data_5156 ####################### # Entry information # ####################### save_entry_information _Saveframe_category entry_information _Entry_title ; Partial assignment of the calcium-bound calretinin I-II domain (residues 1-100): 1H, 13C and 15N backbone assignments (and partial sidechain assignment) for structured elements ; _BMRB_accession_number 5156 _BMRB_flat_file_name bmr5156.str _Entry_type original _Submission_date 2001-09-23 _Accession_date 2001-09-24 _Entry_origination author _NMR_STAR_version 2.1.1 _Experimental_method NMR _Details . loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Palczewska Malgorzata . . 2 Groves Patrick . . 3 Ambrus Attila . . 4 Kaleta Agata . . 5 Kover Katalin E . 6 Batta Gyula . . 7 Kuznicki Jacek . . stop_ loop_ _Saveframe_category_type _Saveframe_category_type_count assigned_chemical_shifts 2 stop_ loop_ _Data_type _Data_type_count "1H chemical shifts" 495 "13C chemical shifts" 495 "15N chemical shifts" 151 stop_ loop_ _Revision_date _Revision_keyword _Revision_author _Revision_detail 2002-01-25 original author . stop_ _Original_release_date 2002-01-25 save_ ############################# # Citation for this entry # ############################# save_entry_citation _Saveframe_category entry_citation _Citation_full . _Citation_title ; Structural and Biochemical Characterization of Neuronal Calretinin Domain I-II (residues 1-100). Comparison to Homologous Calbindin D28k Domain I-II (residues 1-93) ; _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code 21590353 _PubMed_ID 11733019 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Palczewska Malgorzata . . 2 Groves Patrick . . 3 Ambrus Attila . . 4 Kaleta Agata . . 5 Kover Katalin E. . 6 Batta Gyula . . 7 Kuznicki Jacek . . stop_ _Journal_abbreviation 'Eur. J. Biochem.' _Journal_volume 268 _Journal_issue 23 _Journal_CSD . _Book_chapter_title . _Book_volume . _Book_series . _Book_ISBN . _Conference_state_province . _Conference_abstract_number . _Page_first 6229 _Page_last 6237 _Year 2001 _Details . loop_ _Keyword calretinin EF-hand calcium 'calbindin D28k' 'NMR secondary structure' stop_ save_ ####################################### # Cited references within the entry # ####################################### save_ref-1 _Saveframe_category citation _Citation_full ; Palczewska M, Groves P, Kuznicki J. Use of Pichia pastoris for the expression, purification, and characterization of rat calretinin "EF-hand" domains. Protein Expr Purif. 1999 Dec;17(3):465-76. ; _Citation_title 'Use of Pichia pastoris for the expression, purification, and characterization of rat calretinin "EF-hand" domains.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 10600467 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Palczewska M. . . 2 Groves P. . . 3 Kuznicki J. . . stop_ _Journal_abbreviation 'Protein Expr. Purif.' _Journal_name_full 'Protein expression and purification' _Journal_volume 17 _Journal_issue 3 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 465 _Page_last 476 _Year 1999 _Details ; Calretinin (CR) is a calcium-binding, neuronal protein of undefined function. Related proteins either buffer intracellular calcium concentrations or are involved in calcium-signaling pathways. We transformed three CR gene fragment sequences, corresponding to its three complementary domains (I-II, III-IV, and V-VI), into Pichia pastoris. High yields of extracellular expression, of more than 200 mg/liter, were achieved. Simple purification protocols provide high yields of homogenous proteins: dialysis and DEAE-cellulose chromatography for domains I-II and III-IV or ammonium sulfate precipitation and octyl-Sepharose chromatography for domain V-VI. To our knowledge, this is the first report of the expression of an EF-hand protein using P. pastoris. Direct comparison of the purified yields of domain I-II indicates a approximately 20-fold improvement over Escherichia coli. N-terminal amino acid sequencing confirmed our gene products and two anti-calretinin antibodies recognized the appropriate domains. All three CR domains bind (45)Ca and the domain containing EF-hands V and VI seems to have a lower calcium capacity than the other domains. Circular dichroism indicates a high helix content for each of the domains. Calcium-induced structural changes in the first two domains, followed by tryptophan fluorescence, correspond with previous studies, while tyrosine emission fluorescence indicates calcium-induced structural changes also occur in domain V-VI. The methods and expression levels achieved are suitable for future NMR labeling of the proteins, with (15)N and (13)C, and structure-function studies that will help to further understand CR function. ; save_ save_ref-2 _Saveframe_category citation _Citation_full ; Kay, L. E., Keifer, P. & Saarinen, T. (1992) Pure Absorption Gradient Enhanced Heteronuclear Single Quantum Correlation Spectroscopy with Improved Sensitivity, J. Am. Chem. Soc. 114, 10663-10665. ; _Citation_title . _Citation_status . _Citation_type . _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID ? _Journal_abbreviation . _Journal_name_full . _Journal_volume . _Journal_issue . _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first . _Page_last . _Year . _Details . save_ save_ref-3 _Saveframe_category citation _Citation_full ; Palmer, A. G., Cavanagh, J., Wright, P. E. & Rance, M. (1991) Sensitivity Improvement in Proton-Detected 2-Dimensional Heteronuclear Correlation Nmr-Spectroscopy, J. Magn. Reson. 93, 151-170. ; _Citation_title . _Citation_status . _Citation_type . _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID ? _Journal_abbreviation . _Journal_name_full . _Journal_volume . _Journal_issue . _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first . _Page_last . _Year . _Details . save_ save_ref-4 _Saveframe_category citation _Citation_full ; Schleucher J, Schwendinger M, Sattler M, Schmidt P, Schedletzky O, Glaser SJ, Sorensen OW, Griesinger C. A general enhancement scheme in heteronuclear multidimensional NMR employing pulsed field gradients. J Biomol NMR. 1994 Mar;4(2):301-6. ; _Citation_title 'A general enhancement scheme in heteronuclear multidimensional NMR employing pulsed field gradients.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 8019138 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Schleucher J. . . 2 Schwendinger M. . . 3 Sattler M. . . 4 Schmidt P. . . 5 Schedletzky O. . . 6 Glaser 'S. J.' J. . 7 Sorensen 'O. W.' W. . 8 Griesinger C. . . stop_ _Journal_abbreviation 'J. Biomol. NMR' _Journal_name_full 'Journal of biomolecular NMR' _Journal_volume 4 _Journal_issue 2 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 301 _Page_last 306 _Year 1994 _Details ; General pulse sequence elements that achieve sensitivity-enhanced coherence transfer from a heteronucleus to protons of arbitrary multiplicity are introduced. The building blocks are derived from the sensitivity-enhancement scheme introduced by Cavanagh et al. ((1991) J. Magn. Reson., 91, 429-436), which was used in conjunction with gradient coherence selection by Kay et al. ((1992) J. Am. Chem. Soc., 114, 10663-10665), as well as from a multiple-pulse sequence effecting a heteronuclear planar coupling Hamiltonian. The building blocks are incorporated into heteronuclear correlation experiments, in conjunction with coherence selection by the formation of a heteronuclear gradient echo. This allows for efficient water suppression without the need for water presaturation. The methods are demonstrated in HSQC-type experiments on a sample of a decapeptide in H2O. The novel pulse sequence elements can be incorporated into multidimensional experiments. ; save_ save_ref-5 _Saveframe_category citation _Citation_full ; Grzesiek, S. & Bax, A. (1992) Improved 3D Triple-Resonance NMR Techniques Applied to a 31 kDa Protein, J. Magn. Reson. 96, 432-440. ; _Citation_title . _Citation_status . _Citation_type . _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID ? _Journal_abbreviation . _Journal_name_full . _Journal_volume . _Journal_issue . _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first . _Page_last . _Year . _Details . save_ save_ref-6 _Saveframe_category citation _Citation_full ; Kay, L. E., Ikura, M., Tschudin, R. & Bax, A. (1990) 3-Dimensional Triple-Resonance NMR-Spectroscopy of Isotopically Enriched Proteins, J. Magn. Reson. 89, 496-514. ; _Citation_title . _Citation_status . _Citation_type . _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID ? _Journal_abbreviation . _Journal_name_full . _Journal_volume . _Journal_issue . _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first . _Page_last . _Year . _Details . save_ save_ref-7 _Saveframe_category citation _Citation_full ; Clubb, R. T., Thanabal, V. & Wagner, G. (1992) A Constant-Time Three-Dimensional Triple-Resonance Pulse Scheme to Correlate Intraresidue {+1}H{+N},{+15}N,and {+13}C' Chemical Shifts in {+15}N-{+13}C-Labeled Proteins, J. Magn. Reson. 97, 213-217. ; _Citation_title . _Citation_status . _Citation_type . _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID ? _Journal_abbreviation . _Journal_name_full . _Journal_volume . _Journal_issue . _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first . _Page_last . _Year . _Details . save_ save_ref-8 _Saveframe_category citation _Citation_full ; Kay, L. E., Xu, G. Y. & Yamazaki, T. (1994) Enhanced-Sensitivity Triple-Resonance Spectroscopy with Minimal H2O Saturation, J. Magn. Reson. Ser.A 109, 129-133. ; _Citation_title . _Citation_status . _Citation_type . _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID ? _Journal_abbreviation . _Journal_name_full . _Journal_volume . _Journal_issue . _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first . _Page_last . _Year . _Details . save_ save_ref-9 _Saveframe_category citation _Citation_full ; Sattler, M., Schleucher, J. & Griesinger, C. (1999) Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients, Prog. Nucl. Magn. Reson. Spect. 34, 93-158. ; _Citation_title . _Citation_status . _Citation_type . _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID ? _Journal_abbreviation . _Journal_name_full . _Journal_volume . _Journal_issue . _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first . _Page_last . _Year . _Details . save_ save_ref-10 _Saveframe_category citation _Citation_full ; Muhandiram, D. R. & Kay, L. E. (1994) Gradient-Enhanced Triple-Resonance 3-Dimensional Nmr Experiments With Improved Sensitivity, J. Magn. Reson. Ser.B 103, 203-216. ; _Citation_title . _Citation_status . _Citation_type . _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID ? _Journal_abbreviation . _Journal_name_full . _Journal_volume . _Journal_issue . _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first . _Page_last . _Year . _Details . save_ save_ref-11 _Saveframe_category citation _Citation_full ; Wittekind, M. & Mueller, L. (1993) HNCACB, a High-Sensitivity 3D NMR Experiment to Correlate Amide-Proton and Nitrogen Resonances with the Alpha-Carbon and Beta-Carbon Resonances in Proteins, J. Magn. Reson. Ser.B 101, 201-205. ; _Citation_title . _Citation_status . _Citation_type . _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID ? _Journal_abbreviation . _Journal_name_full . _Journal_volume . _Journal_issue . _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first . _Page_last . _Year . _Details . save_ save_ref-12 _Saveframe_category citation _Citation_full ; Grzesiek, S. & Bax, A. (1992) An Efficient Experiment For Sequential Backbone Assignment of Medium-Sized Isotopically Enriched Proteins, J. Magn. Reson. 99, 201-207. ; _Citation_title . _Citation_status . _Citation_type . _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID ? _Journal_abbreviation . _Journal_name_full . _Journal_volume . _Journal_issue . _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first . _Page_last . _Year . _Details . save_ save_ref-13 _Saveframe_category citation _Citation_full ; Grzesiek S, Bax A. Amino acid type determination in the sequential assignment procedure of uniformly 13C/15N-enriched proteins. J Biomol NMR. 1993 Mar;3(2):185-204. ; _Citation_title 'Amino acid type determination in the sequential assignment procedure of uniformly 13C/15N-enriched proteins.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 8477186 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Grzesiek S. . . 2 Bax A. . . stop_ _Journal_abbreviation 'J. Biomol. NMR' _Journal_name_full 'Journal of biomolecular NMR' _Journal_volume 3 _Journal_issue 2 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 185 _Page_last 204 _Year 1993 _Details ; Experiments and procedures are described that greatly alleviate the sequential assignment process of uniformly 13C/15N-enriched proteins by determining the type of amino acid from experiments that correlate side chain with backbone amide resonances. A recently proposed 3D NMR experiment, CBCA(CO)NH, correlates C alpha and C beta resonances to the backbone amide 1H and 15N resonances of the next residue (Grzesiek, S. and Bax, A. (1992) J. Am. Chem. Soc., 114, 6291-6293). An extension of this experiment is described which correlates the proton H beta and H alpha resonances to the amide 1H and 15N resonances of the next amino acid, and a detailed product operator description is given. A simple 2D-edited constant-time HSQC experiment is described which rapidly identifies H beta and C beta resonances of aromatic or Asn/Asp residues. The extent to which combined knowledge of the C alpha and C beta chemical shift values determines the amino acid type is investigated, and it is demonstrated that the combined C alpha and C beta chemical shifts of three or four adjacent residues usually are sufficient for defining a unique position in the protein sequence. ; save_ save_ref-14 _Saveframe_category citation _Citation_full ; Kuboniwa H, Grzesiek S, Delaglio F, Bax A. Measurement of HN-H alpha J couplings in calcium-free calmodulin using new 2D and 3D water-flip-back methods. J Biomol NMR. 1994 Nov;4(6):871-8. ; _Citation_title 'Measurement of HN-H alpha J couplings in calcium-free calmodulin using new 2D and 3D water-flip-back methods.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 7812158 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Kuboniwa H. . . 2 Grzesiek S. . . 3 Delaglio F. . . 4 Bax A. . . stop_ _Journal_abbreviation 'J. Biomol. NMR' _Journal_name_full 'Journal of biomolecular NMR' _Journal_volume 4 _Journal_issue 6 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 871 _Page_last 878 _Year 1994 _Details ; Two new methods are described for the measurement of three-bond JHNH alpha couplings in proteins isotopically enriched with 15N. Both methods leave the water magnetization in an unsaturated state, parallel to the z-axis, and therefore offer significant enhancements in sensitivity for rapidly exchanging backbone amide protons. The J couplings can be measured either from a set of constant-time 2D 1H-15N HMQC spectra, which are modulated in intensity by JHNH alpha, or from a water-flip-back version of the 3D HNHA experiment. The method is demonstrated for a sample of calcium-free calmodulin. Residues Lys75-Asp80 have JHNH alpha values in the 6-7 Hz range, suggesting that a break in the 'central helix' occurs at the same position as previously observed in solution NMR studies of Ca(2+)-ligated calmodulin. ; save_ save_ref-15 _Saveframe_category citation _Citation_full ; Sattler, M., Maurer, M., Schleucher, J. & Griesinger, C. (1995) A Simultaneous N-15,H-1-HSQC and C-13,H-1-HSQC With Sensitivity Enhancement and a Heteronuclear Gradient-Echo, J. Biomol. NMR 5, 97-102. ; _Citation_title . _Citation_status . _Citation_type . _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID ? _Journal_abbreviation . _Journal_name_full . _Journal_volume . _Journal_issue . _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first . _Page_last . _Year . _Details . save_ ################################## # Molecular system description # ################################## save_system_calretinin _Saveframe_category molecular_system _Mol_system_name calretinin _Abbreviation_common calretinin _Enzyme_commission_number . loop_ _Mol_system_component_name _Mol_label 'calretinin I-II domain' $calretinin 'calcium ion, I' $CA 'calcium ion, II' $CA stop_ _System_molecular_weight . _System_physical_state native _System_oligomer_state monomer _System_paramagnetic no _System_thiol_state 'not present' loop_ _Biological_function 'Calcium-binding protein of the EF-hand family' 'A member of the calbindin D28k subgroup' stop_ _Database_query_date . _Details ; D29-E40 and D76-E87 constitute two 12-residue calcium-binding loops. Both loops of calretinin I-II bind calcium. ; save_ ######################## # Monomeric polymers # ######################## save_calretinin _Saveframe_category monomeric_polymer _Mol_type polymer _Mol_polymer_class protein _Name_common calretinin _Abbreviation_common calretinin _Molecular_mass 12500 _Mol_thiol_state 'not present' _Details ; YVEF N-terminal tag is the reuslt of extracellular expression from Pichia pastoris, see ref 1. ; ############################## # Polymer residue sequence # ############################## _Residue_count 104 _Mol_residue_sequence ; YVEFMAGPQQQPPYLHLAEL TASQFLEIWKHFDADGNGYI EGKELENFFQELEKARKGSG MMSKSDNFGEKMKEFMQKYD KNSDGKIEMAELAQILPTEE NFLL ; loop_ _Residue_seq_code _Residue_author_seq_code _Residue_label 1 -4 TYR 2 -3 VAL 3 -2 GLU 4 -1 PHE 5 1 MET 6 2 ALA 7 3 GLY 8 4 PRO 9 5 GLN 10 6 GLN 11 7 GLN 12 8 PRO 13 9 PRO 14 10 TYR 15 11 LEU 16 12 HIS 17 13 LEU 18 14 ALA 19 15 GLU 20 16 LEU 21 17 THR 22 18 ALA 23 19 SER 24 20 GLN 25 21 PHE 26 22 LEU 27 23 GLU 28 24 ILE 29 25 TRP 30 26 LYS 31 27 HIS 32 28 PHE 33 29 ASP 34 30 ALA 35 31 ASP 36 32 GLY 37 33 ASN 38 34 GLY 39 35 TYR 40 36 ILE 41 37 GLU 42 38 GLY 43 39 LYS 44 40 GLU 45 41 LEU 46 42 GLU 47 43 ASN 48 44 PHE 49 45 PHE 50 46 GLN 51 47 GLU 52 48 LEU 53 49 GLU 54 50 LYS 55 51 ALA 56 52 ARG 57 53 LYS 58 54 GLY 59 55 SER 60 56 GLY 61 57 MET 62 58 MET 63 59 SER 64 60 LYS 65 61 SER 66 62 ASP 67 63 ASN 68 64 PHE 69 65 GLY 70 66 GLU 71 67 LYS 72 68 MET 73 69 LYS 74 70 GLU 75 71 PHE 76 72 MET 77 73 GLN 78 74 LYS 79 75 TYR 80 76 ASP 81 77 LYS 82 78 ASN 83 79 SER 84 80 ASP 85 81 GLY 86 82 LYS 87 83 ILE 88 84 GLU 89 85 MET 90 86 ALA 91 87 GLU 92 88 LEU 93 89 ALA 94 90 GLN 95 91 ILE 96 92 LEU 97 93 PRO 98 94 THR 99 95 GLU 100 96 GLU 101 97 ASN 102 98 PHE 103 99 LEU 104 100 LEU stop_ _Sequence_homology_query_date . _Sequence_homology_query_revised_last_date 2015-01-28 loop_ _Database_name _Database_accession_code _Database_entry_mol_name _Sequence_query_to_submitted_percentage _Sequence_subject_length _Sequence_identity _Sequence_positive _Sequence_homology_expectation_value EMBL CAA39992 "calretinin [Homo sapiens]" 83.65 87 100.00 100.00 1.62e-55 GB EDL92533 "calbindin 2, isoform CRA_c [Rattus norvegicus]" 84.62 113 98.86 100.00 3.94e-56 REF XP_002802612 "PREDICTED: calretinin-like [Macaca mulatta]" 85.58 181 97.75 100.00 2.06e-55 REF XP_004782213 "PREDICTED: calretinin [Mustela putorius furo]" 83.65 244 98.85 98.85 2.43e-53 REF XP_006742579 "PREDICTED: calretinin-like [Leptonychotes weddellii]" 96.15 146 98.00 99.00 2.25e-64 REF XP_008519580 "PREDICTED: calretinin isoform X2 [Equus przewalskii]" 83.65 244 100.00 100.00 3.44e-54 REF XP_009429507 "PREDICTED: calretinin [Pan troglodytes]" 96.15 198 100.00 100.00 1.64e-64 stop_ save_ ############# # Ligands # ############# save_CA _Saveframe_category ligand _Mol_type non-polymer _Name_common "CA (CALCIUM ION)" _BMRB_code . _PDB_code CA _Molecular_mass 40.078 _Mol_charge 2 _Mol_paramagnetic . _Mol_aromatic no _Details ; Information obtained from PDB's Chemical Component Dictionary at http://wwpdb-remediation.rutgers.edu/downloads.html Downloaded on Thu Jul 21 12:25:57 2011 ; loop_ _Atom_name _PDB_atom_name _Atom_type _Atom_chirality _Atom_charge _Atom_oxidation_number _Atom_unpaired_electrons CA CA CA . 2 . ? stop_ _Mol_thiol_state . _Sequence_homology_query_date . save_ #################### # Natural source # #################### save_natural_source _Saveframe_category natural_source loop_ _Mol_label _Organism_name_common _NCBI_taxonomy_ID _Superkingdom _Kingdom _Genus _Species _Strain _Tissue $calretinin Rat 10116 Eukaryota Metazoa Rattus norvegicus Sprague-Dawley brain stop_ save_ ######################### # Experimental source # ######################### save_experimental_source _Saveframe_category experimental_source loop_ _Mol_label _Production_method _Host_organism_name_common _Genus _Species _Strain _Vector_name _Details $calretinin 'recombinant technology' . . . . . ; YVEF N-terminal tag is the reuslt of extracellular expression from Pichia pastoris, see ref 1. ; stop_ save_ ##################################### # Sample contents and methodology # ##################################### ######################## # Sample description # ######################## save_sample_1 _Saveframe_category sample _Sample_type solution _Details . loop_ _Mol_label _Concentration_value _Concentration_value_units _Isotopic_labeling $calretinin 1 mM [U-15N] TRIS 50 mM [U-2H] NaCl 25 mM . CaCl2 10 mM . stop_ save_ save_sample_2 _Saveframe_category sample _Sample_type solution _Details . loop_ _Mol_label _Concentration_value _Concentration_value_units _Isotopic_labeling $calretinin 1 mM '[U-13C; U-15N]' TRIS 50 mM [U-2H] NaCl 25 mM . CaCl2 10 mM . stop_ save_ ######################### # Experimental detail # ######################### ################################## # NMR Spectrometer definitions # ################################## save_NMR_spectrometer _Saveframe_category NMR_spectrometer _Manufacturer Bruker _Model DRX _Field_strength 500 _Details . save_ ############################# # NMR applied experiments # ############################# save_(Acq._points_/_acq._time_nucleus_Size_of_processed_data_(LP/_linear_prediction))_1 _Saveframe_category NMR_applied_experiment _Experiment_name '(Acq. points / acq. time nucleus Size of processed data (LP/ linear prediction))' _Sample_label . save_ save_experiment_Dimension_1_Dimension_2_Dimension_3_Bruker_pulse_program_2 _Saveframe_category NMR_applied_experiment _Experiment_name 'experiment Dimension 1 Dimension 2 Dimension 3 Bruker pulse program' _Sample_label . save_ save_1H_-15N_HSQC_(128_/_90.2_ms_15N_192_LP_/512)_(512/_102_ms_1H/1024)_3 _Saveframe_category NMR_applied_experiment _Experiment_name '1H -15N HSQC (128 / 90.2 ms 15N 192 LP /512) (512/ 102 ms 1H/1024)' _Sample_label . save_ save_invieagssi[ref-2;_ref-3;_ref-4];_4 _Saveframe_category NMR_applied_experiment _Experiment_name 'invieagssi[ref-2; ref-3; ref-4];' _Sample_label . save_ save_HNCO_(48_/_21.2_ms_13C_72_LP_/_128)_(34_/_24_ms_15N_52_LP_/_128)_5 _Saveframe_category NMR_applied_experiment _Experiment_name 'HNCO (48 / 21.2 ms 13C 72 LP / 128) (34 / 24 ms 15N 52 LP / 128)' _Sample_label . save_ save_(1024_/_79_ms_1H_1024)_hncogs3d.2[ref-5;_ref-6];_6 _Saveframe_category NMR_applied_experiment _Experiment_name '(1024 / 79 ms 1H 1024) hncogs3d.2[ref-5; ref-6];' _Sample_label . save_ save_HN(CA)CO_(48_/_21.2_ms_13C_72_LP_/_128)_(34_/_24_ms_15N_52_LP_/_128)_7 _Saveframe_category NMR_applied_experiment _Experiment_name 'HN(CA)CO (48 / 21.2 ms 13C 72 LP / 128) (34 / 24 ms 15N 52 LP / 128)' _Sample_label . save_ save_(1024_/_79_ms_1H_1024)_hncacogs3d[ref-7;_ref-8];_8 _Saveframe_category NMR_applied_experiment _Experiment_name '(1024 / 79 ms 1H 1024) hncacogs3d[ref-7; ref-8];' _Sample_label . save_ save_HNCA_(128_/_25.4_ms_13C_128)_(34_/_24_ms_15N_52_LP_/_128)_9 _Saveframe_category NMR_applied_experiment _Experiment_name 'HNCA (128 / 25.4 ms 13C 128) (34 / 24 ms 15N 52 LP / 128)' _Sample_label . save_ save_(1024_/_79_ms_1H_1024)_hncags3d.2[ref-5];_10 _Saveframe_category NMR_applied_experiment _Experiment_name '(1024 / 79 ms 1H 1024) hncags3d.2[ref-5];' _Sample_label . save_ save_HN(CO)CA_(84_/_59.3_ms_15N_128)_(64_/_12.7_ms_13C_96_LP_/_128)_11 _Saveframe_category NMR_applied_experiment _Experiment_name 'HN(CO)CA (84 / 59.3 ms 15N 128) (64 / 12.7 ms 13C 96 LP / 128)' _Sample_label . save_ save_(1024_/_79_ms_1H_1024)_[ref-9];_12 _Saveframe_category NMR_applied_experiment _Experiment_name '(1024 / 79 ms 1H 1024) [ref-9];' _Sample_label . save_ save_HNCACB_(64_/_7.27_ms_13C_96_LP_/_128)_(34_/_24_ms_15N_52_LP_/_128)_13 _Saveframe_category NMR_applied_experiment _Experiment_name 'HNCACB (64 / 7.27 ms 13C 96 LP / 128) (34 / 24 ms 15N 52 LP / 128)' _Sample_label . save_ save_(1024_/_79_ms_1H_1024)_hncacbgs3d[ref-10;_ref-11];_14 _Saveframe_category NMR_applied_experiment _Experiment_name '(1024 / 79 ms 1H 1024) hncacbgs3d[ref-10; ref-11];' _Sample_label . save_ save_CBCANH_(52_/_5.91_ms_13C_96_LP_/_128)_(34_/_24_ms_15N_52_LP_/_128)_15 _Saveframe_category NMR_applied_experiment _Experiment_name 'CBCANH (52 / 5.91 ms 13C 96 LP / 128) (34 / 24 ms 15N 52 LP / 128)' _Sample_label . save_ save_(1024_/_79_ms_1H_1024)_cbcanhgs3d[ref-10;_ref-12;_ref-13];_16 _Saveframe_category NMR_applied_experiment _Experiment_name '(1024 / 79 ms 1H 1024) cbcanhgs3d[ref-10; ref-12; ref-13];' _Sample_label . save_ save_CBCA(CO)NH_(84_/_59.2_ms_15N_100_LP_/_128)_(70_/_7.95_ms_13C_100_LP_/_128)_17 _Saveframe_category NMR_applied_experiment _Experiment_name 'CBCA(CO)NH (84 / 59.2 ms 15N 100 LP / 128) (70 / 7.95 ms 13C 100 LP / 128)' _Sample_label . save_ save_HBHA(CO)NH_(76_/_53.5_ms_15N_100_LP_/_128)_(100_/_30.6_ms_1H_150_LP/_256)_18 _Saveframe_category NMR_applied_experiment _Experiment_name 'HBHA(CO)NH (76 / 53.5 ms 15N 100 LP / 128) (100 / 30.6 ms 1H 150 LP/ 256)' _Sample_label . save_ save_HNHA_(64_/_45.1_ms_15N_100_LP_/_128)_(128_/_19.7_ms_1H_192_LP_/_256)_19 _Saveframe_category NMR_applied_experiment _Experiment_name 'HNHA (64 / 45.1 ms 15N 100 LP / 128) (128 / 19.7 ms 1H 192 LP / 256)' _Sample_label . save_ save_(1024_/_79_ms_1H_1024)_[ref-14];_20 _Saveframe_category NMR_applied_experiment _Experiment_name '(1024 / 79 ms 1H 1024) [ref-14];' _Sample_label . save_ save_(H)CC(CO)NH_(84_/_59.2_ms_15N_100_LP_/_128)_(62_/_7.04_ms_13C_90_LP_/_128)_21 _Saveframe_category NMR_applied_experiment _Experiment_name '(H)CC(CO)NH (84 / 59.2 ms 15N 100 LP / 128) (62 / 7.04 ms 13C 90 LP / 128)' _Sample_label . save_ save_H(CC)(CO)NH_(76_/_53.5_ms_15N_100_LP_/_128)_(66_/_18.8_ms_1H_96_LP_/_128)_22 _Saveframe_category NMR_applied_experiment _Experiment_name 'H(CC)(CO)NH (76 / 53.5 ms 15N 100 LP / 128) (66 / 18.8 ms 1H 96 LP / 128)' _Sample_label . save_ save_NOESY-HSQC_15N_and_13C_(104_/_16_ms_1H_128_LP_/_256)_23 _Saveframe_category NMR_applied_experiment _Experiment_name 'NOESY-HSQC 15N and 13C (104 / 16 ms 1H 128 LP / 256)' _Sample_label . save_ save_(64_/_7.04_ms_13C_90_LP_/_128)_(1024_/_79_ms_1H_1024)_24 _Saveframe_category NMR_applied_experiment _Experiment_name '(64 / 7.04 ms 13C 90 LP / 128) (1024 / 79 ms 1H 1024)' _Sample_label . save_ save_noesiisism3d[ref-15];_25 _Saveframe_category NMR_applied_experiment _Experiment_name noesiisism3d[ref-15]; _Sample_label . save_ save_NOESY-HSQC_15N_(104_/_16_ms_1H_128_LP_/_256)_(64_/_45.1_ms_15N_100_LP_/_128)_26 _Saveframe_category NMR_applied_experiment _Experiment_name 'NOESY-HSQC 15N (104 / 16 ms 1H 128 LP / 256) (64 / 45.1 ms 15N 100 LP / 128)' _Sample_label . save_ save_(512_/_102_ms_1H_1024)_noesiietf3gsrdf[ref-5]._27 _Saveframe_category NMR_applied_experiment _Experiment_name '(512 / 102 ms 1H 1024) noesiietf3gsrdf[ref-5].' _Sample_label . save_ ####################### # Sample conditions # ####################### save_sample_cond_1 _Saveframe_category sample_conditions _Details . loop_ _Variable_type _Variable_value _Variable_value_error _Variable_value_units pH 7.7 0.2 n/a temperature 303 1 K stop_ save_ save_sample_cond_2 _Saveframe_category sample_conditions _Details 'The pH was adjusted to pH 6.7 and a limited dataset was collected.' loop_ _Variable_type _Variable_value _Variable_value_error _Variable_value_units pH 6.7 0.2 n/a temperature 303 1 K stop_ save_ #################### # NMR parameters # #################### ############################## # Assigned chemical shifts # ############################## ################################ # Chemical shift referencing # ################################ save_chemical_shift_reference _Saveframe_category chemical_shift_reference _Details . loop_ _Mol_common_name _Atom_type _Atom_isotope_number _Atom_group _Chem_shift_units _Chem_shift_value _Reference_method _Reference_type _External_reference_sample_geometry _External_reference_location _External_reference_axis _Indirect_shift_ratio DSS H 1 'methyl protons' ppm 0.0 internal direct . . . 1.0 DSS N 15 'methyl protons' ppm 0.0 . indirect . . . 0.101329118 DSS C 13 'methyl protons' ppm 0.0 . indirect . . . 0.251449530 stop_ save_ ################################### # Assigned chemical shift lists # ################################### ################################################################### # Chemical Shift Ambiguity Index Value Definitions # # # # The values other than 1 are used for those atoms with different # # chemical shifts that cannot be assigned to stereospecific atoms # # or to specific residues or chains. # # # # Index Value Definition # # # # 1 Unique (including isolated methyl protons, # # geminal atoms, and geminal methyl # # groups with identical chemical shifts) # # (e.g. ILE HD11, HD12, HD13 protons) # # 2 Ambiguity of geminal atoms or geminal methyl # # proton groups (e.g. ASP HB2 and HB3 # # protons, LEU CD1 and CD2 carbons, or # # LEU HD11, HD12, HD13 and HD21, HD22, # # HD23 methyl protons) # # 3 Aromatic atoms on opposite sides of # # symmetrical rings (e.g. TYR HE1 and HE2 # # protons) # # 4 Intraresidue ambiguities (e.g. LYS HG and # # HD protons or TRP HZ2 and HZ3 protons) # # 5 Interresidue ambiguities (LYS 12 vs. LYS 27) # # 6 Intermolecular ambiguities (e.g. ASP 31 CA # # in monomer 1 and ASP 31 CA in monomer 2 # # of an asymmetrical homodimer, duplex # # DNA assignments, or other assignments # # that may apply to atoms in one or more # # molecule in the molecular assembly) # # 9 Ambiguous, specific ambiguity not defined # # # ################################################################### save_shift_set_1 _Saveframe_category assigned_chemical_shifts _Details . loop_ _Sample_label $sample_2 stop_ _Sample_conditions_label $sample_cond_1 _Chem_shift_reference_set_label $chemical_shift_reference _Mol_system_component_name 'calretinin I-II domain' _Text_data_format . _Text_data . loop_ _Atom_shift_assign_ID _Residue_author_seq_code _Residue_seq_code _Residue_label _Atom_name _Atom_type _Chem_shift_value _Chem_shift_value_error _Chem_shift_ambiguity_code 1 . 16 HIS HA H 4.37 0.02 1 2 . 16 HIS HB2 H 2.89 0.02 2 3 . 16 HIS HB3 H 3.11 0.02 2 4 . 16 HIS C C 176.0 0.2 1 5 . 16 HIS CA C 56.5 0.2 1 6 . 16 HIS CB C 30.9 0.2 1 7 . 17 LEU H H 7.21 0.02 1 8 . 17 LEU HA H 3.99 0.02 1 9 . 17 LEU HB2 H 0.97 0.02 4 10 . 17 LEU C C 177.2 0.2 1 11 . 17 LEU CA C 55.3 0.2 1 12 . 17 LEU CB C 42.3 0.2 1 13 . 17 LEU CG C 26.5 0.2 4 14 . 17 LEU CD1 C 23.0 0.2 4 15 . 17 LEU N N 122.2 0.2 1 16 . 18 ALA H H 8.35 0.02 1 17 . 18 ALA HA H 4.12 0.02 1 18 . 18 ALA HB H 1.38 0.02 1 19 . 18 ALA C C 177.8 0.2 1 20 . 18 ALA CA C 53.8 0.2 1 21 . 18 ALA CB C 19.6 0.2 1 22 . 18 ALA N N 121.9 0.2 1 23 . 19 GLU H H 7.47 0.02 1 24 . 19 GLU HA H 4.38 0.02 1 25 . 19 GLU HB2 H 2.23 0.02 2 26 . 19 GLU HB3 H 2.69 0.02 2 27 . 19 GLU C C 174.9 0.2 1 28 . 19 GLU CA C 55.9 0.2 1 29 . 19 GLU CB C 33.0 0.2 1 30 . 19 GLU CG C 36.3 0.2 1 31 . 19 GLU N N 114.0 0.2 1 32 . 20 LEU H H 8.48 0.02 1 33 . 20 LEU HA H 4.80 0.02 1 34 . 20 LEU C C 178.5 0.2 1 35 . 20 LEU CA C 54.6 0.2 1 36 . 20 LEU CB C 45.1 0.2 1 37 . 20 LEU CG C 28.1 0.2 4 38 . 20 LEU N N 123.3 0.2 1 39 . 21 THR H H 8.53 0.02 1 40 . 21 THR HA H 4.40 0.02 1 41 . 21 THR HB H 4.62 0.02 1 42 . 21 THR HG2 H 1.16 0.02 1 43 . 21 THR C C 176.0 0.2 1 44 . 21 THR CA C 60.9 0.2 1 45 . 21 THR CB C 71.1 0.2 1 46 . 21 THR CG2 C 21.7 0.2 1 47 . 21 THR N N 112.4 0.2 1 48 . 22 ALA H H 9.21 0.02 1 49 . 22 ALA HA H 4.02 0.02 1 50 . 22 ALA HB H 1.39 0.02 1 51 . 22 ALA C C 180.4 0.2 1 52 . 22 ALA CA C 56.3 0.2 1 53 . 22 ALA CB C 18.3 0.2 1 54 . 22 ALA N N 123.7 0.2 1 55 . 23 SER H H 8.36 0.02 1 56 . 23 SER HA H 4.19 0.02 1 57 . 23 SER HB2 H 3.80 0.02 2 58 . 23 SER C C 177.9 0.2 1 59 . 23 SER CA C 61.9 0.2 1 60 . 23 SER N N 111.3 0.2 1 61 . 24 GLN H H 7.55 0.02 1 62 . 24 GLN HA H 3.77 0.02 1 63 . 24 GLN HB2 H 2.12 0.02 2 64 . 24 GLN HB3 H 1.29 0.02 2 65 . 24 GLN C C 178.7 0.2 1 66 . 24 GLN CA C 59.0 0.2 1 67 . 24 GLN CB C 29.1 0.2 1 68 . 24 GLN CG C 33.3 0.2 1 69 . 24 GLN N N 122.3 0.2 1 70 . 25 PHE H H 8.65 0.02 1 71 . 25 PHE HA H 3.89 0.02 1 72 . 25 PHE HB2 H 2.94 0.02 2 73 . 25 PHE HB3 H 3.23 0.02 2 74 . 25 PHE C C 177.0 0.2 1 75 . 25 PHE CA C 62.5 0.2 1 76 . 25 PHE CB C 39.6 0.2 1 77 . 25 PHE N N 119.2 0.2 1 78 . 26 LEU H H 8.25 0.02 1 79 . 26 LEU HA H 3.99 0.02 1 80 . 26 LEU HB2 H 1.69 0.02 2 81 . 26 LEU HB3 H 1.86 0.02 2 82 . 26 LEU HG H 0.95 0.02 4 83 . 26 LEU C C 179.4 0.2 1 84 . 26 LEU CA C 58.2 0.2 1 85 . 26 LEU CB C 41.8 0.2 1 86 . 26 LEU CG C 24.2 0.2 4 87 . 26 LEU N N 118.7 0.2 1 88 . 27 GLU H H 7.91 0.02 1 89 . 27 GLU HA H 3.99 0.02 1 90 . 27 GLU HB2 H 2.15 0.02 2 91 . 27 GLU HB3 H 2.34 0.02 2 92 . 27 GLU HG2 H 2.51 0.02 2 93 . 27 GLU C C 180.5 0.2 1 94 . 27 GLU CA C 60.3 0.2 1 95 . 27 GLU CB C 29.9 0.2 1 96 . 27 GLU CG C 36.9 0.2 1 97 . 27 GLU N N 118.1 0.2 1 98 . 28 ILE H H 8.00 0.02 1 99 . 28 ILE HA H 3.66 0.02 1 100 . 28 ILE HB H 1.01 0.02 4 101 . 28 ILE C C 177.7 0.2 1 102 . 28 ILE CA C 65.3 0.2 1 103 . 28 ILE CB C 37.3 0.2 9 104 . 28 ILE CG2 C 18.1 0.2 4 105 . 28 ILE N N 120.7 0.2 1 106 . 29 TRP H H 8.48 0.02 1 107 . 29 TRP HA H 3.72 0.02 1 108 . 29 TRP HB2 H 2.66 0.02 2 109 . 29 TRP HB3 H 3.14 0.02 2 110 . 29 TRP HE1 H 10.29 0.02 1 111 . 29 TRP C C 176.7 0.2 1 112 . 29 TRP CA C 61.3 0.2 1 113 . 29 TRP CB C 29.0 0.2 1 114 . 29 TRP N N 120.7 0.2 1 115 . 29 TRP NE1 N 129.7 0.2 1 116 . 30 LYS H H 8.35 0.02 1 117 . 30 LYS HA H 3.66 0.02 1 118 . 30 LYS HB2 H 1.81 0.02 2 119 . 30 LYS C C 178.4 0.2 1 120 . 30 LYS CA C 58.9 0.2 1 121 . 30 LYS CB C 32.8 0.2 1 122 . 30 LYS CG C 26.0 0.2 4 123 . 30 LYS N N 113.6 0.2 1 124 . 31 HIS H H 7.59 0.02 1 125 . 31 HIS HA H 3.88 0.02 1 126 . 31 HIS HB2 H 2.85 0.02 2 127 . 31 HIS C C 176.9 0.2 1 128 . 31 HIS CA C 59.7 0.2 1 129 . 31 HIS CB C 30.7 0.2 1 130 . 31 HIS N N 115.6 0.2 1 131 . 32 PHE H H 7.56 0.02 1 132 . 32 PHE HA H 4.19 0.02 1 133 . 32 PHE HB2 H 2.34 0.02 2 134 . 32 PHE HB3 H 2.81 0.02 2 135 . 32 PHE C C 178.1 0.2 1 136 . 32 PHE CA C 61.9 0.2 1 137 . 32 PHE CB C 40.1 0.2 1 138 . 32 PHE N N 112.1 0.2 1 139 . 33 ASP H H 8.13 0.02 1 140 . 33 ASP HA H 4.49 0.02 1 141 . 33 ASP HB2 H 1.79 0.02 2 142 . 33 ASP HB3 H 0.77 0.02 2 143 . 33 ASP C C 178.1 0.2 1 144 . 33 ASP CA C 52.7 0.2 1 145 . 33 ASP CB C 36.3 0.2 1 146 . 33 ASP N N 120.2 0.2 1 147 . 34 ALA H H 7.27 0.02 1 148 . 34 ALA HA H 3.73 0.02 1 149 . 34 ALA HB H 1.36 0.02 1 150 . 34 ALA C C 179.2 0.2 1 151 . 34 ALA CA C 55.3 0.2 1 152 . 34 ALA CB C 19.3 0.2 1 153 . 34 ALA N N 126.3 0.2 1 154 . 35 ASP H H 8.07 0.02 1 155 . 35 ASP HA H 4.51 0.02 1 156 . 35 ASP HB2 H 2.59 0.02 2 157 . 35 ASP HB3 H 3.04 0.02 2 158 . 35 ASP C C 178.2 0.2 1 159 . 35 ASP CA C 52.8 0.2 1 160 . 35 ASP CB C 39.9 0.2 1 161 . 35 ASP N N 113.0 0.2 1 162 . 36 GLY H H 7.81 0.02 1 163 . 36 GLY HA2 H 3.78 0.02 2 164 . 36 GLY C C 175.7 0.2 1 165 . 36 GLY CA C 47.5 0.2 1 166 . 36 GLY N N 109.1 0.2 1 167 . 37 ASN H H 8.29 0.02 1 168 . 37 ASN HA H 4.61 0.02 1 169 . 37 ASN HB2 H 2.54 0.02 2 170 . 37 ASN HB3 H 3.33 0.02 2 171 . 37 ASN C C 176.7 0.2 1 172 . 37 ASN CA C 53.2 0.2 1 173 . 37 ASN CB C 38.8 0.2 1 174 . 37 ASN N N 119.2 0.2 1 175 . 38 GLY H H 10.38 0.02 1 176 . 38 GLY HA2 H 4.16 0.02 2 177 . 38 GLY HA3 H 3.62 0.02 2 178 . 38 GLY C C 173.1 0.2 1 179 . 38 GLY CA C 45.6 0.2 1 180 . 38 GLY N N 111.9 0.2 1 181 . 39 TYR H H 7.70 0.02 1 182 . 39 TYR HA H 5.08 0.02 1 183 . 39 TYR HB2 H 2.56 0.02 2 184 . 39 TYR C C 175.2 0.2 1 185 . 39 TYR CA C 57.4 0.2 1 186 . 39 TYR CB C 43.7 0.2 1 187 . 39 TYR N N 115.2 0.2 1 188 . 40 ILE H H 9.81 0.02 1 189 . 40 ILE HA H 4.50 0.02 1 190 . 40 ILE HB H 1.76 0.02 1 191 . 40 ILE HG2 H 0.51 0.02 4 192 . 40 ILE C C 174.9 0.2 1 193 . 40 ILE CA C 62.2 0.2 1 194 . 40 ILE CB C 37.9 0.2 1 195 . 40 ILE CG1 C 17.6 0.2 4 196 . 40 ILE N N 128.0 0.2 1 197 . 41 GLU H H 9.00 0.02 1 198 . 41 GLU HA H 5.01 0.02 1 199 . 41 GLU C C 176.6 0.2 1 200 . 41 GLU CA C 54.6 0.2 1 201 . 41 GLU CB C 33.6 0.2 1 202 . 41 GLU N N 125.1 0.2 1 203 . 42 GLY H H 9.47 0.02 1 204 . 42 GLY CA C 47.2 0.2 1 205 . 42 GLY N N 112.3 0.2 1 206 . 44 GLU HA H 4.35 0.02 1 207 . 44 GLU HB2 H 2.41 0.02 2 208 . 44 GLU HB3 H 2.69 0.02 2 209 . 44 GLU HG2 H 2.75 0.02 2 210 . 44 GLU C C 180.1 0.2 1 211 . 44 GLU CA C 58.4 0.2 1 212 . 44 GLU CB C 30.7 0.2 1 213 . 44 GLU CG C 35.2 0.2 1 214 . 45 LEU H H 6.84 0.02 1 215 . 45 LEU HA H 3.92 0.02 1 216 . 45 LEU HB2 H 2.07 0.02 2 217 . 45 LEU HB3 H 1.22 0.02 2 218 . 45 LEU HD1 H 1.12 0.02 4 219 . 45 LEU C C 178.4 0.2 1 220 . 45 LEU CA C 57.2 0.2 1 221 . 45 LEU CB C 42.3 0.2 1 222 . 45 LEU CG C 26.1 0.2 4 223 . 45 LEU CD1 C 23.4 0.2 4 224 . 45 LEU N N 119.3 0.2 1 225 . 46 GLU H H 7.58 0.02 1 226 . 46 GLU HA H 3.99 0.02 1 227 . 46 GLU HB2 H 2.12 0.02 2 228 . 46 GLU C C 178.8 0.2 1 229 . 46 GLU CA C 60.6 0.2 1 230 . 46 GLU CB C 29.8 0.2 1 231 . 46 GLU CG C 36.8 0.2 1 232 . 46 GLU N N 118.9 0.2 1 233 . 47 ASN H H 8.11 0.02 1 234 . 47 ASN HA H 4.50 0.02 1 235 . 47 ASN HB2 H 3.12 0.02 2 236 . 47 ASN C C 177.1 0.2 1 237 . 47 ASN CA C 56.8 0.2 1 238 . 47 ASN CB C 39.0 0.2 1 239 . 47 ASN N N 116.4 0.2 1 240 . 48 PHE H H 8.49 0.02 1 241 . 48 PHE HA H 3.46 0.02 1 242 . 48 PHE HB2 H 2.61 0.02 2 243 . 48 PHE HB3 H 2.77 0.02 2 244 . 48 PHE C C 175.9 0.2 1 245 . 48 PHE CA C 61.3 0.2 1 246 . 48 PHE CB C 39.0 0.2 1 247 . 48 PHE N N 118.4 0.2 1 248 . 49 PHE H H 8.71 0.02 1 249 . 49 PHE HA H 3.27 0.02 1 250 . 49 PHE HB2 H 2.62 0.02 2 251 . 49 PHE HB3 H 2.86 0.02 2 252 . 49 PHE C C 177.4 0.2 1 253 . 49 PHE CA C 62.2 0.2 1 254 . 49 PHE CB C 39.5 0.2 1 255 . 49 PHE N N 118.1 0.2 1 256 . 50 GLN H H 8.18 0.02 1 257 . 50 GLN HA H 3.80 0.02 1 258 . 50 GLN HB2 H 2.08 0.02 2 259 . 50 GLN HB3 H 2.27 0.02 2 260 . 50 GLN HG2 H 2.40 0.02 2 261 . 50 GLN C C 179.8 0.2 1 262 . 50 GLN CA C 59.7 0.2 1 263 . 50 GLN CB C 28.9 0.2 1 264 . 50 GLN CG C 34.6 0.2 1 265 . 50 GLN N N 116.2 0.2 1 266 . 51 GLU H H 8.10 0.02 1 267 . 51 GLU HA H 3.98 0.02 1 268 . 51 GLU HB2 H 1.86 0.02 2 269 . 51 GLU HB3 H 2.04 0.02 2 270 . 51 GLU C C 179.8 0.2 1 271 . 51 GLU CA C 58.9 0.2 1 272 . 51 GLU CB C 28.8 0.2 1 273 . 51 GLU CG C 36.0 0.2 1 274 . 51 GLU N N 118.2 0.2 1 275 . 52 LEU H H 8.52 0.02 1 276 . 52 LEU HA H 3.58 0.02 1 277 . 52 LEU HB2 H 1.23 0.02 2 278 . 52 LEU HG H 0.61 0.02 4 279 . 52 LEU C C 178.7 0.2 1 280 . 52 LEU CA C 58.5 0.2 1 281 . 52 LEU CB C 41.7 0.2 1 282 . 52 LEU CG C 26.4 0.2 4 283 . 52 LEU CD1 C 23.9 0.2 9 284 . 52 LEU N N 123.9 0.2 1 285 . 53 GLU H H 7.93 0.02 1 286 . 53 GLU HA H 3.68 0.02 1 287 . 53 GLU HB2 H 1.65 0.02 2 288 . 53 GLU C C 179.7 0.2 1 289 . 53 GLU CA C 59.7 0.2 1 290 . 53 GLU CB C 29.6 0.2 1 291 . 53 GLU CG C 36.8 0.2 9 292 . 53 GLU N N 117.5 0.2 1 293 . 54 LYS H H 7.54 0.02 1 294 . 54 LYS HA H 3.85 0.02 1 295 . 54 LYS HB2 H 1.69 0.02 9 296 . 54 LYS HG2 H 1.39 0.02 9 297 . 54 LYS C C 179.2 0.2 1 298 . 54 LYS CA C 59.6 0.2 1 299 . 54 LYS CB C 33.0 0.2 1 300 . 54 LYS N N 117.8 0.2 1 301 . 55 ALA H H 7.88 0.02 1 302 . 55 ALA HA H 4.09 0.02 1 303 . 55 ALA HB H 1.33 0.02 1 304 . 55 ALA C C 179.8 0.2 1 305 . 55 ALA CA C 54.4 0.2 1 306 . 55 ALA CB C 20.1 0.2 1 307 . 55 ALA N N 120.1 0.2 1 308 . 56 ARG H H 7.99 0.02 1 309 . 56 ARG HA H 4.34 0.02 1 310 . 56 ARG C C 180.2 0.2 9 311 . 56 ARG CA C 57.2 0.2 1 312 . 56 ARG CB C 30.9 0.2 9 313 . 56 ARG N N 115.8 0.2 1 314 . 68 PHE HB2 H 3.16 0.02 4 315 . 68 PHE C C 177.1 0.2 1 316 . 68 PHE CA C 62.2 0.2 1 317 . 68 PHE CB C 39.6 0.2 1 318 . 69 GLY H H 8.62 0.02 1 319 . 69 GLY HA2 H 3.87 0.02 2 320 . 69 GLY C C 177.4 0.2 1 321 . 69 GLY CA C 47.5 0.2 1 322 . 69 GLY N N 106.0 0.2 1 323 . 70 GLU H H 7.90 0.02 1 324 . 70 GLU HA H 4.19 0.02 1 325 . 70 GLU C C 179.0 0.2 1 326 . 70 GLU CA C 59.3 0.2 1 327 . 70 GLU CB C 30.0 0.2 1 328 . 70 GLU N N 121.7 0.2 1 329 . 72 MET HA H 4.27 0.02 9 330 . 72 MET C C 178.1 0.2 1 331 . 72 MET CA C 58.4 0.2 1 332 . 72 MET CB C 31.9 0.2 1 333 . 73 LYS H H 7.67 0.02 1 334 . 73 LYS HA H 3.89 0.02 1 335 . 73 LYS HB2 H 1.81 0.02 2 336 . 73 LYS HG2 H 1.48 0.02 4 337 . 73 LYS C C 179.8 0.2 1 338 . 73 LYS CA C 60.0 0.2 1 339 . 73 LYS CB C 32.2 0.2 1 340 . 73 LYS CG C 25.3 0.2 4 341 . 73 LYS CD C 29.5 0.2 4 342 . 73 LYS CE C 42.3 0.2 9 343 . 73 LYS N N 119.4 0.2 1 344 . 74 GLU H H 7.81 0.02 1 345 . 74 GLU HA H 3.92 0.02 1 346 . 74 GLU C C 179.0 0.2 1 347 . 74 GLU CA C 60.0 0.2 1 348 . 74 GLU CB C 30.0 0.2 1 349 . 74 GLU CG C 36.9 0.2 1 350 . 74 GLU N N 119.8 0.2 1 351 . 75 PHE H H 8.03 0.02 1 352 . 75 PHE HA H 4.26 0.02 1 353 . 75 PHE HB2 H 3.11 0.02 2 354 . 75 PHE C C 177.9 0.2 1 355 . 75 PHE CA C 61.6 0.2 1 356 . 75 PHE CB C 39.8 0.2 1 357 . 75 PHE N N 121.1 0.2 1 358 . 76 MET H H 8.49 0.02 1 359 . 76 MET HA H 4.39 0.02 1 360 . 76 MET HB2 H 2.13 0.02 2 361 . 76 MET HG2 H 2.68 0.02 4 362 . 76 MET HG3 H 2.88 0.02 4 363 . 76 MET C C 180.1 0.2 1 364 . 76 MET CA C 56.7 0.2 1 365 . 76 MET CB C 31.0 0.2 1 366 . 76 MET N N 117.1 0.2 1 367 . 77 GLN H H 8.26 0.02 1 368 . 77 GLN HA H 3.88 0.02 1 369 . 77 GLN HB2 H 1.99 0.02 2 370 . 77 GLN HB3 H 2.10 0.02 2 371 . 77 GLN HG2 H 2.33 0.02 2 372 . 77 GLN C C 178.4 0.2 1 373 . 77 GLN CA C 59.2 0.2 1 374 . 77 GLN CB C 28.4 0.2 1 375 . 77 GLN CG C 34.2 0.2 1 376 . 77 GLN N N 119.6 0.2 1 377 . 78 LYS H H 7.31 0.02 1 378 . 78 LYS HA H 3.79 0.02 1 379 . 78 LYS HB2 H 0.93 0.02 2 380 . 78 LYS HB3 H 1.28 0.02 2 381 . 78 LYS C C 178.8 0.2 1 382 . 78 LYS CA C 59.0 0.2 1 383 . 78 LYS CB C 33.2 0.2 1 384 . 78 LYS CG C 25.0 0.2 4 385 . 78 LYS CD C 29.7 0.2 4 386 . 78 LYS CE C 42.2 0.2 4 387 . 78 LYS N N 116.2 0.2 1 388 . 79 TYR H H 7.76 0.02 1 389 . 79 TYR HA H 4.68 0.02 1 390 . 79 TYR HB2 H 1.98 0.02 2 391 . 79 TYR HB3 H 2.86 0.02 2 392 . 79 TYR C C 177.0 0.2 1 393 . 79 TYR CA C 59.2 0.2 1 394 . 79 TYR CB C 40.5 0.2 1 395 . 79 TYR N N 112.7 0.2 1 396 . 80 ASP H H 8.84 0.02 1 397 . 80 ASP HA H 4.82 0.02 1 398 . 80 ASP HB2 H 2.45 0.02 2 399 . 80 ASP HB3 H 3.29 0.02 2 400 . 80 ASP C C 178.5 0.2 1 401 . 80 ASP CA C 53.1 0.2 1 402 . 80 ASP CB C 39.1 0.2 1 403 . 80 ASP N N 119.8 0.2 1 404 . 81 LYS H H 7.71 0.02 1 405 . 81 LYS HA H 3.97 0.02 1 406 . 81 LYS HB2 H 1.90 0.02 2 407 . 81 LYS HG2 H 1.58 0.02 4 408 . 81 LYS C C 177.9 0.2 1 409 . 81 LYS CA C 58.6 0.2 1 410 . 81 LYS CB C 32.8 0.2 1 411 . 81 LYS N N 125.4 0.2 1 412 . 82 ASN H H 7.98 0.02 1 413 . 82 ASN HA H 4.81 0.02 1 414 . 82 ASN HB2 H 2.74 0.02 2 415 . 82 ASN HB3 H 3.22 0.02 2 416 . 82 ASN C C 175.1 0.2 1 417 . 82 ASN CA C 51.7 0.2 1 418 . 82 ASN CB C 37.2 0.2 1 419 . 82 ASN N N 112.8 0.2 1 420 . 83 SER H H 7.74 0.02 1 421 . 83 SER HA H 3.92 0.02 1 422 . 83 SER HB2 H 3.76 0.02 2 423 . 83 SER C C 174.2 0.2 1 424 . 83 SER CA C 59.6 0.2 1 425 . 83 SER CB C 61.8 0.2 1 426 . 83 SER N N 111.5 0.2 1 427 . 84 ASP H H 8.22 0.02 1 428 . 84 ASP HA H 4.61 0.02 1 429 . 84 ASP HB2 H 2.35 0.02 2 430 . 84 ASP HB3 H 2.90 0.02 2 431 . 84 ASP C C 178.5 0.2 1 432 . 84 ASP CA C 52.8 0.2 1 433 . 84 ASP CB C 40.9 0.2 1 434 . 84 ASP N N 117.3 0.2 1 435 . 85 GLY H H 10.61 0.02 1 436 . 85 GLY HA2 H 3.99 0.02 2 437 . 85 GLY HA3 H 3.36 0.02 2 438 . 85 GLY C C 173.3 0.2 1 439 . 85 GLY CA C 46.2 0.2 1 440 . 85 GLY N N 113.0 0.2 1 441 . 86 LYS H H 8.08 0.02 1 442 . 86 LYS HA H 4.80 0.02 1 443 . 86 LYS HB2 H 1.57 0.02 2 444 . 86 LYS HB3 H 1.63 0.02 2 445 . 86 LYS C C 175.9 0.2 1 446 . 86 LYS CA C 54.0 0.2 1 447 . 86 LYS CB C 37.0 0.2 1 448 . 86 LYS CG C 24.3 0.2 4 449 . 86 LYS CE C 42.1 0.2 4 450 . 86 LYS N N 117.3 0.2 1 451 . 87 ILE H H 9.21 0.02 1 452 . 87 ILE HA H 5.45 0.02 1 453 . 87 ILE HB H 2.08 0.02 1 454 . 87 ILE HG2 H 0.85 0.02 4 455 . 87 ILE C C 175.9 0.2 1 456 . 87 ILE CA C 57.9 0.2 1 457 . 87 ILE CB C 38.1 0.2 1 458 . 87 ILE CG1 C 17.9 0.2 4 459 . 87 ILE CD1 C 9.50 0.2 4 460 . 87 ILE N N 124.6 0.2 1 461 . 88 GLU H H 9.05 0.02 1 462 . 88 GLU HA H 5.39 0.02 1 463 . 88 GLU HB2 H 2.37 0.02 2 464 . 88 GLU C C 177.4 0.2 1 465 . 88 GLU CA C 54.2 0.2 1 466 . 88 GLU CB C 33.3 0.2 1 467 . 88 GLU CG C 35.9 0.2 1 468 . 88 GLU N N 126.1 0.2 1 469 . 89 MET H H 8.87 0.02 1 470 . 89 MET HA H 3.12 0.02 1 471 . 89 MET HB2 H 1.40 0.02 2 472 . 89 MET HG2 H 1.80 0.02 4 473 . 89 MET C C 178.6 0.2 1 474 . 89 MET CA C 62.0 0.2 1 475 . 89 MET CB C 32.2 0.2 1 476 . 89 MET CG C 29.1 0.2 1 477 . 89 MET N N 126.1 0.2 1 478 . 90 ALA H H 9.07 0.02 1 479 . 90 ALA HA H 3.97 0.02 1 480 . 90 ALA HB H 1.36 0.02 1 481 . 90 ALA C C 181.5 0.2 1 482 . 90 ALA CA C 55.3 0.2 1 483 . 90 ALA CB C 19.6 0.2 1 484 . 90 ALA N N 117.8 0.2 1 485 . 91 GLU H H 7.11 0.02 1 486 . 91 GLU HA H 4.39 0.02 1 487 . 91 GLU C C 180.5 0.2 1 488 . 91 GLU CA C 57.9 0.2 1 489 . 91 GLU CB C 30.3 0.2 1 490 . 91 GLU CG C 37.0 0.2 1 491 . 91 GLU N N 114.3 0.2 1 492 . 92 LEU H H 8.45 0.02 1 493 . 92 LEU HA H 4.01 0.02 1 494 . 92 LEU HB2 H 2.25 0.02 4 495 . 92 LEU HD1 H 0.69 0.02 4 496 . 92 LEU C C 178.8 0.2 1 497 . 92 LEU CA C 58.1 0.2 1 498 . 92 LEU CB C 41.3 0.2 1 499 . 92 LEU CG C 26.9 0.2 4 500 . 92 LEU N N 123.2 0.2 1 501 . 93 ALA H H 8.16 0.02 1 502 . 93 ALA HA H 3.99 0.02 1 503 . 93 ALA HB H 1.16 0.02 1 504 . 93 ALA C C 177.4 0.2 1 505 . 93 ALA CA C 54.3 0.2 1 506 . 93 ALA CB C 18.2 0.2 1 507 . 93 ALA N N 118.9 0.2 1 508 . 94 GLN H H 7.20 0.02 1 509 . 94 GLN HA H 4.29 0.02 1 510 . 94 GLN HB2 H 2.41 0.02 2 511 . 94 GLN HB3 H 2.51 0.02 2 512 . 94 GLN C C 177.0 0.2 1 513 . 94 GLN CA C 56.6 0.2 1 514 . 94 GLN CB C 29.8 0.2 1 515 . 94 GLN CG C 34.4 0.2 1 516 . 94 GLN N N 112.5 0.2 1 517 . 95 ILE H H 7.39 0.02 1 518 . 95 ILE HA H 3.32 0.02 1 519 . 95 ILE HB H 1.77 0.02 1 520 . 95 ILE HG2 H 0.80 0.02 4 521 . 95 ILE C C 176.1 0.2 1 522 . 95 ILE CA C 64.1 0.2 1 523 . 95 ILE CB C 39.9 0.2 1 524 . 95 ILE CG1 C 17.8 0.2 4 525 . 95 ILE N N 119.7 0.2 1 526 . 96 LEU H H 7.75 0.02 1 527 . 96 LEU HA H 4.70 0.02 1 528 . 96 LEU C C 173.0 0.2 1 529 . 96 LEU CA C 51.6 0.2 1 530 . 96 LEU CB C 42.8 0.2 1 531 . 96 LEU N N 118.7 0.2 1 532 . 97 PRO HA H 4.53 0.02 1 533 . 97 PRO HB2 H 2.04 0.02 2 534 . 97 PRO C C 176.8 0.2 1 535 . 97 PRO CA C 63.4 0.2 1 536 . 97 PRO CB C 31.5 0.2 1 537 . 98 THR H H 8.09 0.02 1 538 . 98 THR HA H 4.82 0.02 1 539 . 98 THR HB H 3.90 0.02 1 540 . 98 THR HG2 H 0.76 0.02 1 541 . 98 THR C C 175.3 0.2 1 542 . 98 THR CA C 60.3 0.2 1 543 . 98 THR CB C 71.3 0.2 1 544 . 98 THR CG2 C 21.1 0.2 1 545 . 98 THR N N 114.6 0.2 1 546 . 99 GLU H H 8.32 0.02 1 547 . 99 GLU HA H 4.18 0.02 1 548 . 99 GLU HB2 H 1.92 0.02 2 549 . 99 GLU C C 176.7 0.2 1 550 . 99 GLU CA C 56.9 0.2 1 551 . 99 GLU CB C 31.0 0.2 1 552 . 99 GLU CG C 36.1 0.2 1 553 . 99 GLU N N 122.3 0.2 1 554 . 100 GLU H H 8.27 0.02 1 555 . 100 GLU HA H 4.09 0.02 1 556 . 100 GLU HB2 H 1.78 0.02 2 557 . 100 GLU C C 176.2 0.2 1 558 . 100 GLU CA C 56.8 0.2 1 559 . 100 GLU CB C 30.7 0.2 1 560 . 100 GLU CG C 36.3 0.2 1 561 . 100 GLU N N 120.6 0.2 1 562 . 101 ASN H H 8.20 0.02 1 563 . 101 ASN C C 178.1 0.2 1 564 . 101 ASN CA C 53.4 0.2 1 565 . 101 ASN CB C 39.2 0.2 1 566 . 101 ASN N N 119.3 0.2 1 567 . 102 PHE H H 7.62 0.02 1 568 . 102 PHE HA H 4.29 0.02 1 569 . 102 PHE C C 174.2 0.2 1 570 . 102 PHE CA C 59.5 0.2 1 571 . 102 PHE CB C 40.8 0.2 1 572 . 102 PHE N N 125.2 0.2 1 stop_ loop_ _Atom_shift_assign_ID_ambiguity 9 '14,13' '37,82,86,100,104,122' '195,191,191,191' '218,218,218' '223,222' '278,282,314,336' '341,340' '362,361' '386,385,384' 407 '449,448' '454,454,454' '459,458' 472 '495,495,495,494' 499 '520,520,520' 524 stop_ save_ save_shift_set_2 _Saveframe_category assigned_chemical_shifts _Details . loop_ _Sample_label $sample_2 stop_ _Sample_conditions_label $sample_cond_2 _Chem_shift_reference_set_label $chemical_shift_reference _Mol_system_component_name 'calretinin I-II domain' _Text_data_format . _Text_data . loop_ _Atom_shift_assign_ID _Residue_author_seq_code _Residue_seq_code _Residue_label _Atom_name _Atom_type _Chem_shift_value _Chem_shift_value_error _Chem_shift_ambiguity_code 1 . 6 ALA HA H 4.25 0.02 1 2 . 6 ALA HB H 1.44 0.02 1 3 . 6 ALA CA C 54.7 0.2 1 4 . 7 GLY H H 8.14 0.02 1 5 . 7 GLY CA C 46.0 0.2 1 6 . 7 GLY N N 108.3 0.2 1 7 . 16 HIS HA H 4.56 0.02 1 8 . 16 HIS HB2 H 3.12 0.02 2 9 . 16 HIS C C 175.5 0.2 1 10 . 16 HIS CA C 56.0 0.2 1 11 . 16 HIS CB C 30.2 0.2 1 12 . 17 LEU H H 7.58 0.02 1 13 . 17 LEU HA H 4.15 0.02 1 14 . 17 LEU C C 177.1 0.2 1 15 . 17 LEU CA C 55.6 0.2 1 16 . 17 LEU CB C 42.5 0.2 1 17 . 17 LEU N N 121.9 0.2 1 18 . 18 ALA H H 8.26 0.02 1 19 . 18 ALA HA H 4.20 0.02 1 20 . 18 ALA HB H 1.41 0.02 1 21 . 18 ALA C C 177.7 0.2 1 22 . 18 ALA CA C 53.5 0.2 1 23 . 18 ALA CB C 19.6 0.2 1 24 . 18 ALA N N 121.8 0.2 1 25 . 19 GLU H H 7.77 0.02 1 26 . 19 GLU HA H 4.34 0.02 1 27 . 19 GLU HB2 H 2.10 0.02 2 28 . 19 GLU C C 175.6 0.2 1 29 . 19 GLU CA C 56.2 0.2 1 30 . 19 GLU CB C 31.5 0.2 1 31 . 19 GLU N N 115.3 0.2 1 32 . 20 LEU H H 8.39 0.02 1 33 . 20 LEU HA H 4.82 0.02 1 34 . 20 LEU C C 178.4 0.2 1 35 . 20 LEU CA C 54.7 0.2 1 36 . 20 LEU CB C 44.7 0.2 1 37 . 20 LEU N N 123.3 0.2 1 38 . 21 THR H H 8.48 0.02 1 39 . 21 THR HA H 4.53 0.02 1 40 . 21 THR HB H 4.58 0.02 1 41 . 21 THR C C 176.1 0.2 1 42 . 21 THR CA C 60.8 0.2 1 43 . 21 THR CB C 71.2 0.2 1 44 . 21 THR N N 112.8 0.2 1 45 . 22 ALA H H 9.11 0.02 1 46 . 22 ALA HA H 4.11 0.02 1 47 . 22 ALA HB H 1.44 0.02 1 48 . 22 ALA C C 180.8 0.2 1 49 . 22 ALA CA C 56.2 0.2 1 50 . 22 ALA CB C 18.2 0.2 1 51 . 22 ALA N N 123.7 0.2 1 52 . 23 SER H H 8.42 0.02 1 53 . 23 SER HA H 4.23 0.02 1 54 . 23 SER HB2 H 3.90 0.02 2 55 . 23 SER C C 177.8 0.2 1 56 . 23 SER CA C 61.9 0.2 1 57 . 23 SER N N 111.6 0.2 1 58 . 24 GLN H H 7.65 0.02 1 59 . 24 GLN HA H 3.92 0.02 1 60 . 24 GLN HB2 H 2.24 0.02 2 61 . 24 GLN C C 178.9 0.2 1 62 . 24 GLN CA C 58.7 0.2 1 63 . 24 GLN CB C 29.2 0.2 1 64 . 24 GLN N N 122.4 0.2 1 65 . 25 PHE H H 8.68 0.02 1 66 . 25 PHE HA H 4.02 0.02 1 67 . 25 PHE HB2 H 3.05 0.02 2 68 . 25 PHE HB3 H 3.32 0.02 2 69 . 25 PHE C C 176.9 0.2 1 70 . 25 PHE CA C 62.4 0.2 1 71 . 25 PHE CB C 39.5 0.2 1 72 . 25 PHE N N 119.6 0.2 1 73 . 26 LEU H H 8.12 0.02 1 74 . 26 LEU HA H 4.07 0.02 1 75 . 26 LEU HB2 H 1.75 0.02 2 76 . 26 LEU HB3 H 1.87 0.02 2 77 . 26 LEU C C 179.5 0.2 1 78 . 26 LEU CA C 58.1 0.2 1 79 . 26 LEU CB C 41.7 0.2 1 80 . 26 LEU N N 118.6 0.2 1 81 . 27 GLU H H 7.83 0.02 1 82 . 27 GLU HA H 4.01 0.02 1 83 . 27 GLU HB2 H 2.12 0.02 2 84 . 27 GLU C C 180.4 0.2 1 85 . 27 GLU CA C 60.0 0.2 1 86 . 27 GLU CB C 29.7 0.2 1 87 . 27 GLU N N 118.1 0.2 1 88 . 28 ILE H H 7.98 0.02 1 89 . 28 ILE HA H 3.76 0.02 1 90 . 28 ILE C C 177.9 0.2 1 91 . 28 ILE CA C 65.3 0.2 1 92 . 28 ILE N N 121.1 0.2 1 93 . 29 TRP H H 8.45 0.02 1 94 . 29 TRP HA H 3.77 0.02 1 95 . 29 TRP C C 176.9 0.2 1 96 . 29 TRP CA C 61.2 0.2 1 97 . 29 TRP CB C 28.9 0.2 1 98 . 29 TRP N N 120.5 0.2 1 99 . 30 LYS H H 8.34 0.02 1 100 . 30 LYS HA H 3.70 0.02 1 101 . 30 LYS HB2 H 1.80 0.02 2 102 . 30 LYS C C 178.4 0.2 1 103 . 30 LYS CA C 58.8 0.2 1 104 . 30 LYS CB C 32.8 0.2 1 105 . 30 LYS N N 114.0 0.2 1 106 . 31 HIS H H 7.60 0.02 1 107 . 31 HIS HA H 3.97 0.02 1 108 . 31 HIS HB2 H 2.94 0.02 2 109 . 31 HIS C C 176.6 0.2 1 110 . 31 HIS CA C 59.0 0.2 1 111 . 31 HIS CB C 29.6 0.2 1 112 . 31 HIS N N 115.1 0.2 1 113 . 32 PHE H H 7.50 0.02 1 114 . 32 PHE HA H 4.28 0.02 1 115 . 32 PHE HB2 H 2.35 0.02 2 116 . 32 PHE HB3 H 2.85 0.02 2 117 . 32 PHE C C 178.0 0.2 1 118 . 32 PHE CA C 61.4 0.2 1 119 . 32 PHE CB C 40.3 0.2 1 120 . 32 PHE N N 112.4 0.2 1 121 . 33 ASP H H 8.16 0.02 1 122 . 33 ASP HA H 4.54 0.02 1 123 . 33 ASP HB2 H 0.85 0.02 2 124 . 33 ASP HB3 H 1.82 0.02 2 125 . 33 ASP C C 177.8 0.2 1 126 . 33 ASP CA C 52.6 0.2 1 127 . 33 ASP CB C 36.4 0.2 1 128 . 33 ASP N N 120.4 0.2 1 129 . 34 ALA H H 7.27 0.02 1 130 . 34 ALA HA H 3.82 0.02 1 131 . 34 ALA HB H 1.40 0.02 1 132 . 34 ALA C C 178.9 0.2 1 133 . 34 ALA CA C 55.2 0.2 1 134 . 34 ALA CB C 19.3 0.2 1 135 . 34 ALA N N 126.3 0.2 1 136 . 35 ASP H H 8.08 0.02 1 137 . 35 ASP HA H 4.61 0.02 1 138 . 35 ASP HB2 H 2.68 0.02 2 139 . 35 ASP HB3 H 3.11 0.02 2 140 . 35 ASP C C 178.2 0.2 1 141 . 35 ASP CA C 52.8 0.2 1 142 . 35 ASP CB C 39.9 0.2 1 143 . 35 ASP N N 113.0 0.2 1 144 . 36 GLY H H 7.81 0.02 1 145 . 36 GLY HA2 H 3.87 0.02 2 146 . 36 GLY C C 175.6 0.2 1 147 . 36 GLY CA C 47.4 0.2 1 148 . 36 GLY N N 109.0 0.2 1 149 . 37 ASN H H 8.30 0.02 1 150 . 37 ASN HA H 4.69 0.02 1 151 . 37 ASN HB2 H 2.60 0.02 2 152 . 37 ASN HB3 H 3.39 0.02 2 153 . 37 ASN C C 176.6 0.2 1 154 . 37 ASN CA C 53.2 0.2 1 155 . 37 ASN CB C 38.8 0.2 1 156 . 37 ASN N N 119.3 0.2 1 157 . 38 GLY H H 10.39 0.02 1 158 . 38 GLY HA2 H 3.64 0.02 2 159 . 38 GLY HA3 H 4.22 0.02 2 160 . 38 GLY C C 173.0 0.2 1 161 . 38 GLY CA C 45.5 0.2 1 162 . 38 GLY N N 111.8 0.2 1 163 . 39 TYR H H 7.71 0.02 1 164 . 39 TYR HA H 5.13 0.02 1 165 . 39 TYR HB2 H 2.60 0.02 2 166 . 39 TYR C C 175.2 0.2 1 167 . 39 TYR CA C 57.2 0.2 1 168 . 39 TYR CB C 43.6 0.2 1 169 . 39 TYR N N 115.2 0.2 1 170 . 40 ILE H H 9.80 0.02 1 171 . 40 ILE HA H 4.59 0.02 1 172 . 40 ILE C C 174.9 0.2 1 173 . 40 ILE CA C 62.2 0.2 1 174 . 40 ILE CB C 37.4 0.2 1 175 . 40 ILE N N 128.0 0.2 1 176 . 41 GLU H H 8.98 0.02 1 177 . 41 GLU HA H 5.08 0.02 1 178 . 41 GLU HB2 H 2.09 0.02 2 179 . 41 GLU C C 176.6 0.2 1 180 . 41 GLU CA C 54.4 0.2 1 181 . 41 GLU CB C 33.6 0.2 1 182 . 41 GLU N N 125.1 .02 1 183 . 42 GLY H H 9.44 0.02 1 184 . 42 GLY CA C 47.5 0.2 1 185 . 42 GLY N N 112.3 0.2 1 186 . 44 GLU HA H 4.39 0.02 1 187 . 44 GLU HB2 H 2.47 0.02 2 188 . 44 GLU HB3 H 2.74 0.02 2 189 . 44 GLU C C 180.2 0.2 1 190 . 44 GLU CA C 58.3 0.2 1 191 . 44 GLU CB C 30.7 0.2 1 192 . 45 LEU H H 6.88 0.02 1 193 . 45 LEU HA H 3.98 0.02 1 194 . 45 LEU HB2 H 2.15 0.02 2 195 . 45 LEU C C 178.4 0.2 1 196 . 45 LEU CA C 57.0 0.2 1 197 . 45 LEU CB C 42.4 0.2 1 198 . 45 LEU N N 119.3 0.2 1 199 . 46 GLU H H 7.55 0.02 1 200 . 46 GLU HA H 4.06 0.02 1 201 . 46 GLU HB2 H 2.16 0.02 2 202 . 46 GLU C C 178.9 0.2 1 203 . 46 GLU CA C 60.5 0.2 1 204 . 46 GLU CB C 29.8 0.2 1 205 . 46 GLU N N 118.9 0.2 1 206 . 47 ASN H H 8.08 0.02 1 207 . 47 ASN HA H 4.55 0.02 1 208 . 47 ASN HB2 H 3.16 0.02 2 209 . 47 ASN C C 177.3 0.2 1 210 . 47 ASN CA C 56.7 0.2 1 211 . 47 ASN CB C 38.9 0.2 1 212 . 47 ASN N N 116.6 0.2 1 213 . 48 PHE H H 8.42 0.02 1 214 . 48 PHE HA H 3.55 0.02 1 215 . 48 PHE HB2 H 2.64 0.02 2 216 . 48 PHE HB3 H 2.83 0.02 2 217 . 48 PHE C C 175.9 0.2 1 218 . 48 PHE CA C 61.0 0.2 1 219 . 48 PHE CB C 39.0 0.2 1 220 . 48 PHE N N 118.8 0.2 1 221 . 49 PHE H H 8.69 0.02 1 222 . 49 PHE HA H 3.35 0.02 1 223 . 49 PHE HB2 H 2.68 0.02 2 224 . 49 PHE HB3 H 2.90 0.02 2 225 . 49 PHE C C 177.5 0.2 1 226 . 49 PHE CA C 61.9 0.2 1 227 . 49 PHE CB C 39.5 0.2 1 228 . 49 PHE N N 118.3 0.2 1 229 . 50 GLN H H 8.15 0.02 1 230 . 50 GLN HA H 3.86 0.02 1 231 . 50 GLN HB2 H 2.12 0.02 2 232 . 50 GLN HB3 H 2.32 0.02 2 233 . 50 GLN C C 179.8 0.2 1 234 . 50 GLN CA C 59.5 0.2 1 235 . 50 GLN CB C 29.0 0.2 1 236 . 50 GLN N N 116.3 0.2 1 237 . 51 GLU H H 8.04 0.02 1 238 . 51 GLU HA H 4.04 0.02 1 239 . 51 GLU HB2 H 1.97 0.02 2 240 . 51 GLU HB3 H 2.13 0.02 2 241 . 51 GLU C C 179.7 0.2 1 242 . 51 GLU CA C 59.1 0.2 1 243 . 51 GLU CB C 29.0 0.2 1 244 . 51 GLU N N 118.6 0.2 1 245 . 52 LEU H H 8.42 0.02 1 246 . 52 LEU HA H 3.68 0.02 1 247 . 52 LEU HB2 H 1.22 0.02 2 248 . 52 LEU HB3 H 0.62 0.02 2 249 . 52 LEU C C 178.8 0.2 1 250 . 52 LEU CA C 58.3 0.2 1 251 . 52 LEU CB C 41.5 0.2 1 252 . 52 LEU N N 123.5 0.2 1 253 . 53 GLU H H 7.93 0.02 1 254 . 53 GLU HA H 3.80 0.02 1 255 . 53 GLU HB2 H 1.73 0.02 2 256 . 53 GLU C C 179.7 0.2 1 257 . 53 GLU CA C 59.4 0.2 1 258 . 53 GLU CB C 29.6 0.2 1 259 . 53 GLU N N 117.6 0.2 1 260 . 54 LYS H H 7.53 0.02 1 261 . 54 LYS HA H 3.92 0.02 1 262 . 54 LYS HB2 H 1.82 0.02 2 263 . 54 LYS C C 179.2 0.2 1 264 . 54 LYS CA C 59.5 0.2 1 265 . 54 LYS CB C 32.8 0.2 1 266 . 54 LYS N N 118.0 0.2 1 267 . 55 ALA H H 7.88 0.02 1 268 . 55 ALA HA H 4.10 0.02 1 269 . 55 ALA CA C 54.5 0.2 1 270 . 55 ALA CB C 19.4 0.2 1 271 . 55 ALA N N 120.8 0.2 1 272 . 56 ARG H H 8.07 0.02 1 273 . 56 ARG CA C 58.1 0.2 1 274 . 56 ARG N N 116.8 0.2 1 275 . 57 LYS HA H 4.22 0.02 1 276 . 57 LYS HB2 H 1.86 0.02 2 277 . 57 LYS C C 178.2 0.2 1 278 . 57 LYS CA C 57.7 0.2 1 279 . 57 LYS CB C 32.6 0.2 1 280 . 58 GLY H H 8.15 0.05 1 281 . 58 GLY HA2 H 4.01 0.02 2 282 . 58 GLY C C 175.0 0.2 1 283 . 58 GLY CA C 46.0 0.2 1 284 . 58 GLY N N 108.4 0.2 1 285 . 59 SER H H 8.14 0.02 1 286 . 59 SER HA H 4.48 0.02 1 287 . 59 SER HB2 H 3.92 0.02 2 288 . 59 SER C C 175.6 0.2 1 289 . 59 SER CA C 58.9 0.2 1 290 . 59 SER CB C 64.0 0.2 1 291 . 59 SER N N 115.2 0.2 1 292 . 60 GLY H H 8.43 0.02 1 293 . 60 GLY HA2 H 3.97 0.02 2 294 . 60 GLY C C 173.8 0.2 1 295 . 60 GLY CA C 45.9 0.2 1 296 . 60 GLY N N 110.8 0.2 1 297 . 61 MET H H 7.82 0.02 1 298 . 61 MET CA C 57.3 0.2 1 299 . 61 MET N N 124.5 0.2 1 300 . 62 MET HA H 4.14 0.02 1 301 . 62 MET HB2 H 1.98 0.02 2 302 . 62 MET C C 179.3 0.2 1 303 . 62 MET CA C 59.1 0.2 1 304 . 62 MET CB C 31.9 0.2 1 305 . 63 SER H H 7.99 0.02 1 306 . 63 SER HA H 4.42 0.02 1 307 . 63 SER C C 175.1 0.2 1 308 . 63 SER CA C 58.4 0.2 1 309 . 63 SER CB C 64.0 0.2 1 310 . 63 SER N N 115.7 0.2 1 311 . 64 LYS H H 8.27 0.02 1 312 . 64 LYS CA C 56.8 0.2 1 313 . 64 LYS N N 121.9 0.2 1 314 . 65 SER HA H 4.54 0.02 1 315 . 65 SER HB2 H 3.89 0.02 2 316 . 65 SER C C 174.5 0.2 1 317 . 65 SER CA C 58.4 0.2 1 318 . 65 SER CB C 64.0 0.2 1 319 . 66 ASP H H 8.53 0.02 1 320 . 66 ASP HA H 4.63 0.02 1 321 . 66 ASP HB2 H 2.63 0.02 2 322 . 66 ASP C C 176.5 0.2 1 323 . 66 ASP CA C 54.8 0.2 1 324 . 66 ASP CB C 41.5 0.2 1 325 . 66 ASP N N 122.3 0.2 1 326 . 67 ASN H H 8.37 0.02 1 327 . 67 ASN HA H 4.73 0.02 1 328 . 67 ASN HB2 H 2.82 0.02 2 329 . 67 ASN C C 176.0 0.2 1 330 . 67 ASN CA C 53.8 0.2 1 331 . 67 ASN CB C 39.0 0.2 1 332 . 67 ASN N N 118.5 0.2 1 333 . 68 PHE H H 8.48 0.04 1 334 . 68 PHE HA H 4.29 0.02 1 335 . 68 PHE HB2 H 3.06 0.02 2 336 . 68 PHE HB3 H 3.27 0.02 2 337 . 68 PHE C C 177.2 0.2 1 338 . 68 PHE CA C 61.0 0.2 1 339 . 68 PHE CB C 39.7 0.2 1 340 . 68 PHE N N 121.8 0.2 1 341 . 69 GLY H H 8.58 0.02 1 342 . 69 GLY HA2 H 3.75 0.02 2 343 . 69 GLY HA3 H 3.95 0.02 2 344 . 69 GLY C C 176.9 0.2 1 345 . 69 GLY CA C 47.1 0.2 1 346 . 69 GLY N N 106.8 0.2 1 347 . 70 GLU H H 8.09 0.02 1 348 . 70 GLU HA H 4.06 0.02 1 349 . 70 GLU HB2 H 2.08 0.02 2 350 . 70 GLU C C 179.4 0.2 1 351 . 70 GLU CA C 59.4 0.2 1 352 . 70 GLU CB C 29.6 0.2 1 353 . 70 GLU N N 121.4 0.2 1 354 . 71 LYS H H 8.10 0.02 1 355 . 71 LYS HA H 4.09 0.02 1 356 . 71 LYS HB2 H 1.84 0.02 2 357 . 71 LYS C C 179.3 0.2 1 358 . 71 LYS CA C 59.2 0.2 1 359 . 71 LYS CB C 31.8 0.2 1 360 . 71 LYS N N 119.7 0.2 1 361 . 72 MET H H 8.20 0.02 1 362 . 72 MET HA H 3.43 0.02 1 363 . 72 MET HB2 H 1.90 0.02 2 364 . 72 MET C C 178.0 0.2 1 365 . 72 MET CA C 58.3 0.2 1 366 . 72 MET CB C 32.3 0.2 1 367 . 72 MET N N 119.7 0.2 1 368 . 73 LYS H H 7.76 0.02 1 369 . 73 LYS HA H 3.93 0.02 1 370 . 73 LYS HB2 H 1.89 0.02 2 371 . 73 LYS C C 179.8 0.2 1 372 . 73 LYS CA C 60.2 0.2 1 373 . 73 LYS CB C 32.3 0.2 1 374 . 73 LYS N N 119.8 0.2 1 375 . 74 GLU H H 7.85 0.02 1 376 . 74 GLU C C 179.0 0.2 1 377 . 74 GLU CA C 59.7 0.2 1 378 . 74 GLU CB C 29.7 0.2 1 379 . 74 GLU N N 119.5 0.2 1 380 . 75 PHE H H 7.96 0.02 1 381 . 75 PHE HA H 4.32 0.02 1 382 . 75 PHE HB2 H 3.19 0.02 2 383 . 75 PHE C C 177.9 0.2 1 384 . 75 PHE CA C 61.4 0.2 1 385 . 75 PHE CB C 39.9 0.2 1 386 . 75 PHE N N 121.1 0.2 1 387 . 76 MET H H 8.51 0.02 1 388 . 76 MET HA H 4.44 0.02 1 389 . 76 MET HB2 H 2.19 0.02 2 390 . 76 MET C C 180.1 0.2 1 391 . 76 MET CA C 56.8 0.2 1 392 . 76 MET CB C 30.8 0.2 1 393 . 76 MET N N 117.3 0.2 1 394 . 77 GLN H H 8.26 0.02 1 395 . 77 GLN HA H 3.96 0.02 1 396 . 77 GLN HB2 H 2.05 0.02 2 397 . 77 GLN HB3 H 2.19 0.02 2 398 . 77 GLN C C 178.4 0.2 1 399 . 77 GLN CA C 59.0 0.2 1 400 . 77 GLN CB C 28.4 0.2 1 401 . 77 GLN N N 119.4 0.2 1 402 . 78 LYS H H 7.30 0.02 1 403 . 78 LYS HA H 3.87 0.02 1 404 . 78 LYS HB2 H 0.98 0.02 2 405 . 78 LYS HB3 H 1.35 0.02 2 406 . 78 LYS C C 178.7 0.2 1 407 . 78 LYS CA C 58.9 0.2 1 408 . 78 LYS CB C 33.3 0.2 1 409 . 78 LYS N N 116.2 0.2 1 410 . 79 TYR H H 7.77 0.02 1 411 . 79 TYR HA H 4.69 0.02 1 412 . 79 TYR HB2 H 2.00 0.02 2 413 . 79 TYR HB3 H 2.90 0.02 2 414 . 79 TYR C C 177.0 0.2 1 415 . 79 TYR CA C 59.2 0.2 1 416 . 79 TYR CB C 40.6 0.2 1 417 . 79 TYR N N 112.7 0.2 1 418 . 80 ASP H H 8.83 0.02 1 419 . 80 ASP HA H 4.90 0.02 1 420 . 80 ASP HB2 H 2.51 0.02 2 421 . 80 ASP HB3 H 3.36 0.02 2 422 . 80 ASP C C 178.5 0.2 1 423 . 80 ASP CA C 53.0 0.2 1 424 . 80 ASP CB C 39.0 0.2 1 425 . 80 ASP N N 119.7 0.2 1 426 . 81 LYS H H 7.70 0.02 1 427 . 81 LYS HA H 4.02 0.02 1 428 . 81 LYS HB2 H 1.94 0.02 2 429 . 81 LYS C C 177.9 0.2 1 430 . 81 LYS CA C 58.6 0.2 1 431 . 81 LYS CB C 32.6 0.2 1 432 . 81 LYS N N 125.3 0.2 1 433 . 82 ASN H H 7.99 0.02 1 434 . 82 ASN HA H 4.89 0.02 1 435 . 82 ASN HB2 H 2.79 0.02 2 436 . 82 ASN HB3 H 3.30 0.02 2 437 . 82 ASN C C 175.1 0.2 1 438 . 82 ASN CA C 51.7 0.2 1 439 . 82 ASN CB C 37.2 0.2 1 440 . 82 ASN N N 112.8 0.2 1 441 . 83 SER H H 7.76 0.02 1 442 . 83 SER HA H 4.01 0.02 1 443 . 83 SER HB2 H 3.82 0.02 2 444 . 83 SER C C 174.2 0.2 1 445 . 83 SER CA C 59.5 0.2 1 446 . 83 SER CB C 61.7 0.2 1 447 . 83 SER N N 111.6 0.2 1 448 . 84 ASP H H 8.24 0.02 1 449 . 84 ASP HA H 4.68 0.02 1 450 . 84 ASP HB2 H 2.95 0.02 2 451 . 84 ASP HB3 H 2.39 0.02 2 452 . 84 ASP C C 178.5 0.2 1 453 . 84 ASP CA C 52.8 0.2 1 454 . 84 ASP CB C 40.8 0.2 1 455 . 84 ASP N N 117.3 0.2 1 456 . 85 GLY H H 10.61 0.02 1 457 . 85 GLY HA2 H 4.08 0.02 2 458 . 85 GLY HA3 H 3.42 0.02 2 459 . 85 GLY C C 173.2 0.2 1 460 . 85 GLY CA C 46.2 0.2 1 461 . 85 GLY N N 113.0 0.2 1 462 . 86 LYS H H 8.08 0.02 1 463 . 86 LYS HA H 4.88 0.02 1 464 . 86 LYS HB2 H 1.60 0.02 2 465 . 86 LYS HB3 H 1.68 0.02 2 466 . 86 LYS C C 175.9 0.2 1 467 . 86 LYS CA C 53.9 0.2 1 468 . 86 LYS CB C 36.9 0.2 1 469 . 86 LYS N N 117.1 0.2 1 470 . 87 ILE H H 9.21 0.02 1 471 . 87 ILE HA H 5.51 0.02 1 472 . 87 ILE HB H 2.11 0.02 1 473 . 87 ILE C C 175.9 0.2 1 474 . 87 ILE CA C 57.8 0.2 1 475 . 87 ILE CB C 38.0 0.2 1 476 . 87 ILE N N 124.6 0.2 1 477 . 88 GLU H H 9.05 0.02 1 478 . 88 GLU HA H 5.44 0.02 1 479 . 88 GLU HB2 H 2.42 0.02 2 480 . 88 GLU C C 177.5 0.2 1 481 . 88 GLU CA C 54.2 0.2 1 482 . 88 GLU CB C 33.3 0.2 1 483 . 88 GLU N N 126.2 0.2 1 484 . 89 MET H H 8.85 0.02 1 485 . 89 MET HA H 3.18 0.02 1 486 . 89 MET HB2 H 1.43 0.02 2 487 . 89 MET C C 178.5 0.2 1 488 . 89 MET CA C 61.9 0.2 1 489 . 89 MET CB C 32.3 0.2 1 490 . 89 MET N N 126.0 0.2 1 491 . 90 ALA H H 9.07 0.02 1 492 . 90 ALA HA H 4.02 0.02 1 493 . 90 ALA HB H 1.42 0.02 1 494 . 90 ALA C C 181.5 0.2 1 495 . 90 ALA CA C 55.2 0.2 1 496 . 90 ALA CB C 19.0 0.2 1 497 . 90 ALA N N 117.8 0.2 1 498 . 91 GLU H H 7.13 0.02 1 499 . 91 GLU HA H 4.43 0.02 1 500 . 91 GLU HB2 H 2.35 0.02 2 501 . 91 GLU C C 180.4 0.2 1 502 . 91 GLU CA C 57.9 0.2 1 503 . 91 GLU CB C 30.1 0.2 1 504 . 91 GLU N N 114.3 0.2 1 505 . 92 LEU H H 8.42 0.02 1 506 . 92 LEU C C 178.8 0.2 1 507 . 92 LEU CA C 58.0 0.2 1 508 . 92 LEU CB C 41.6 0.2 1 509 . 92 LEU N N 122.9 0.2 1 510 . 93 ALA H H 8.20 0.02 1 511 . 93 ALA HA H 4.05 0.02 1 512 . 93 ALA HB H 1.22 0.02 1 513 . 93 ALA C C 177.6 0.2 1 514 . 93 ALA CA C 54.4 0.2 1 515 . 93 ALA CB C 18.2 0.2 1 516 . 93 ALA N N 118.7 0.2 1 517 . 94 GLN H H 7.20 0.02 1 518 . 94 GLN HA H 4.36 0.02 1 519 . 94 GLN HB2 H 2.25 0.02 2 520 . 94 GLN HB3 H 2.45 0.02 2 521 . 94 GLN C C 177.0 0.2 1 522 . 94 GLN CA C 56.6 0.2 1 523 . 94 GLN CB C 29.6 0.2 1 524 . 94 GLN N N 112.5 0.2 1 525 . 95 ILE H H 7.44 0.02 1 526 . 95 ILE HA H 3.46 0.02 1 527 . 95 ILE C C 176.0 0.2 1 528 . 95 ILE CA C 64.0 0.2 1 529 . 95 ILE CB C 40.0 0.2 1 530 . 95 ILE N N 119.5 0.2 1 531 . 96 LEU H H 7.68 0.02 1 532 . 96 LEU CA C 51.9 0.2 1 533 . 96 LEU N N 118.6 0.2 1 534 . 97 PRO HA H 4.54 0.02 1 535 . 97 PRO C C 177.2 0.2 1 536 . 97 PRO CA C 63.4 0.2 1 537 . 97 PRO CB C 32.0 0.2 1 538 . 98 THR H H 8.06 0.02 1 539 . 98 THR HA H 4.79 0.02 1 540 . 98 THR HB H 4.01 0.02 1 541 . 98 THR C C 175.2 0.2 1 542 . 98 THR CA C 60.7 0.2 1 543 . 98 THR CB C 71.1 0.2 1 544 . 98 THR N N 113.7 0.2 1 545 . 99 GLU H H 8.36 0.02 1 546 . 99 GLU HA H 4.24 0.02 1 547 . 99 GLU HB2 H 1.98 0.02 2 548 . 99 GLU C C 176.8 0.2 1 549 . 99 GLU CA C 56.8 0.2 1 550 . 99 GLU CB C 30.7 0.2 1 551 . 99 GLU N N 122.2 0.2 1 552 . 100 GLU H H 8.26 0.02 1 553 . 100 GLU HA H 4.19 0.02 1 554 . 100 GLU HB2 H 1.82 0.02 1 555 . 100 GLU C C 176.1 0.2 1 556 . 100 GLU CA C 56.9 0.2 1 557 . 100 GLU CB C 30.8 0.2 1 558 . 100 GLU N N 120.5 0.2 1 559 . 101 ASN H H 8.24 0.02 1 560 . 101 ASN HA H 4.65 0.02 1 561 . 101 ASN HB2 H 2.61 0.02 2 562 . 101 ASN HB3 H 2.69 0.02 2 563 . 101 ASN C C 174.1 0.2 1 564 . 101 ASN CA C 53.4 0.2 1 565 . 101 ASN CB C 39.5 0.2 1 566 . 101 ASN N N 119.3 0.2 1 567 . 102 PHE H H 7.65 0.02 1 568 . 102 PHE CA C 59.6 0.2 1 569 . 102 PHE N N 125.1 0.2 1 stop_ save_