC-ERR: atom 43 PRO 3HD not found in molecular structure %READC-ERR: atom 43 PRO QD not found in molecular structure %READC-ERR: atom 44 ARG 2HB not found in molecular structure %READC-ERR: atom 44 ARG 3HB not found in molecular structure %READC-ERR: atom 44 ARG QB not found in molecular structure %READC-ERR: atom 44 ARG 2HG not found in molecular structure %READC-ERR: atom 44 ARG 3HG not found in molecular structure %READC-ERR: atom 44 ARG QG not found in molecular structure %READC-ERR: atom 44 ARG 2HD not found in molecular structure %READC-ERR: atom 44 ARG 3HD not found in molecular structure %READC-ERR: atom 44 ARG QD not found in molecular structure %READC-ERR: atom 44 ARG 1HH1 not found in molecular structure %READC-ERR: atom 44 ARG 2HH1 not found in molecular structure %READC-ERR: atom 44 ARG QH1 not found in molecular structure %READC-ERR: atom 44 ARG 1HH2 not found in molecular structure %READC-ERR: atom 44 ARG 2HH2 not found in molecular structure %READC-ERR: atom 44 ARG QH2 not found in molecular structure %READC-ERR: atom 45 GLU 2HB not found in molecular structure %READC-ERR: atom 45 GLU 3HB not found in molecular structure %READC-ERR: atom 45 GLU QB not found in molecular structure %READC-ERR: atom 45 GLU 2HG not found in molecular structure %READC-ERR: atom 45 GLU 3HG not found in molecular structure %READC-ERR: atom 45 GLU QG not found in molecular structure %READC-ERR: atom 46 LYS 2HB not found in molecular structure %READC-ERR: atom 46 LYS 3HB not found in molecular structure %READC-ERR: atom 46 LYS QB not found in molecular structure %READC-ERR: atom 46 LYS 2HG not found in molecular structure %READC-ERR: atom 46 LYS 3HG not found in molecular structure %READC-ERR: atom 46 LYS QG not found in molecular structure %READC-ERR: atom 46 LYS 2HD not found in molecular structure %READC-ERR: atom 46 LYS 3HD not found in molecular structure %READC-ERR: atom 46 LYS QD not found in molecular structure %READC-ERR: atom 46 LYS 2HE not found in molecular structure %READC-ERR: atom 46 LYS 3HE not found in molecular structure %READC-ERR: atom 46 LYS QE not found in molecular structure %READC-ERR: atom 46 LYS 1HZ not found in molecular structure %READC-ERR: atom 46 LYS 2HZ not found in molecular structure %READC-ERR: atom 46 LYS 3HZ not found in molecular structure %READC-ERR: atom 46 LYS QZ not found in molecular structure %READC-ERR: atom 47 GLU 2HB not found in molecular structure %READC-ERR: atom 47 GLU 3HB not found in molecular structure %READC-ERR: atom 47 GLU QB not found in molecular structure %READC-ERR: atom 47 GLU 2HG not found in molecular structure %READC-ERR: atom 47 GLU 3HG not found in molecular structure %READC-ERR: atom 47 GLU QG not found in molecular structure %READC-ERR: atom 48 ASN 2HB not found in molecular structure %READC-ERR: atom 48 ASN 3HB not found in molecular structure %READC-ERR: atom 48 ASN QB not found in molecular structure %READC-ERR: atom 48 ASN 1HD2 not found in molecular structure %READC-ERR: atom 48 ASN 2HD2 not found in molecular structure %READC-ERR: atom 48 ASN QD2 not found in molecular structure %READC-ERR: atom 49 GLY 1HA not found in molecular structure %READC-ERR: atom 49 GLY 2HA not found in molecular structure %READC-ERR: atom 49 GLY QA not found in molecular structure %READC-ERR: atom 50 PRO 2HB not found in molecular structure %READC-ERR: atom 50 PRO 3HB not found in molecular structure %READC-ERR: atom 50 PRO QB not found in molecular structure %READC-ERR: atom 50 PRO 2HG not found in molecular structure %READC-ERR: atom 50 PRO 3HG not found in molecular structure %READC-ERR: atom 50 PRO QG not found in molecular structure %READC-ERR: atom 50 PRO 2HD not found in molecular structure %READC-ERR: atom 50 PRO 3HD not found in molecular structure %READC-ERR: atom 50 PRO QD not found in molecular structure %READC-ERR: atom 51 LYS 2HB not found in molecular structure %READC-ERR: atom 51 LYS 3HB not found in molecular structure %READC-ERR: atom 51 LYS QB not found in molecular structure %READC-ERR: atom 51 LYS 2HG not found in molecular structure %READC-ERR: atom 51 LYS 3HG not found in molecular structure %READC-ERR: atom 51 LYS QG not found in molecular structure %READC-ERR: atom 51 LYS 2HD not found in molecular structure %READC-ERR: atom 51 LYS 3HD not found in molecular structure %READC-ERR: atom 51 LYS QD not found in molecular structure %READC-ERR: atom 51 LYS 2HE not found in molecular structure %READC-ERR: atom 51 LYS 3HE not found in molecular structure %READC-ERR: atom 51 LYS QE not found in molecular structure %READC-ERR: atom 51 LYS 1HZ not found in molecular structure %READC-ERR: atom 51 LYS 2HZ not found in molecular structure %READC-ERR: atom 51 LYS 3HZ not found in molecular structure %READC-ERR: atom 51 LYS QZ not found in molecular structure %READC-ERR: atom 52 THR QG2 not found in molecular structure %READC-ERR: atom 52 THR 1HG2 not found in molecular structure %READC-ERR: atom 52 THR 2HG2 not found in molecular structure %READC-ERR: atom 52 THR 3HG2 not found in molecular structure %READC-ERR: atom 53 VAL QG1 not found in molecular structure %READC-ERR: atom 53 VAL QG2 not found in molecular structure %READC-ERR: atom 53 VAL 1HG1 not found in molecular structure %READC-ERR: atom 53 VAL 2HG1 not found in molecular structure %READC-ERR: atom 53 VAL 3HG1 not found in molecular structure %READC-ERR: atom 53 VAL 1HG2 not found in molecular structure %READC-ERR: atom 53 VAL 2HG2 not found in molecular structure %READC-ERR: atom 53 VAL 3HG2 not found in molecular structure %READC-ERR: atom 53 VAL QQG not found in molecular structure %READC-ERR: atom 54 LYS 2HB not found in molecular structure %READC-ERR: atom 54 LYS 3HB not found in molecular structure %READC-ERR: atom 54 LYS QB not found in molecular structure %READC-ERR: atom 54 LYS 2HG not found in molecular structure %READC-ERR: atom 54 LYS 3HG not found in molecular structure %READC-ERR: atom 54 LYS QG not found in molecular structure %READC-ERR: atom 54 LYS 2HD not found in molecular structure %READC-ERR: atom 54 LYS 3HD not found in molecular structure %READC-ERR: atom 54 LYS QD not found in molecular structure %READC-ERR: atom 54 LYS 2HE not found in molecular structure %READC-ERR: atom 54 LYS 3HE not found in molecular structure %READC-ERR: atom 54 LYS QE not found in molecular structure %READC-ERR: atom 54 LYS 1HZ not found in molecular structure %READC-ERR: atom 54 LYS 2HZ not found in molecular structure %READC-ERR: atom 54 LYS 3HZ not found in molecular structure %READC-ERR: atom 54 LYS QZ not found in molecular structure %READC-ERR: atom 55 GLU 2HB not found in molecular structure %READC-ERR: atom 55 GLU 3HB not found in molecular structure %READC-ERR: atom 55 GLU QB not found in molecular structure %READC-ERR: atom 55 GLU 2HG not found in molecular structure %READC-ERR: atom 55 GLU 3HG not found in molecular structure %READC-ERR: atom 55 GLU QG not found in molecular structure %READC-ERR: atom 56 VAL QG1 not found in molecular structure %READC-ERR: atom 56 VAL QG2 not found in molecular structure %READC-ERR: atom 56 VAL 1HG1 not found in molecular structure %READC-ERR: atom 56 VAL 2HG1 not found in molecular structure %READC-ERR: atom 56 VAL 3HG1 not found in molecular structure %READC-ERR: atom 56 VAL 1HG2 not found in molecular structure %READC-ERR: atom 56 VAL 2HG2 not found in molecular structure %READC-ERR: atom 56 VAL 3HG2 not found in molecular structure %READC-ERR: atom 56 VAL QQG not found in molecular structure %READC-ERR: atom 57 LYS 2HB not found in molecular structure %READC-ERR: atom 57 LYS 3HB not found in molecular structure %READC-ERR: atom 57 LYS QB not found in molecular structure %READC-ERR: atom 57 LYS 2HG not found in molecular structure %READC-ERR: atom 57 LYS 3HG not found in molecular structure %READC-ERR: atom 57 LYS QG not found in molecular structure %READC-ERR: atom 57 LYS 2HD not found in molecular structure %READC-ERR: atom 57 LYS 3HD not found in molecular structure %READC-ERR: atom 57 LYS QD not found in molecular structure %READC-ERR: atom 57 LYS 2HE not found in molecular structure %READC-ERR: atom 57 LYS 3HE not found in molecular structure %READC-ERR: atom 57 LYS QE not found in molecular structure %READC-ERR: atom 57 LYS 1HZ not found in molecular structure %READC-ERR: atom 57 LYS 2HZ not found in molecular structure %READC-ERR: atom 57 LYS 3HZ not found in molecular structure %READC-ERR: atom 57 LYS QZ not found in molecular structure %READC-ERR: atom 58 LEU 2HB not found in molecular structure %READC-ERR: atom 58 LEU 3HB not found in molecular structure %READC-ERR: atom 58 LEU QB not found in molecular structure %READC-ERR: atom 58 LEU QD1 not found in molecular structure %READC-ERR: atom 58 LEU QD2 not found in molecular structure %READC-ERR: atom 58 LEU 1HD1 not found in molecular structure %READC-ERR: atom 58 LEU 2HD1 not found in molecular structure %READC-ERR: atom 58 LEU 3HD1 not found in molecular structure %READC-ERR: atom 58 LEU 1HD2 not found in molecular structure %READC-ERR: atom 58 LEU 2HD2 not found in molecular structure %READC-ERR: atom 58 LEU 3HD2 not found in molecular structure %READC-ERR: atom 58 LEU QQD not found in molecular structure %READC-ERR: atom 59 ILE QG2 not found in molecular structure %READC-ERR: atom 59 ILE 1HG2 not found in molecular structure %READC-ERR: atom 59 ILE 2HG2 not found in molecular structure %READC-ERR: atom 59 ILE 3HG2 not found in molecular structure %READC-ERR: atom 59 ILE 2HG1 not found in molecular structure %READC-ERR: atom 59 ILE 3HG1 not found in molecular structure %READC-ERR: atom 59 ILE QG1 not found in molecular structure %READC-ERR: atom 59 ILE QD1 not found in molecular structure %READC-ERR: atom 59 ILE 1HD1 not found in molecular structure %READC-ERR: atom 59 ILE 2HD1 not found in molecular structure %READC-ERR: atom 59 ILE 3HD1 not found in molecular structure %READC-ERR: atom 60 SER 2HB not found in molecular structure %READC-ERR: atom 60 SER 3HB not found in molecular structure %READC-ERR: atom 60 SER QB not found in molecular structure %READC-ERR: atom 61 ALA QB not found in molecular structure %READC-ERR: atom 61 ALA 1HB not found in molecular structure %READC-ERR: atom 61 ALA 2HB not found in molecular structure %READC-ERR: atom 61 ALA 3HB not found in molecular structure %READC-ERR: atom 62 GLY 1HA not found in molecular structure %READC-ERR: atom 62 GLY 2HA not found in molecular structure %READC-ERR: atom 62 GLY QA not found in molecular structure %READC-ERR: atom 63 LYS 2HB not found in molecular structure %READC-ERR: atom 63 LYS 3HB not found in molecular structure %READC-ERR: atom 63 LYS QB not found in molecular structure %READC-ERR: atom 63 LYS 2HG not found in molecular structure %READC-ERR: atom 63 LYS 3HG not found in molecular structure %READC-ERR: atom 63 LYS QG not found in molecular structure %READC-ERR: atom 63 LYS 2HD not found in molecular structure %READC-ERR: atom 63 LYS 3HD not found in molecular structure %READC-ERR: atom 63 LYS QD not found in molecular structure %READC-ERR: atom 63 LYS 2HE not found in molecular structure %READC-ERR: atom 63 LYS 3HE not found in molecular structure %READC-ERR: atom 63 LYS QE not found in molecular structure %READC-ERR: atom 63 LYS 1HZ not found in molecular structure %READC-ERR: atom 63 LYS 2HZ not found in molecular structure %READC-ERR: atom 63 LYS 3HZ not found in molecular structure %READC-ERR: atom 63 LYS QZ not found in molecular structure %READC-ERR: atom 64 VAL QG1 not found in molecular structure %READC-ERR: atom 64 VAL QG2 not found in molecular structure %READC-ERR: atom 64 VAL 1HG1 not found in molecular structure %READC-ERR: atom 64 VAL 2HG1 not found in molecular structure %READC-ERR: atom 64 VAL 3HG1 not found in molecular structure %READC-ERR: atom 64 VAL 1HG2 not found in molecular structure %READC-ERR: atom 64 VAL 2HG2 not found in molecular structure %READC-ERR: atom 64 VAL 3HG2 not found in molecular structure %READC-ERR: atom 64 VAL QQG not found in molecular structure %READC-ERR: atom 65 LEU 2HB not found in molecular structure %READC-ERR: atom 65 LEU 3HB not found in molecular structure %READC-ERR: atom 65 LEU QB not found in molecular structure %READC-ERR: atom 65 LEU QD1 not found in molecular structure %READC-ERR: atom 65 LEU QD2 not found in molecular structure %READC-ERR: atom 65 LEU 1HD1 not found in molecular structure %READC-ERR: atom 65 LEU 2HD1 not found in molecular structure %READC-ERR: atom 65 LEU 3HD1 not found in molecular structure %READC-ERR: atom 65 LEU 1HD2 not found in molecular structure %READC-ERR: atom 65 LEU 2HD2 not found in molecular structure %READC-ERR: atom 65 LEU 3HD2 not found in molecular structure %READC-ERR: atom 65 LEU QQD not found in molecular structure %READC-ERR: atom 66 GLU 2HB not found in molecular structure %READC-ERR: atom 66 GLU 3HB not found in molecular structure %READC-ERR: atom 66 GLU QB not found in molecular structure %READC-ERR: atom 66 GLU 2HG not found in molecular structure %READC-ERR: atom 66 GLU 3HG not found in molecular structure %READC-ERR: atom 66 GLU QG not found in molecular structure %READC-ERR: atom 67 ASN 2HB not found in molecular structure %READC-ERR: atom 67 ASN 3HB not found in molecular structure %READC-ERR: atom 67 ASN QB not found in molecular structure %READC-ERR: atom 67 ASN 1HD2 not found in molecular structure %READC-ERR: atom 67 ASN 2HD2 not found in molecular structure %READC-ERR: atom 67 ASN QD2 not found in molecular structure %READC-ERR: atom 68 SER 2HB not found in molecular structure %READC-ERR: atom 68 SER 3HB not found in molecular structure %READC-ERR: atom 68 SER QB not found in molecular structure %READC-ERR: atom 69 LYS 2HB not found in molecular structure %READC-ERR: atom 69 LYS 3HB not found in molecular structure %READC-ERR: atom 69 LYS QB not found in molecular structure %READC-ERR: atom 69 LYS 2HG not found in molecular structure %READC-ERR: atom 69 LYS 3HG not found in molecular structure %READC-ERR: atom 69 LYS QG not found in molecular structure %READC-ERR: atom 69 LYS 2HD not found in molecular structure %READC-ERR: atom 69 LYS 3HD not found in molecular structure %READC-ERR: atom 69 LYS QD not found in molecular structure %READC-ERR: atom 69 LYS 2HE not found in molecular structure %READC-ERR: atom 69 LYS 3HE not found in molecular structure %READC-ERR: atom 69 LYS QE not found in molecular structure %READC-ERR: atom 69 LYS 1HZ not found in molecular structure %READC-ERR: atom 69 LYS 2HZ not found in molecular structure %READC-ERR: atom 69 LYS 3HZ not found in molecular structure %READC-ERR: atom 69 LYS QZ not found in molecular structure %READC-ERR: atom 70 THR QG2 not found in molecular structure %READC-ERR: atom 70 THR 1HG2 not found in molecular structure %READC-ERR: atom 70 THR 2HG2 not found in molecular structure %READC-ERR: atom 70 THR 3HG2 not found in molecular structure %READC-ERR: atom 71 VAL QG1 not found in molecular structure %READC-ERR: atom 71 VAL QG2 not found in molecular structure %READC-ERR: atom 71 VAL 1HG1 not found in molecular structure %READC-ERR: atom 71 VAL 2HG1 not found in molecular structure %READC-ERR: atom 71 VAL 3HG1 not found in molecular structure %READC-ERR: atom 71 VAL 1HG2 not found in molecular structure %READC-ERR: atom 71 VAL 2HG2 not found in molecular structure %READC-ERR: atom 71 VAL 3HG2 not found in molecular structure %READC-ERR: atom 71 VAL QQG not found in molecular structure %READC-ERR: atom 72 LYS 2HB not found in molecular structure %READC-ERR: atom 72 LYS 3HB not found in molecular structure %READC-ERR: atom 72 LYS QB not found in molecular structure %READC-ERR: atom 72 LYS 2HG not found in molecular structure %READC-ERR: atom 72 LYS 3HG not found in molecular structure %READC-ERR: atom 72 LYS QG not found in molecular structure %READC-ERR: atom 72 LYS 2HD not found in molecular structure %READC-ERR: atom 72 LYS 3HD not found in molecular structure %READC-ERR: atom 72 LYS QD not found in molecular structure %READC-ERR: atom 72 LYS 2HE not found in molecular structure %READC-ERR: atom 72 LYS 3HE not found in molecular structure %READC-ERR: atom 72 LYS QE not found in molecular structure %READC-ERR: atom 72 LYS 1HZ not found in molecular structure %READC-ERR: atom 72 LYS 2HZ not found in molecular structure %READC-ERR: atom 72 LYS 3HZ not found in molecular structure %READC-ERR: atom 72 LYS QZ not found in molecular structure %READC-ERR: atom 73 ASP 2HB not found in molecular structure %READC-ERR: atom 73 ASP 3HB not found in molecular structure %READC-ERR: atom 73 ASP QB not found in molecular structure %READC-ERR: atom 74 TYR 2HB not found in molecular structure %READC-ERR: atom 74 TYR 3HB not found in molecular structure %READC-ERR: atom 74 TYR QB not found in molecular structure %READC-ERR: atom 74 TYR QD not found in molecular structure %READC-ERR: atom 74 TYR QE not found in molecular structure %READC-ERR: atom 74 TYR QR not found in molecular structure %READC-ERR: atom 75 ARG 2HB not found in molecular structure %READC-ERR: atom 75 ARG 3HB not found in molecular structure %READC-ERR: atom 75 ARG QB not found in molecular structure %READC-ERR: atom 75 ARG 2HG not found in molecular structure %READC-ERR: atom 75 ARG 3HG not found in molecular structure %READC-ERR: atom 75 ARG QG not found in molecular structure %READC-ERR: atom 75 ARG 2HD not found in molecular structure %READC-ERR: atom 75 ARG 3HD not found in molecular structure %READC-ERR: atom 75 ARG QD not found in molecular structure %READC-ERR: atom 75 ARG 1HH1 not found in molecular structure %READC-ERR: atom 75 ARG 2HH1 not found in molecular structure %READC-ERR: atom 75 ARG QH1 not found in molecular structure %READC-ERR: atom 75 ARG 1HH2 not found in molecular structure %READC-ERR: atom 75 ARG 2HH2 not found in molecular structure %READC-ERR: atom 75 ARG QH2 not found in molecular structure %READC-ERR: atom 76 SER 2HB not found in molecular structure %READC-ERR: atom 76 SER 3HB not found in molecular structure %READC-ERR: atom 76 SER QB not found in molecular structure %READC-ERR: atom 77 PRO 2HB not found in molecular structure %READC-ERR: atom 77 PRO 3HB not found in molecular structure %READC-ERR: atom 77 PRO QB not found in molecular structure %READC-ERR: atom 77 PRO 2HG not found in molecular structure %READC-ERR: atom 77 PRO 3HG not found in molecular structure %READC-ERR: atom 77 PRO QG not found in molecular structure %READC-ERR: atom 77 PRO 2HD not found in molecular structure %READC-ERR: atom 77 PRO 3HD not found in molecular structure %READC-ERR: atom 77 PRO QD not found in molecular structure %READC-ERR: atom 78 VAL QG1 not found in molecular structure %READC-ERR: atom 78 VAL QG2 not found in molecular structure %READC-ERR: atom 78 VAL 1HG1 not found in molecular structure %READC-ERR: atom 78 VAL 2HG1 not found in molecular structure %READC-ERR: atom 78 VAL 3HG1 not found in molecular structure %READC-ERR: atom 78 VAL 1HG2 not found in molecular structure %READC-ERR: atom 78 VAL 2HG2 not found in molecular structure %READC-ERR: atom 78 VAL 3HG2 not found in molecular structure %READC-ERR: atom 78 VAL QQG not found in molecular structure %READC-ERR: atom 79 SER 2HB not found in molecular structure %READC-ERR: atom 79 SER 3HB not found in molecular structure %READC-ERR: atom 79 SER QB not found in molecular structure %READC-ERR: atom 80 ASN 2HB not found in molecular structure %READC-ERR: atom 80 ASN 3HB not found in molecular structure %READC-ERR: atom 80 ASN QB not found in molecular structure %READC-ERR: atom 80 ASN 1HD2 not found in molecular structure %READC-ERR: atom 80 ASN 2HD2 not found in molecular structure %READC-ERR: atom 80 ASN QD2 not found in molecular structure %READC-ERR: atom 81 LEU 2HB not found in molecular structure %READC-ERR: atom 81 LEU 3HB not found in molecular structure %READC-ERR: atom 81 LEU QB not found in molecular structure %READC-ERR: atom 81 LEU QD1 not found in molecular structure %READC-ERR: atom 81 LEU QD2 not found in molecular structure %READC-ERR: atom 81 LEU 1HD1 not found in molecular structure %READC-ERR: atom 81 LEU 2HD1 not found in molecular structure %READC-ERR: atom 81 LEU 3HD1 not found in molecular structure %READC-ERR: atom 81 LEU 1HD2 not found in molecular structure %READC-ERR: atom 81 LEU 2HD2 not found in molecular structure %READC-ERR: atom 81 LEU 3HD2 not found in molecular structure %READC-ERR: atom 81 LEU QQD not found in molecular structure %READC-ERR: atom 82 ALA QB not found in molecular structure %READC-ERR: atom 82 ALA 1HB not found in molecular structure %READC-ERR: atom 82 ALA 2HB not found in molecular structure %READC-ERR: atom 82 ALA 3HB not found in molecular structure %READC-ERR: atom 83 GLY 1HA not found in molecular structure %READC-ERR: atom 83 GLY 2HA not found in molecular structure %READC-ERR: atom 83 GLY QA not found in molecular structure %READC-ERR: atom 84 ALA QB not found in molecular structure %READC-ERR: atom 84 ALA 1HB not found in molecular structure %READC-ERR: atom 84 ALA 2HB not found in molecular structure %READC-ERR: atom 84 ALA 3HB not found in molecular structure %READC-ERR: atom 85 VAL QG1 not found in molecular structure %READC-ERR: atom 85 VAL QG2 not found in molecular structure %READC-ERR: atom 85 VAL 1HG1 not found in molecular structure %READC-ERR: atom 85 VAL 2HG1 not found in molecular structure %READC-ERR: atom 85 VAL 3HG1 not found in molecular structure %READC-ERR: atom 85 VAL 1HG2 not found in molecular structure %READC-ERR: atom 85 VAL 2HG2 not found in molecular structure %READC-ERR: atom 85 VAL 3HG2 not found in molecular structure %READC-ERR: atom 85 VAL QQG not found in molecular structure %READC-ERR: atom 86 THR QG2 not found in molecular structure %READC-ERR: atom 86 THR 1HG2 not found in molecular structure %READC-ERR: atom 86 THR 2HG2 not found in molecular structure %READC-ERR: atom 86 THR 3HG2 not found in molecular structure %READC-ERR: atom 87 THR QG2 not found in molecular structure %READC-ERR: atom 87 THR 1HG2 not found in molecular structure %READC-ERR: atom 87 THR 2HG2 not found in molecular structure %READC-ERR: atom 87 THR 3HG2 not found in molecular structure %READC-ERR: atom 88 MET 2HB not found in molecular structure %READC-ERR: atom 88 MET 3HB not found in molecular structure %READC-ERR: atom 88 MET QB not found in molecular structure %READC-ERR: atom 88 MET 2HG not found in molecular structure %READC-ERR: atom 88 MET 3HG not found in molecular structure %READC-ERR: atom 88 MET QG not found in molecular structure %READC-ERR: atom 88 MET QE not found in molecular structure %READC-ERR: atom 88 MET 1HE not found in molecular structure %READC-ERR: atom 88 MET 2HE not found in molecular structure %READC-ERR: atom 88 MET 3HE not found in molecular structure %READC-ERR: atom 89 HIS 2HB not found in molecular structure %READC-ERR: atom 89 HIS 3HB not found in molecular structure %READC-ERR: atom 89 HIS QB not found in molecular structure %READC-ERR: atom 90 VAL QG1 not found in molecular structure %READC-ERR: atom 90 VAL QG2 not found in molecular structure %READC-ERR: atom 90 VAL 1HG1 not found in molecular structure %READC-ERR: atom 90 VAL 2HG1 not found in molecular structure %READC-ERR: atom 90 VAL 3HG1 not found in molecular structure %READC-ERR: atom 90 VAL 1HG2 not found in molecular structure %READC-ERR: atom 90 VAL 2HG2 not found in molecular structure %READC-ERR: atom 90 VAL 3HG2 not found in molecular structure %READC-ERR: atom 90 VAL QQG not found in molecular structure %READC-ERR: atom 91 ILE QG2 not found in molecular structure %READC-ERR: atom 91 ILE 1HG2 not found in molecular structure %READC-ERR: atom 91 ILE 2HG2 not found in molecular structure %READC-ERR: atom 91 ILE 3HG2 not found in molecular structure %READC-ERR: atom 91 ILE 2HG1 not found in molecular structure %READC-ERR: atom 91 ILE 3HG1 not found in molecular structure %READC-ERR: atom 91 ILE QG1 not found in molecular structure %READC-ERR: atom 91 ILE QD1 not found in molecular structure %READC-ERR: atom 91 ILE 1HD1 not found in molecular structure %READC-ERR: atom 91 ILE 2HD1 not found in molecular structure %READC-ERR: atom 91 ILE 3HD1 not found in molecular structure %READC-ERR: atom 92 ILE QG2 not found in molecular structure %READC-ERR: atom 92 ILE 1HG2 not found in molecular structure %READC-ERR: atom 92 ILE 2HG2 not found in molecular structure %READC-ERR: atom 92 ILE 3HG2 not found in molecular structure %READC-ERR: atom 92 ILE 2HG1 not found in molecular structure %READC-ERR: atom 92 ILE 3HG1 not found in molecular structure %READC-ERR: atom 92 ILE QG1 not found in molecular structure %READC-ERR: atom 92 ILE QD1 not found in molecular structure %READC-ERR: atom 92 ILE 1HD1 not found in molecular structure %READC-ERR: atom 92 ILE 2HD1 not found in molecular structure %READC-ERR: atom 92 ILE 3HD1 not found in molecular structure %READC-ERR: atom 93 GLN 2HB not found in molecular structure %READC-ERR: atom 93 GLN 3HB not found in molecular structure %READC-ERR: atom 93 GLN QB not found in molecular structure %READC-ERR: atom 93 GLN 2HG not found in molecular structure %READC-ERR: atom 93 GLN 3HG not found in molecular structure %READC-ERR: atom 93 GLN QG not found in molecular structure %READC-ERR: atom 93 GLN 1HE2 not found in molecular structure %READC-ERR: atom 93 GLN 2HE2 not found in molecular structure %READC-ERR: atom 93 GLN QE2 not found in molecular structure %READC-ERR: atom 94 ALA QB not found in molecular structure %READC-ERR: atom 94 ALA 1HB not found in molecular structure %READC-ERR: atom 94 ALA 2HB not found in molecular structure %READC-ERR: atom 94 ALA 3HB not found in molecular structure %READC-ERR: atom 95 PRO 2HB not found in molecular structure %READC-ERR: atom 95 PRO 3HB not found in molecular structure %READC-ERR: atom 95 PRO QB not found in molecular structure %READC-ERR: atom 95 PRO 2HG not found in molecular structure %READC-ERR: atom 95 PRO 3HG not found in molecular structure %READC-ERR: atom 95 PRO QG not found in molecular structure %READC-ERR: atom 95 PRO 2HD not found in molecular structure %READC-ERR: atom 95 PRO 3HD not found in molecular structure %READC-ERR: atom 95 PRO QD not found in molecular structure %READC-ERR: atom 96 VAL QG1 not found in molecular structure %READC-ERR: atom 96 VAL QG2 not found in molecular structure %READC-ERR: atom 96 VAL 1HG1 not found in molecular structure %READC-ERR: atom 96 VAL 2HG1 not found in molecular structure %READC-ERR: atom 96 VAL 3HG1 not found in molecular structure %READC-ERR: atom 96 VAL 1HG2 not found in molecular structure %READC-ERR: atom 96 VAL 2HG2 not found in molecular structure %READC-ERR: atom 96 VAL 3HG2 not found in molecular structure %READC-ERR: atom 96 VAL QQG not found in molecular structure %READC-ERR: atom 97 THR QG2 not found in molecular structure %READC-ERR: atom 97 THR 1HG2 not found in molecular structure %READC-ERR: atom 97 THR 2HG2 not found in molecular structure %READC-ERR: atom 97 THR 3HG2 not found in molecular structure %READC-ERR: atom 98 GLU 2HB not found in molecular structure %READC-ERR: atom 98 GLU 3HB not found in molecular structure %READC-ERR: atom 98 GLU QB not found in molecular structure %READC-ERR: atom 98 GLU 2HG not found in molecular structure %READC-ERR: atom 98 GLU 3HG not found in molecular structure %READC-ERR: atom 98 GLU QG not found in molecular structure %READC-ERR: atom 99 LYS 2HB not found in molecular structure %READC-ERR: atom 99 LYS 3HB not found in molecular structure %READC-ERR: atom 99 LYS QB not found in molecular structure %READC-ERR: atom 99 LYS 2HG not found in molecular structure %READC-ERR: atom 99 LYS 3HG not found in molecular structure %READC-ERR: atom 99 LYS QG not found in molecular structure %READC-ERR: atom 99 LYS 2HD not found in molecular structure %READC-ERR: atom 99 LYS 3HD not found in molecular structure %READC-ERR: atom 99 LYS QD not found in molecular structure %READC-ERR: atom 99 LYS 2HE not found in molecular structure %READC-ERR: atom 99 LYS 3HE not found in molecular structure %READC-ERR: atom 99 LYS QE not found in molecular structure %READC-ERR: atom 99 LYS 1HZ not found in molecular structure %READC-ERR: atom 99 LYS 2HZ not found in molecular structure %READC-ERR: atom 99 LYS 3HZ not found in molecular structure %READC-ERR: atom 99 LYS QZ not found in molecular structure %READC-ERR: atom 100 GLU 2HB not found in molecular structure %READC-ERR: atom 100 GLU 3HB not found in molecular structure %READC-ERR: atom 100 GLU QB not found in molecular structure %READC-ERR: atom 100 GLU 2HG not found in molecular structure %READC-ERR: atom 100 GLU 3HG not found in molecular structure %READC-ERR: atom 100 GLU QG not found in molecular structure %READC-ERR: atom 101 LYS 2HB not found in molecular structure %READC-ERR: atom 101 LYS 3HB not found in molecular structure %READC-ERR: atom 101 LYS QB not found in molecular structure %READC-ERR: atom 101 LYS 2HG not found in molecular structure %READC-ERR: atom 101 LYS 3HG not found in molecular structure %READC-ERR: atom 101 LYS QG not found in molecular structure %READC-ERR: atom 101 LYS 2HD not found in molecular structure %READC-ERR: atom 101 LYS 3HD not found in molecular structure %READC-ERR: atom 101 LYS QD not found in molecular structure %READC-ERR: atom 101 LYS 2HE not found in molecular structure %READC-ERR: atom 101 LYS 3HE not found in molecular structure %READC-ERR: atom 101 LYS QE not found in molecular structure %READC-ERR: atom 101 LYS 1HZ not found in molecular structure %READC-ERR: atom 101 LYS 2HZ not found in molecular structure %READC-ERR: atom 101 LYS 3HZ not found in molecular structure %READC-ERR: atom 101 LYS QZ not found in molecular structure %READC-ERR: atom 101 LYS O not found in molecular structure COOR>END CNSsolve>parameter @TOPPAR:parallhdg5.3.pro end PARRDR>! JFD adds FES complex parameters from Milo Westler's calculations PARRDR>! and standard topology. PARRDR> PARRDR>remark file protein-allhdg-ucl.param version UCL date 07-JUL-01 PARRDR>remark for file protein-allhdg-ucl.top version UCL date 14-MAR-00 PARRDR>remark for file protein-allhdg-dih-ucl.top version UCL date 07-JUL-01 PARRDR>remark Geometric energy function parameters for distance geometry and PARRDR>remark simulated annealing. PARRDR>remark Original author: Michael Nilges, EMBL Heidelberg PARRDR>remark Modifications: Mark A. Williams, UCL London PARRDR> PARRDR>set echo off message off end SHOW: sum over selected elements = 2.000000 CNSsolve> CNSsolve> if ( $log_level = verbose ) then CNSsolve> set message=normal echo=on end CNSsolve> else CNSsolve> set message=off echo=off end CNSsolve> end if CNSsolve> CNSsolve> CNSsolve> identity (store1) (none) SELRPN: 0 atoms have been selected out of 1586 CNSsolve> CNSsolve> identity (store1) (&atom_build) SELRPN: 539 atoms have been selected out of 1586 CNSsolve> identity (store1) (store1 or hydrogen) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> CNSsolve> show sum(1) (store1) SELRPN: 809 atoms have been selected out of 1586 SHOW: sum over selected elements = 809.000000 CNSsolve> evaluate ($tobuild=$result) EVALUATE: symbol $TOBUILD set to 809.000 (real) CNSsolve> CNSsolve> !evaluate ($tobuild=0) CNSsolve> CNSsolve> if ( $tobuild > 0 ) then NEXTCD: condition evaluated as true CNSsolve> CNSsolve> fix selection=(not(store1)) end SELRPN: 777 atoms have been selected out of 1586 CNSsolve> CNSsolve> show sum(1) (store1) SELRPN: 809 atoms have been selected out of 1586 SHOW: sum over selected elements = 809.000000 CNSsolve> evaluate ($moving=$result) EVALUATE: symbol $MOVING set to 809.000 (real) CNSsolve> CNSsolve> if ( $moving > 0 ) then NEXTCD: condition evaluated as true CNSsolve> for $id in id (tag and byres(store1)) loop avco SELRPN: 101 atoms have been selected out of 1586 FOR ID LOOP: symbol ID set to 1.00000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 1.796800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 1.79680 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -0.057600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.576000E-01 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -2.287700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.28770 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 18.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = 5.505857 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 5.50586 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = -1.284857 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.28486 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = -0.327143 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.327143 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 28.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 7.297182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 7.29718 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -1.101455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.10145 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -4.617000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -4.61700 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 43.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 9.273500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 9.27350 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -4.864000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.86400 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -2.988100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.98810 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 59.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 16 atoms have been selected out of 1586 SHOW: average of selected elements = 14.127313 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 14.1273 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 16 atoms have been selected out of 1586 SHOW: average of selected elements = -4.036812 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.03681 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 16 atoms have been selected out of 1586 SHOW: average of selected elements = -3.338813 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.33881 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 77.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 13.946600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 13.9466 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -9.311400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.31140 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -3.889600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.88960 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 91.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 10.559727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 10.5597 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -10.924273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.9243 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -4.013091 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -4.01309 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 108.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 8.870455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 8.87045 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -11.972364 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -11.9724 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -8.370636 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -8.37064 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 127.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 6.307545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 6.30755 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -7.910364 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.91036 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -8.486273 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -8.48627 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 142.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 1.935545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 1.93555 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -10.752273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.7523 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -8.777727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -8.77773 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 161.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -1.278273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -1.27827 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -7.646818 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.64682 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -11.736273 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.7363 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 183.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1586 SHOW: average of selected elements = -4.043389 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -4.04339 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1586 SHOW: average of selected elements = -10.446611 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.4466 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1586 SHOW: average of selected elements = -8.374056 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -8.37406 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 203.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1586 SHOW: average of selected elements = -7.133143 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -7.13314 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1586 SHOW: average of selected elements = -8.438929 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -8.43893 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1586 SHOW: average of selected elements = -15.658357 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -15.6584 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 227.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -11.097909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -11.0979 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -8.143727 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -8.14373 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -11.759727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.7597 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 246.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -13.621727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -13.6217 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -10.596182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.5962 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -14.930909 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -14.9309 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 260.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -15.062500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -15.0625 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -6.414500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -6.41450 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -15.295500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -15.2955 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 272.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = -10.933800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -10.9338 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = -5.695000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.69500 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = -16.071200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -16.0712 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 279.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = -10.569889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -10.5699 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = -4.189000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.18900 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = -12.996000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -12.9960 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 290.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -6.925600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -6.92560 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -2.895100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.89510 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -12.140300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -12.1403 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 302.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -5.900818 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -5.90082 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -5.210636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.21064 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -8.081182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -8.08118 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 321.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = -3.075200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -3.07520 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = -3.710400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.71040 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = -6.739000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.73900 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 328.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = 0.602250 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 0.602250 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = -4.375750 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.37575 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = -7.386750 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.38675 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 342.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 1.750091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 1.75009 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -7.615000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.61500 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -3.621273 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.62127 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 364.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = 4.957714 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 4.95771 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = -8.919286 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -8.91929 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = -3.734571 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.73457 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 374.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1586 SHOW: average of selected elements = 3.060500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 3.06050 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1586 SHOW: average of selected elements = -11.925278 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -11.9253 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 1586 SHOW: average of selected elements = -5.077889 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -5.07789 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 394.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = 7.601250 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 7.60125 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = -15.094000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -15.0940 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = -3.257250 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.25725 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 408.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 9.461100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 9.46110 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -17.614400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -17.6144 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -6.521400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.52140 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 420.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = 8.783000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 8.78300 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = -19.712571 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -19.7126 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = -2.662143 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.66214 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 430.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 5.247455 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 5.24745 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -18.103182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -18.1032 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -2.135455 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.13545 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 444.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 2.455091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 2.45509 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -21.271091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -21.2711 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -1.295364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -1.29536 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 458.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -0.453200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -0.453200 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -21.087100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -21.0871 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -4.754900 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -4.75490 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 474.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = -1.779889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -1.77989 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = -20.738111 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -20.7381 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = -0.738222 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.738222 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 485.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = -0.502000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -0.502000 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = -17.528143 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -17.5281 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = -0.250714 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.250714 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 495.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -1.705182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -1.70518 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -16.358091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -16.3581 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -4.405000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -4.40500 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 514.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -5.274545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -5.27455 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -18.031818 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -18.0318 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -3.882000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.88200 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 536.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -4.276818 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -4.27682 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -15.351091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -15.3511 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 1.247636 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.24764 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 551.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -3.232091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -3.23209 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -12.304273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -12.3043 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -0.651182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.651182 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 565.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -6.980100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -6.98010 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -12.459400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -12.4594 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -2.870900 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.87090 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 581.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -8.781000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -8.78100 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -13.592182 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -13.5922 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 0.895455 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 0.895455 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 600.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = -6.736444 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -6.73644 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = -9.859889 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.85989 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = 2.010889 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 2.01089 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 611.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -6.996091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -6.99609 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -7.119636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.11964 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -1.205455 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -1.20545 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 626.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1586 SHOW: average of selected elements = -12.933773 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -12.9338 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1586 SHOW: average of selected elements = -9.530273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.53027 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 22 atoms have been selected out of 1586 SHOW: average of selected elements = -3.202455 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.20245 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 650.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = -14.015875 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -14.0159 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = -7.093750 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.09375 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = 0.194750 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 0.194750 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 664.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1586 SHOW: average of selected elements = -14.029571 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -14.0296 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1586 SHOW: average of selected elements = -7.450643 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.45064 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1586 SHOW: average of selected elements = 4.856214 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 4.85621 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 688.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -18.595727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -18.5957 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -5.653909 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.65391 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 3.946818 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 3.94682 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 703.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -18.465909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -18.4659 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -6.676636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -6.67664 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -0.684727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.684727 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 725.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -22.910818 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -22.9108 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -7.867818 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.86782 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 0.983000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 0.983000 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 740.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -24.129800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -24.1298 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -11.498400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -11.4984 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -1.919500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -1.91950 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 754.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = -19.886400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -19.8864 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = -12.195600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -12.1956 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = -2.072200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.07220 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 761.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = -16.549250 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -16.5493 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = -13.223125 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -13.2231 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = -3.077250 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.07725 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 775.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -13.960364 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -13.9604 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -13.834636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -13.8346 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 1.320091 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.32009 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 797.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -13.126636 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -13.1266 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -17.555455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -17.5555 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 0.277182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 0.277182 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 811.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -9.723800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -9.72380 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -19.142600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -19.1426 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -1.884300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -1.88430 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 827.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -13.113000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -13.1130 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -22.365545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -22.3655 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -1.251818 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -1.25182 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 849.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -15.650818 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -15.6508 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -18.809364 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -18.8094 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -3.711273 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.71127 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 864.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -11.441400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -11.4414 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -17.030800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -17.0308 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -5.446800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -5.44680 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 880.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -10.789636 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -10.7896 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -20.493273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -20.4933 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -8.907636 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -8.90764 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 902.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -6.161636 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -6.16164 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -18.129636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -18.1296 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -9.422727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.42273 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 921.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -6.605091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -6.60509 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -19.099636 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -19.0996 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -13.792182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -13.7922 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 940.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = -2.010111 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -2.01011 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = -19.601889 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -19.6019 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = -15.145111 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -15.1451 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 951.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = -2.455714 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -2.45571 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = -19.247143 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -19.2471 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = -18.776571 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -18.7766 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 961.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = -5.314600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -5.31460 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = -21.018200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -21.0182 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = -18.391400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -18.3914 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 968.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -3.779091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -3.77909 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -24.221091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -24.2211 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -15.907182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -15.9072 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 990.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -6.197100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -6.19710 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -24.143900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -24.1439 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -12.621400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -12.6214 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1006.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -3.543727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -3.54373 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -22.270455 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -22.2705 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -9.811000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.81100 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1025.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -3.108273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -3.10827 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -26.787091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -26.7871 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -6.995182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.99518 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1040.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -3.438500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -3.43850 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -23.712000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -23.7120 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -3.290700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.29070 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1054.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = -0.628556 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -0.628556 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = -27.345000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -27.3450 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = -2.684444 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.68444 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1065.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 1.326545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 1.32655 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -25.846091 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -25.8461 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -6.682364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.68236 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1087.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 5.009636 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 5.00964 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -23.609273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -23.6093 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -5.344182 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -5.34418 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1101.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 5.723900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 5.72390 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -19.656900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -19.6569 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -7.311500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.31150 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1117.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 10.169545 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 10.1695 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -22.202364 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -22.2024 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -7.969727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.96973 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1139.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 6.454000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 6.45400 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -25.429400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -25.4294 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -9.048900 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.04890 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1151.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1586 SHOW: average of selected elements = 3.056579 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 3.05658 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1586 SHOW: average of selected elements = -22.585263 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -22.5853 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 19 atoms have been selected out of 1586 SHOW: average of selected elements = -12.975684 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -12.9757 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1172.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1586 SHOW: average of selected elements = 7.401071 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 7.40107 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1586 SHOW: average of selected elements = -18.291143 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -18.2911 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 1586 SHOW: average of selected elements = -11.608714 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.6087 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1196.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = 11.450333 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 11.4503 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = -20.381444 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -20.3814 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = -14.635111 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -14.6351 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1207.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = 14.835500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 14.8355 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = -21.552250 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -21.5523 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = -13.941000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -13.9410 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1221.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 18.473600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 18.4736 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -19.726200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -19.7262 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -12.462800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -12.4628 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1237.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = 18.558000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 18.5580 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = -19.815111 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -19.8151 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 1586 SHOW: average of selected elements = -16.827333 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -16.8273 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1248.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 15.607900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 15.6079 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -16.513400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -16.5134 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -17.429700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -17.4297 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1262.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 15.421182 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 15.4212 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -12.361364 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -12.3614 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -17.103000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -17.1030 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1281.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = 13.698857 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 13.6989 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = -11.177571 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -11.1776 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = -13.870571 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -13.8706 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1291.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = 11.104400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 11.1044 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = -8.503400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -8.50340 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 5 atoms have been selected out of 1586 SHOW: average of selected elements = -13.298200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -13.2982 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1298.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = 8.812286 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 8.81229 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = -8.551429 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -8.55143 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = -14.856714 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -14.8567 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1308.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 4.986600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 4.98660 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -7.754000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.75400 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -13.669300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -13.6693 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1324.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 3.306636 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 3.30664 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -11.733545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -11.7335 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -13.258636 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -13.2586 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1338.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -0.653727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -0.653727 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -10.612273 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.6123 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -15.162727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -15.1627 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1352.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -2.260600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -2.26060 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -14.039400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.0394 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -12.567600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -12.5676 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1369.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 16 atoms have been selected out of 1586 SHOW: average of selected elements = -6.072375 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -6.07238 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 16 atoms have been selected out of 1586 SHOW: average of selected elements = -14.072000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.0720 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 16 atoms have been selected out of 1586 SHOW: average of selected elements = -16.260188 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -16.2602 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1387.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -9.097000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -9.09700 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -13.717600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -13.7176 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -11.265500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.2655 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1403.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -12.388909 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -12.3889 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -16.807909 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -16.8079 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -11.510000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.5100 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1422.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -15.472818 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -15.4728 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -14.110000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.1100 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -9.892727 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.89273 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1441.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -17.639364 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -17.6394 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -18.418364 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -18.4184 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -7.971818 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.97182 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1458.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = -20.622286 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -20.6223 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = -16.642571 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -16.6426 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 7 atoms have been selected out of 1586 SHOW: average of selected elements = -6.165857 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.16586 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1468.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = -21.772250 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -21.7723 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = -18.211250 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -18.2113 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 1586 SHOW: average of selected elements = -3.061125 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.06113 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1482.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -25.376500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -25.3765 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -20.655800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -20.6558 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -2.900100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.90010 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1498.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -26.067364 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -26.0674 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -19.552727 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -19.5527 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 0.995545 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 0.995545 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1512.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -23.330727 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -23.3307 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -15.739727 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -15.7397 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 2.825000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 2.82500 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1527.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -25.164273 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -25.1643 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -15.944545 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -15.9445 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 7.450364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 7.45036 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1549.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -22.492091 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -22.4921 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = -14.170000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.1700 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 11 atoms have been selected out of 1586 SHOW: average of selected elements = 9.835364 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 9.83536 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1564.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -21.856300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -21.8563 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = -18.830000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -18.8300 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 1586 SHOW: average of selected elements = 11.879500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 11.8795 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 15 atoms have been selected out of 1586 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 15 atoms have been selected out of 1586 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 15 atoms have been selected out of 1586 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) CNSsolve> evaluate ($ave_x=$result) CNSsolve> show ave(y) (byres(id $id) and known) CNSsolve> evaluate ($ave_y=$result) CNSsolve> show ave(z) (byres(id $id) and known) CNSsolve> evaluate ($ave_z=$result) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) CNSsolve> do (y=$ave_y) (byres(id $id) and store1) CNSsolve> do (z=$ave_z) (byres(id $id) and store1) CNSsolve> CNSsolve> end loop avco CNSsolve> CNSsolve> do (x=x+random(2.0)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> do (y=y+random(2.0)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> do (z=z+random(2.0)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> CNSsolve> {- start parameter for the side chain building -} CNSsolve> parameter PARRDR> nbonds NBDSET> rcon=20. nbxmod=-2 repel=0.9 wmin=0.1 tolerance=1. NBDSET> rexp=2 irexp=2 inhibit=0.25 NBDSET> end PARRDR> end CNSsolve> CNSsolve> {- Friction coefficient, in 1/ps. -} CNSsolve> do (fbeta=100) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> CNSsolve> evaluate ($bath=300.0) EVALUATE: symbol $BATH set to 300.000 (real) CNSsolve> evaluate ($nstep=500) EVALUATE: symbol $NSTEP set to 500.000 (real) CNSsolve> evaluate ($timestep=0.0005) EVALUATE: symbol $TIMESTEP set to 0.500000E-03 (real) CNSsolve> CNSsolve> do (refy=mass) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> CNSsolve> do (mass=20) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> CNSsolve> igroup interaction SELRPN> (store1) (store1 or known) SELRPN: 809 atoms have been selected out of 1586 SELRPN: 1586 atoms have been selected out of 1586 IGROup> end CNSsolve> CNSsolve> {- turn on initial energy terms -} CNSsolve> flags exclude * include bond angle vdw end CNSsolve> CNSsolve> minimize powell nstep=50 nprint=10 end POWELL: number of degrees of freedom= 2427 NBONDS: generating intra-molecular exclusion list with mode=-2 MAKINB: mode -2 found 809 exclusions and 0 interactions(1-4) %atoms " -7 -GLN -HG2 " and " -7 -GLN -HE21" only 0.09 A apart %atoms " -10 -ILE -HD12" and " -10 -ILE -HD13" only 0.09 A apart %atoms " -34 -LEU -HD11" and " -34 -LEU -HD23" only 0.09 A apart %atoms " -35 -LYS -HE2 " and " -35 -LYS -HZ3 " only 0.04 A apart %atoms " -38 -VAL -HN " and " -38 -VAL -HG12" only 0.10 A apart %atoms " -42 -TRP -HB1 " and " -42 -TRP -HD1 " only 0.07 A apart %atoms " -45 -GLU -HB1 " and " -45 -GLU -HB2 " only 0.09 A apart %atoms " -46 -LYS -HA " and " -46 -LYS -HZ1 " only 0.09 A apart %atoms " -50 -PRO -HA " and " -50 -PRO -HG1 " only 0.10 A apart %atoms " -51 -LYS -HD1 " and " -51 -LYS -HD2 " only 0.09 A apart %atoms " -64 -VAL -HG21" and " -64 -VAL -HG23" only 0.05 A apart %atoms " -68 -SER -HA " and " -68 -SER -HB1 " only 0.08 A apart %atoms " -74 -TYR -CG " and " -74 -TYR -HE2 " only 0.10 A apart %atoms " -76 -SER -HB1 " and " -76 -SER -HB2 " only 0.08 A apart %atoms " -93 -GLN -HG2 " and " -93 -GLN -HE21" only 0.06 A apart NBONDS: found 99056 intra-atom interactions NBONDS: found 15 nonbonded violations %atoms " -5 -HIS -HN " and " -5 -HIS -HE2 " only 0.09 A apart %atoms " -55 -GLU -HN " and " -55 -GLU -HB1 " only 0.09 A apart %atoms " -69 -LYS -HG1 " and " -69 -LYS -HZ1 " only 0.05 A apart %atoms " -94 -ALA -CA " and " -94 -ALA -HB2 " only 0.06 A apart NBONDS: found 97579 intra-atom interactions NBONDS: found 4 nonbonded violations %atoms " -11 -LYS -HA " and " -11 -LYS -HB2 " only 0.06 A apart NBONDS: found 92991 intra-atom interactions NBONDS: found 1 nonbonded violations NBONDS: found 89463 intra-atom interactions NBONDS: found 90094 intra-atom interactions --------------- cycle= 10 ------ stepsize= 0.0000 ----------------------- | Etotal =427201.129 grad(E)=594.574 E(BOND)=64246.915 E(ANGL)=206308.480 | | E(VDW )=156645.734 | ------------------------------------------------------------------------------- NBONDS: found 90631 intra-atom interactions NBONDS: found 90679 intra-atom interactions NBONDS: found 90591 intra-atom interactions NBONDS: found 90546 intra-atom interactions --------------- cycle= 20 ------ stepsize= 0.0000 ----------------------- | Etotal =161429.363 grad(E)=355.795 E(BOND)=23588.303 E(ANGL)=58216.533 | | E(VDW )=79624.528 | ------------------------------------------------------------------------------- NBONDS: found 90454 intra-atom interactions NBONDS: found 90481 intra-atom interactions --------------- cycle= 30 ------ stepsize= 0.0001 ----------------------- | Etotal =136790.937 grad(E)=336.807 E(BOND)=21704.944 E(ANGL)=44480.702 | | E(VDW )=70605.291 | ------------------------------------------------------------------------------- NBONDS: found 90531 intra-atom interactions --------------- cycle= 40 ------ stepsize= -0.0001 ----------------------- | Etotal =132996.452 grad(E)=331.276 E(BOND)=20215.611 E(ANGL)=42614.171 | | E(VDW )=70166.670 | ------------------------------------------------------------------------------- NBONDS: found 90493 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0000 ----------------------- | Etotal =132839.049 grad(E)=331.085 E(BOND)=20322.707 E(ANGL)=42592.372 | | E(VDW )=69923.970 | ------------------------------------------------------------------------------- POWELL: STEP number limit. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> CNSsolve> flags exclude vdw include impr end CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=50 Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=609177.202 E(kin)=719.635 temperature=298.423 | | Etotal =608457.567 grad(E)=693.613 E(BOND)=20322.707 E(ANGL)=42592.372 | | E(IMPR)=545542.488 | ------------------------------------------------------------------------------- -------------------- final step= 50 at 0.02500 ps --------------------- | E(kin)+E(total)=404417.824 E(kin)=58759.455 temperature=24366.793 | | Etotal =345658.369 grad(E)=437.158 E(BOND)=43040.783 E(ANGL)=126069.003 | | E(IMPR)=176548.582 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : -4.31243 -14.63978 -6.18188 velocity [A/ps] : -1.44429 0.16361 -0.66438 ang. mom. [amu A/ps] : 157430.98851 208875.72081 -3242.20103 kin. ener. [Kcal/mol] : 49.38562 CNSsolve> CNSsolve> flags include vdw end CNSsolve> CNSsolve> minimize powell nstep=50 nprint=10 end POWELL: number of degrees of freedom= 2427 NBONDS: found 90385 intra-atom interactions NBONDS: found 90330 intra-atom interactions NBONDS: found 90394 intra-atom interactions NBONDS: found 90435 intra-atom interactions NBONDS: found 90453 intra-atom interactions --------------- cycle= 10 ------ stepsize= 0.0003 ----------------------- | Etotal =289573.704 grad(E)=429.370 E(BOND)=44778.054 E(ANGL)=80950.263 | | E(IMPR)=121334.478 E(VDW )=42510.910 | ------------------------------------------------------------------------------- NBONDS: found 90674 intra-atom interactions NBONDS: found 90666 intra-atom interactions NBONDS: found 90645 intra-atom interactions --------------- cycle= 20 ------ stepsize= 0.0001 ----------------------- | Etotal =177327.666 grad(E)=269.475 E(BOND)=17256.149 E(ANGL)=30511.207 | | E(IMPR)=87768.318 E(VDW )=41791.993 | ------------------------------------------------------------------------------- NBONDS: found 90695 intra-atom interactions NBONDS: found 90617 intra-atom interactions NBONDS: found 90636 intra-atom interactions --------------- cycle= 30 ------ stepsize= -0.0001 ----------------------- | Etotal =158455.463 grad(E)=277.404 E(BOND)=17725.539 E(ANGL)=26642.611 | | E(IMPR)=73503.674 E(VDW )=40583.639 | ------------------------------------------------------------------------------- NBONDS: found 90710 intra-atom interactions NBONDS: found 90704 intra-atom interactions --------------- cycle= 40 ------ stepsize= 0.0001 ----------------------- | Etotal =145905.812 grad(E)=266.464 E(BOND)=17439.016 E(ANGL)=23254.527 | | E(IMPR)=65717.600 E(VDW )=39494.669 | ------------------------------------------------------------------------------- NBONDS: found 90689 intra-atom interactions NBONDS: found 90626 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0001 ----------------------- | Etotal =136594.068 grad(E)=273.841 E(BOND)=17346.189 E(ANGL)=21773.599 | | E(IMPR)=57854.754 E(VDW )=39619.527 | ------------------------------------------------------------------------------- POWELL: STEP number limit. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=50 Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=137344.094 E(kin)=750.027 temperature=311.027 | | Etotal =136594.068 grad(E)=273.841 E(BOND)=17346.189 E(ANGL)=21773.599 | | E(IMPR)=57854.754 E(VDW )=39619.527 | ------------------------------------------------------------------------------- NBONDS: found 90632 intra-atom interactions NBONDS: found 90683 intra-atom interactions -------------------- final step= 50 at 0.02500 ps --------------------- | E(kin)+E(total)=131889.074 E(kin)=3553.829 temperature=1473.727 | | Etotal =128335.245 grad(E)=278.427 E(BOND)=17867.098 E(ANGL)=20032.927 | | E(IMPR)=50960.632 E(VDW )=39474.589 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : -4.30769 -14.61226 -6.17679 velocity [A/ps] : -0.20480 -0.08180 -0.16439 ang. mom. [amu A/ps] : -926.06679 -13358.75438 -64734.42221 kin. ener. [Kcal/mol] : 1.46290 CNSsolve> CNSsolve> parameter PARRDR> nbonds NBDSET> rcon=2. nbxmod=-3 repel=0.75 NBDSET> end PARRDR> end CNSsolve> CNSsolve> minimize powell nstep=100 nprint=25 end POWELL: number of degrees of freedom= 2427 NBONDS: generating intra-molecular exclusion list with mode=-3 MAKINB: mode -3 found 2666 exclusions and 0 interactions(1-4) NBONDS: found 88806 intra-atom interactions NBONDS: found 89329 intra-atom interactions NBONDS: found 89261 intra-atom interactions NBONDS: found 89294 intra-atom interactions --------------- cycle= 25 ------ stepsize= 0.0002 ----------------------- | Etotal =56084.100 grad(E)=58.901 E(BOND)=1813.441 E(ANGL)=13476.964 | | E(IMPR)=40791.672 E(VDW )=2.023 | ------------------------------------------------------------------------------- --------------- cycle= 50 ------ stepsize= 0.0000 ----------------------- | Etotal =55923.792 grad(E)=57.215 E(BOND)=1841.936 E(ANGL)=13404.257 | | E(IMPR)=40675.698 E(VDW )=1.902 | ------------------------------------------------------------------------------- --------------- cycle= 75 ------ stepsize= 0.0000 ----------------------- | Etotal =55923.780 grad(E)=57.215 E(BOND)=1841.939 E(ANGL)=13404.251 | | E(IMPR)=40675.688 E(VDW )=1.902 | ------------------------------------------------------------------------------- POWELL: Line search terminated POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=$nstep Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=56652.416 E(kin)=728.636 temperature=302.156 | | Etotal =55923.780 grad(E)=57.215 E(BOND)=1841.939 E(ANGL)=13404.251 | | E(IMPR)=40675.688 E(VDW )=1.902 | ------------------------------------------------------------------------------- NBONDS: found 89282 intra-atom interactions NBONDS: found 89282 intra-atom interactions NBONDS: found 89283 intra-atom interactions NBONDS: found 89289 intra-atom interactions NBONDS: found 89337 intra-atom interactions NBONDS: found 89345 intra-atom interactions NBONDS: found 89352 intra-atom interactions NBONDS: found 89303 intra-atom interactions NBONDS: found 89275 intra-atom interactions NBONDS: found 89267 intra-atom interactions NBONDS: found 89225 intra-atom interactions NBONDS: found 89225 intra-atom interactions NBONDS: found 89282 intra-atom interactions NBONDS: found 89296 intra-atom interactions NBONDS: found 89338 intra-atom interactions NBONDS: found 89427 intra-atom interactions NBONDS: found 89386 intra-atom interactions NBONDS: found 89397 intra-atom interactions NBONDS: found 89288 intra-atom interactions NBONDS: found 89268 intra-atom interactions NBONDS: found 89231 intra-atom interactions NBONDS: found 89211 intra-atom interactions NBONDS: found 89262 intra-atom interactions NBONDS: found 89289 intra-atom interactions NBONDS: found 89323 intra-atom interactions NBONDS: found 89306 intra-atom interactions NBONDS: found 89296 intra-atom interactions NBONDS: found 89273 intra-atom interactions NBONDS: found 89238 intra-atom interactions NBONDS: found 89210 intra-atom interactions NBONDS: found 89186 intra-atom interactions NBONDS: found 89201 intra-atom interactions NBONDS: found 89230 intra-atom interactions NBONDS: found 89258 intra-atom interactions NBONDS: found 89276 intra-atom interactions NBONDS: found 89270 intra-atom interactions NBONDS: found 89267 intra-atom interactions NBONDS: found 89261 intra-atom interactions NBONDS: found 89245 intra-atom interactions NBONDS: found 89267 intra-atom interactions NBONDS: found 89282 intra-atom interactions -------------------- final step= 500 at 0.25000 ps --------------------- | E(kin)+E(total)=6279.510 E(kin)=1761.242 temperature=730.364 | | Etotal =4518.268 grad(E)=100.239 E(BOND)=29.880 E(ANGL)=1882.489 | | E(IMPR)=2603.521 E(VDW )=2.377 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : -4.30731 -14.61720 -6.18369 velocity [A/ps] : 0.02941 -0.25410 0.16935 ang. mom. [amu A/ps] : -57402.79011 -70506.29562 -9322.95338 kin. ener. [Kcal/mol] : 1.81968 CNSsolve> CNSsolve> {- turn on all energy terms -} CNSsolve> flags include dihe ? end EFLAGS: the following energy flags are set EFLAGS: BOND ANGL DIHE IMPR VDW CNSsolve> CNSsolve> {- set repel to ~vdw radii -} CNSsolve> parameter PARRDR> nbonds NBDSET> repel=0.89 NBDSET> end PARRDR> end CNSsolve> CNSsolve> minimize powell nstep=500 nprint=50 end POWELL: number of degrees of freedom= 2427 NBONDS: generating intra-molecular exclusion list with mode=-3 MAKINB: mode -3 found 2666 exclusions and 0 interactions(1-4) NBONDS: found 89290 intra-atom interactions NBONDS: found 89278 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0000 ----------------------- | Etotal =2327.640 grad(E)=59.258 E(BOND)=21.111 E(ANGL)=627.856 | | E(DIHE)=67.723 E(IMPR)=1542.234 E(VDW )=68.716 | ------------------------------------------------------------------------------- POWELL: Line search terminated POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> flags exclude * include bond angl impr dihe vdw end CNSsolve> CNSsolve> {- return masses to something sensible -} CNSsolve> do (mass=refy) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=$nstep Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=3076.914 E(kin)=749.274 temperature=310.714 | | Etotal =2327.640 grad(E)=59.258 E(BOND)=21.111 E(ANGL)=627.856 | | E(DIHE)=67.723 E(IMPR)=1542.234 E(VDW )=68.716 | ------------------------------------------------------------------------------- NBONDS: found 89245 intra-atom interactions NBONDS: found 89233 intra-atom interactions NBONDS: found 89237 intra-atom interactions NBONDS: found 89238 intra-atom interactions NBONDS: found 89252 intra-atom interactions NBONDS: found 89270 intra-atom interactions NBONDS: found 89284 intra-atom interactions NBONDS: found 89286 intra-atom interactions NBONDS: found 89273 intra-atom interactions NBONDS: found 89256 intra-atom interactions NBONDS: found 89231 intra-atom interactions NBONDS: found 89209 intra-atom interactions NBONDS: found 89219 intra-atom interactions NBONDS: found 89222 intra-atom interactions NBONDS: found 89258 intra-atom interactions NBONDS: found 89287 intra-atom interactions NBONDS: found 89272 intra-atom interactions NBONDS: found 89274 intra-atom interactions NBONDS: found 89309 intra-atom interactions NBONDS: found 89301 intra-atom interactions NBONDS: found 89290 intra-atom interactions NBONDS: found 89263 intra-atom interactions NBONDS: found 89247 intra-atom interactions NBONDS: found 89219 intra-atom interactions NBONDS: found 89194 intra-atom interactions NBONDS: found 89215 intra-atom interactions NBONDS: found 89239 intra-atom interactions NBONDS: found 89242 intra-atom interactions NBONDS: found 89251 intra-atom interactions NBONDS: found 89250 intra-atom interactions NBONDS: found 89263 intra-atom interactions NBONDS: found 89243 intra-atom interactions NBONDS: found 89223 intra-atom interactions NBONDS: found 89203 intra-atom interactions NBONDS: found 89217 intra-atom interactions NBONDS: found 89224 intra-atom interactions NBONDS: found 89237 intra-atom interactions NBONDS: found 89253 intra-atom interactions NBONDS: found 89255 intra-atom interactions NBONDS: found 89268 intra-atom interactions NBONDS: found 89256 intra-atom interactions NBONDS: found 89268 intra-atom interactions NBONDS: found 89262 intra-atom interactions NBONDS: found 89241 intra-atom interactions NBONDS: found 89218 intra-atom interactions NBONDS: found 89203 intra-atom interactions NBONDS: found 89242 intra-atom interactions NBONDS: found 89260 intra-atom interactions NBONDS: found 89269 intra-atom interactions NBONDS: found 89277 intra-atom interactions NBONDS: found 89276 intra-atom interactions NBONDS: found 89287 intra-atom interactions NBONDS: found 89294 intra-atom interactions NBONDS: found 89289 intra-atom interactions NBONDS: found 89286 intra-atom interactions NBONDS: found 89269 intra-atom interactions NBONDS: found 89257 intra-atom interactions NBONDS: found 89245 intra-atom interactions NBONDS: found 89269 intra-atom interactions NBONDS: found 89292 intra-atom interactions NBONDS: found 89298 intra-atom interactions NBONDS: found 89305 intra-atom interactions NBONDS: found 89319 intra-atom interactions NBONDS: found 89316 intra-atom interactions NBONDS: found 89322 intra-atom interactions NBONDS: found 89314 intra-atom interactions NBONDS: found 89303 intra-atom interactions NBONDS: found 89295 intra-atom interactions NBONDS: found 89281 intra-atom interactions NBONDS: found 89246 intra-atom interactions NBONDS: found 89250 intra-atom interactions NBONDS: found 89249 intra-atom interactions NBONDS: found 89280 intra-atom interactions NBONDS: found 89301 intra-atom interactions NBONDS: found 89322 intra-atom interactions NBONDS: found 89336 intra-atom interactions NBONDS: found 89316 intra-atom interactions NBONDS: found 89308 intra-atom interactions NBONDS: found 89271 intra-atom interactions NBONDS: found 89245 intra-atom interactions NBONDS: found 89210 intra-atom interactions NBONDS: found 89202 intra-atom interactions NBONDS: found 89194 intra-atom interactions NBONDS: found 89207 intra-atom interactions NBONDS: found 89234 intra-atom interactions NBONDS: found 89260 intra-atom interactions NBONDS: found 89289 intra-atom interactions NBONDS: found 89337 intra-atom interactions NBONDS: found 89372 intra-atom interactions NBONDS: found 89401 intra-atom interactions NBONDS: found 89419 intra-atom interactions NBONDS: found 89397 intra-atom interactions NBONDS: found 89355 intra-atom interactions NBONDS: found 89317 intra-atom interactions NBONDS: found 89289 intra-atom interactions NBONDS: found 89233 intra-atom interactions NBONDS: found 89214 intra-atom interactions NBONDS: found 89193 intra-atom interactions NBONDS: found 89207 intra-atom interactions NBONDS: found 89238 intra-atom interactions NBONDS: found 89246 intra-atom interactions NBONDS: found 89287 intra-atom interactions NBONDS: found 89329 intra-atom interactions NBONDS: found 89344 intra-atom interactions NBONDS: found 89363 intra-atom interactions NBONDS: found 89361 intra-atom interactions NBONDS: found 89351 intra-atom interactions NBONDS: found 89334 intra-atom interactions NBONDS: found 89301 intra-atom interactions NBONDS: found 89267 intra-atom interactions NBONDS: found 89230 intra-atom interactions NBONDS: found 89234 intra-atom interactions NBONDS: found 89240 intra-atom interactions NBONDS: found 89276 intra-atom interactions NBONDS: found 89280 intra-atom interactions NBONDS: found 89286 intra-atom interactions NBONDS: found 89327 intra-atom interactions NBONDS: found 89319 intra-atom interactions NBONDS: found 89311 intra-atom interactions NBONDS: found 89293 intra-atom interactions NBONDS: found 89262 intra-atom interactions NBONDS: found 89262 intra-atom interactions NBONDS: found 89241 intra-atom interactions NBONDS: found 89282 intra-atom interactions NBONDS: found 89292 intra-atom interactions NBONDS: found 89306 intra-atom interactions NBONDS: found 89295 intra-atom interactions NBONDS: found 89285 intra-atom interactions NBONDS: found 89258 intra-atom interactions NBONDS: found 89235 intra-atom interactions NBONDS: found 89226 intra-atom interactions NBONDS: found 89218 intra-atom interactions NBONDS: found 89198 intra-atom interactions NBONDS: found 89202 intra-atom interactions NBONDS: found 89214 intra-atom interactions NBONDS: found 89226 intra-atom interactions NBONDS: found 89225 intra-atom interactions NBONDS: found 89240 intra-atom interactions NBONDS: found 89233 intra-atom interactions NBONDS: found 89246 intra-atom interactions NBONDS: found 89268 intra-atom interactions NBONDS: found 89279 intra-atom interactions NBONDS: found 89291 intra-atom interactions NBONDS: found 89290 intra-atom interactions NBONDS: found 89281 intra-atom interactions NBONDS: found 89270 intra-atom interactions NBONDS: found 89272 intra-atom interactions NBONDS: found 89290 intra-atom interactions NBONDS: found 89299 intra-atom interactions NBONDS: found 89309 intra-atom interactions NBONDS: found 89301 intra-atom interactions NBONDS: found 89307 intra-atom interactions NBONDS: found 89340 intra-atom interactions NBONDS: found 89325 intra-atom interactions NBONDS: found 89317 intra-atom interactions NBONDS: found 89297 intra-atom interactions NBONDS: found 89291 intra-atom interactions NBONDS: found 89253 intra-atom interactions NBONDS: found 89219 intra-atom interactions NBONDS: found 89216 intra-atom interactions NBONDS: found 89226 intra-atom interactions NBONDS: found 89240 intra-atom interactions NBONDS: found 89243 intra-atom interactions NBONDS: found 89265 intra-atom interactions NBONDS: found 89269 intra-atom interactions NBONDS: found 89257 intra-atom interactions NBONDS: found 89246 intra-atom interactions NBONDS: found 89230 intra-atom interactions NBONDS: found 89203 intra-atom interactions NBONDS: found 89188 intra-atom interactions NBONDS: found 89237 intra-atom interactions NBONDS: found 89253 intra-atom interactions NBONDS: found 89277 intra-atom interactions NBONDS: found 89274 intra-atom interactions NBONDS: found 89267 intra-atom interactions NBONDS: found 89285 intra-atom interactions NBONDS: found 89285 intra-atom interactions NBONDS: found 89282 intra-atom interactions NBONDS: found 89279 intra-atom interactions NBONDS: found 89271 intra-atom interactions NBONDS: found 89259 intra-atom interactions NBONDS: found 89248 intra-atom interactions NBONDS: found 89236 intra-atom interactions NBONDS: found 89214 intra-atom interactions NBONDS: found 89228 intra-atom interactions NBONDS: found 89226 intra-atom interactions NBONDS: found 89243 intra-atom interactions NBONDS: found 89242 intra-atom interactions NBONDS: found 89256 intra-atom interactions NBONDS: found 89286 intra-atom interactions NBONDS: found 89274 intra-atom interactions NBONDS: found 89256 intra-atom interactions NBONDS: found 89231 intra-atom interactions NBONDS: found 89209 intra-atom interactions NBONDS: found 89200 intra-atom interactions NBONDS: found 89209 intra-atom interactions NBONDS: found 89236 intra-atom interactions NBONDS: found 89262 intra-atom interactions NBONDS: found 89288 intra-atom interactions NBONDS: found 89291 intra-atom interactions NBONDS: found 89304 intra-atom interactions NBONDS: found 89322 intra-atom interactions NBONDS: found 89317 intra-atom interactions NBONDS: found 89311 intra-atom interactions NBONDS: found 89288 intra-atom interactions NBONDS: found 89280 intra-atom interactions NBONDS: found 89273 intra-atom interactions NBONDS: found 89299 intra-atom interactions NBONDS: found 89314 intra-atom interactions NBONDS: found 89332 intra-atom interactions NBONDS: found 89327 intra-atom interactions NBONDS: found 89328 intra-atom interactions NBONDS: found 89320 intra-atom interactions NBONDS: found 89309 intra-atom interactions NBONDS: found 89293 intra-atom interactions NBONDS: found 89275 intra-atom interactions NBONDS: found 89262 intra-atom interactions NBONDS: found 89250 intra-atom interactions NBONDS: found 89273 intra-atom interactions NBONDS: found 89286 intra-atom interactions NBONDS: found 89309 intra-atom interactions NBONDS: found 89307 intra-atom interactions NBONDS: found 89322 intra-atom interactions NBONDS: found 89314 intra-atom interactions NBONDS: found 89293 intra-atom interactions NBONDS: found 89283 intra-atom interactions NBONDS: found 89265 intra-atom interactions NBONDS: found 89240 intra-atom interactions NBONDS: found 89223 intra-atom interactions NBONDS: found 89232 intra-atom interactions NBONDS: found 89240 intra-atom interactions NBONDS: found 89272 intra-atom interactions NBONDS: found 89300 intra-atom interactions NBONDS: found 89332 intra-atom interactions NBONDS: found 89333 intra-atom interactions NBONDS: found 89323 intra-atom interactions NBONDS: found 89306 intra-atom interactions NBONDS: found 89270 intra-atom interactions NBONDS: found 89260 intra-atom interactions NBONDS: found 89241 intra-atom interactions NBONDS: found 89223 intra-atom interactions NBONDS: found 89209 intra-atom interactions NBONDS: found 89214 intra-atom interactions NBONDS: found 89228 intra-atom interactions NBONDS: found 89239 intra-atom interactions NBONDS: found 89248 intra-atom interactions NBONDS: found 89272 intra-atom interactions NBONDS: found 89278 intra-atom interactions NBONDS: found 89294 intra-atom interactions NBONDS: found 89326 intra-atom interactions NBONDS: found 89307 intra-atom interactions NBONDS: found 89296 intra-atom interactions NBONDS: found 89288 intra-atom interactions NBONDS: found 89266 intra-atom interactions NBONDS: found 89252 intra-atom interactions NBONDS: found 89234 intra-atom interactions NBONDS: found 89228 intra-atom interactions NBONDS: found 89230 intra-atom interactions NBONDS: found 89236 intra-atom interactions NBONDS: found 89235 intra-atom interactions NBONDS: found 89248 intra-atom interactions NBONDS: found 89246 intra-atom interactions NBONDS: found 89256 intra-atom interactions NBONDS: found 89285 intra-atom interactions NBONDS: found 89297 intra-atom interactions NBONDS: found 89311 intra-atom interactions NBONDS: found 89311 intra-atom interactions NBONDS: found 89296 intra-atom interactions NBONDS: found 89281 intra-atom interactions NBONDS: found 89265 intra-atom interactions NBONDS: found 89252 intra-atom interactions NBONDS: found 89250 intra-atom interactions NBONDS: found 89253 intra-atom interactions NBONDS: found 89269 intra-atom interactions NBONDS: found 89259 intra-atom interactions NBONDS: found 89261 intra-atom interactions NBONDS: found 89271 intra-atom interactions NBONDS: found 89267 intra-atom interactions NBONDS: found 89273 intra-atom interactions NBONDS: found 89262 intra-atom interactions NBONDS: found 89247 intra-atom interactions NBONDS: found 89242 intra-atom interactions NBONDS: found 89248 intra-atom interactions NBONDS: found 89258 intra-atom interactions NBONDS: found 89277 intra-atom interactions NBONDS: found 89300 intra-atom interactions NBONDS: found 89313 intra-atom interactions NBONDS: found 89325 intra-atom interactions NBONDS: found 89299 intra-atom interactions NBONDS: found 89289 intra-atom interactions NBONDS: found 89297 intra-atom interactions NBONDS: found 89294 intra-atom interactions NBONDS: found 89282 intra-atom interactions NBONDS: found 89274 intra-atom interactions NBONDS: found 89257 intra-atom interactions NBONDS: found 89245 intra-atom interactions NBONDS: found 89234 intra-atom interactions NBONDS: found 89232 intra-atom interactions NBONDS: found 89227 intra-atom interactions NBONDS: found 89227 intra-atom interactions NBONDS: found 89232 intra-atom interactions NBONDS: found 89251 intra-atom interactions NBONDS: found 89248 intra-atom interactions NBONDS: found 89268 intra-atom interactions NBONDS: found 89299 intra-atom interactions NBONDS: found 89301 intra-atom interactions NBONDS: found 89286 intra-atom interactions NBONDS: found 89272 intra-atom interactions NBONDS: found 89263 intra-atom interactions NBONDS: found 89250 intra-atom interactions NBONDS: found 89237 intra-atom interactions NBONDS: found 89253 intra-atom interactions NBONDS: found 89255 intra-atom interactions NBONDS: found 89271 intra-atom interactions NBONDS: found 89303 intra-atom interactions NBONDS: found 89322 intra-atom interactions NBONDS: found 89343 intra-atom interactions NBONDS: found 89316 intra-atom interactions NBONDS: found 89296 intra-atom interactions NBONDS: found 89265 intra-atom interactions NBONDS: found 89236 intra-atom interactions NBONDS: found 89226 intra-atom interactions NBONDS: found 89248 intra-atom interactions NBONDS: found 89288 intra-atom interactions NBONDS: found 89306 intra-atom interactions NBONDS: found 89322 intra-atom interactions NBONDS: found 89317 intra-atom interactions NBONDS: found 89322 intra-atom interactions NBONDS: found 89309 intra-atom interactions NBONDS: found 89292 intra-atom interactions NBONDS: found 89295 intra-atom interactions NBONDS: found 89282 intra-atom interactions NBONDS: found 89264 intra-atom interactions NBONDS: found 89249 intra-atom interactions NBONDS: found 89229 intra-atom interactions NBONDS: found 89230 intra-atom interactions NBONDS: found 89239 intra-atom interactions NBONDS: found 89227 intra-atom interactions NBONDS: found 89194 intra-atom interactions NBONDS: found 89191 intra-atom interactions NBONDS: found 89249 intra-atom interactions NBONDS: found 89281 intra-atom interactions NBONDS: found 89324 intra-atom interactions NBONDS: found 89349 intra-atom interactions NBONDS: found 89361 intra-atom interactions NBONDS: found 89355 intra-atom interactions NBONDS: found 89328 intra-atom interactions NBONDS: found 89302 intra-atom interactions NBONDS: found 89270 intra-atom interactions NBONDS: found 89262 intra-atom interactions NBONDS: found 89235 intra-atom interactions NBONDS: found 89198 intra-atom interactions NBONDS: found 89190 intra-atom interactions NBONDS: found 89178 intra-atom interactions NBONDS: found 89189 intra-atom interactions NBONDS: found 89213 intra-atom interactions NBONDS: found 89243 intra-atom interactions NBONDS: found 89253 intra-atom interactions NBONDS: found 89278 intra-atom interactions NBONDS: found 89287 intra-atom interactions NBONDS: found 89289 intra-atom interactions NBONDS: found 89275 intra-atom interactions NBONDS: found 89260 intra-atom interactions NBONDS: found 89269 intra-atom interactions NBONDS: found 89265 intra-atom interactions NBONDS: found 89277 intra-atom interactions NBONDS: found 89264 intra-atom interactions NBONDS: found 89289 intra-atom interactions NBONDS: found 89280 intra-atom interactions NBONDS: found 89284 intra-atom interactions NBONDS: found 89298 intra-atom interactions NBONDS: found 89286 intra-atom interactions NBONDS: found 89287 intra-atom interactions NBONDS: found 89286 intra-atom interactions NBONDS: found 89276 intra-atom interactions NBONDS: found 89256 intra-atom interactions NBONDS: found 89249 intra-atom interactions NBONDS: found 89254 intra-atom interactions NBONDS: found 89245 intra-atom interactions NBONDS: found 89271 intra-atom interactions NBONDS: found 89262 intra-atom interactions NBONDS: found 89269 intra-atom interactions NBONDS: found 89259 intra-atom interactions NBONDS: found 89251 intra-atom interactions NBONDS: found 89265 intra-atom interactions NBONDS: found 89262 intra-atom interactions NBONDS: found 89269 intra-atom interactions NBONDS: found 89262 intra-atom interactions NBONDS: found 89247 intra-atom interactions NBONDS: found 89237 intra-atom interactions -------------------- final step= 500 at 0.25000 ps --------------------- | E(kin)+E(total)=28063.364 E(kin)=12786.435 temperature=5302.371 | | Etotal =15276.929 grad(E)=177.640 E(BOND)=12263.751 E(ANGL)=1681.269 | | E(DIHE)=10.435 E(IMPR)=1235.615 E(VDW )=85.858 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : -5.04406 -14.78577 -5.58764 velocity [A/ps] : -3.08097 3.45905 -0.62128 ang. mom. [amu A/ps] : 17765.84712 32733.15722 6129.24796 kin. ener. [Kcal/mol] : 22.06931 CNSsolve> CNSsolve> {- some final minimisation -} CNSsolve> minimize powell POWELL> nstep=500 POWELL> drop=40.0 POWELL> nprint=50 POWELL> end POWELL: number of degrees of freedom= 2427 NBONDS: found 89249 intra-atom interactions NBONDS: found 89286 intra-atom interactions NBONDS: found 89275 intra-atom interactions NBONDS: found 89258 intra-atom interactions NBONDS: found 89323 intra-atom interactions NBONDS: found 89298 intra-atom interactions NBONDS: found 89264 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0000 ----------------------- | Etotal =9215.834 grad(E)=299.080 E(BOND)=27.351 E(ANGL)=1276.147 | | E(DIHE)=10.433 E(IMPR)=7840.560 E(VDW )=61.343 | ------------------------------------------------------------------------------- POWELL: Line search terminated POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> print thres=0.02 bonds (atom-i |atom-j ) dist. equil. delta energy const. ( 13 NE | 13 HE ) 1.089 0.980 0.109 11.909 1000.000 ( 44 NE | 44 HE ) 1.053 0.980 0.073 5.306 1000.000 ( 75 NE | 75 HE ) 1.075 0.980 0.095 8.933 1000.000 Number of violations greater 0.020: 3 RMS deviation= 0.006 CNSsolve> print thres=5. angles (atom-i |atom-j |atom-k ) angle equil. delta energy const. ( 13 CD | 13 NE | 13 HE ) 95.199 118.099 -22.900 79.869 500.000 ( 13 HE | 13 NE | 13 CZ ) 97.889 119.249 -21.360 69.490 500.000 ( 44 CD | 44 NE | 44 HE ) 134.228 118.099 16.129 39.624 500.000 ( 44 HE | 44 NE | 44 CZ ) 101.648 119.249 -17.601 47.183 500.000 ( 75 CD | 75 NE | 75 HE ) 165.488 118.099 47.390 342.050 500.000 ( 75 HE | 75 NE | 75 CZ ) 56.950 119.249 -62.299 591.131 500.000 Number of violations greater 5.000: 6 RMS deviation= 2.124 CNSsolve> CNSsolve> end if CNSsolve> CNSsolve> fix selection=( none ) end SELRPN: 0 atoms have been selected out of 1586 CNSsolve> CNSsolve> end if CNSsolve> CNSsolve> set echo=false end SELRPN: 0 atoms have been selected out of 1586 SHOW: zero atoms selected NEXTCD: condition evaluated as true SELRPN: 0 atoms have been selected out of 1586 CNSsolve> CNSsolve> if (&set_bfactor=true) then NEXTCD: condition evaluated as false CNSsolve> do (b=&bfactor) ( all ) CNSsolve> else CNSsolve> show ave(b) (known and not(store1)) SELRPN: 777 atoms have been selected out of 1586 SHOW: average of selected elements = 0.000000 CNSsolve> do (b=$result) (store1 and (attr b < 0.01)) SELRPN: 809 atoms have been selected out of 1586 CNSsolve> end if CNSsolve> CNSsolve> if (&set_occupancy=true) then NEXTCD: condition evaluated as false CNSsolve> do (q=&occupancy) ( all ) CNSsolve> end if CNSsolve> CNSsolve> set echo=false end SELRPN: 809 atoms have been selected out of 1586 SHOW: sum over selected elements = 809.000000 NEXTCD: condition evaluated as false CNSsolve> CNSsolve> set remarks=reset end CNSsolve> CNSsolve> buffer message BUFFER> to=remarks BUFFER> dump BUFFER> end CNSsolve> CNSsolve> write coordinates output=&coordinate_outfile end ASSFIL: file 1xxx_13_cns.pdb opened. CNSsolve> CNSsolve>stop ============================================================ Maximum dynamic memory allocation: 993180 bytes Maximum dynamic memory overhead: 880 bytes Program started at: 23:11:50 on 3-Feb-04 Program stopped at: 23:12:13 on 3-Feb-04 CPU time used: 22.7900 seconds ============================================================