data_4554 ####################### # Entry information # ####################### save_entry_information _Saveframe_category entry_information _Entry_title ; Backbone HN, N, Ca, C' and Cb assignments of the 19 kDa DHFR/NADPH complex at 9C and pH 7.6 ; _BMRB_accession_number 4554 _BMRB_flat_file_name bmr4554.str _Entry_type original _Submission_date 1999-12-10 _Accession_date 1999-12-13 _Entry_origination author _NMR_STAR_version 2.1.1 _Experimental_method NMR _Details . loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Zaborowski Eduardo . . 2 Chung John . . 3 Kroon Gerard . . 4 Dyson H. Jane . 5 Wright Peter E. . stop_ loop_ _Saveframe_category_type _Saveframe_category_type_count assigned_chemical_shifts 1 stop_ loop_ _Data_type _Data_type_count "1H chemical shifts" 147 "13C chemical shifts" 449 "15N chemical shifts" 147 stop_ loop_ _Revision_date _Revision_keyword _Revision_author _Revision_detail 2000-04-03 original author . stop_ _Original_release_date 2000-04-03 save_ ############################# # Citation for this entry # ############################# save_entry_citation _Saveframe_category entry_citation _Citation_full . _Citation_title ; Letter to the Editor: Backbone HN, N, Ca, C' and Cb assignments of the 19 kDa DHFR/NADPH complex at 9C and pH 7.6 ; _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID ? loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Zaborowski Eduardo . . 2 Chung John . . 3 Kroon Gerard . . 4 Dyson H. Jane . 5 Wright Peter E. . stop_ _Journal_abbreviation 'J. Biomol. NMR' _Journal_name_full 'Journal of Biomolecular NMR' _Journal_volume 16 _Journal_issue . _Journal_CSD . _Book_chapter_title . _Book_volume . _Book_series . _Book_ISBN . _Conference_state_province . _Conference_abstract_number . _Page_first 349 _Page_last 350 _Year 2000 _Details . loop_ _Keyword 'dihydrofolate reductase' 'cofactor complex' NADPH stop_ save_ ####################################### # Cited references within the entry # ####################################### save_ref_1 _Saveframe_category citation _Citation_full ; Hsu, M.C., Ho, Y., Huang, F.Y.(1998) Journal of the Chinese Chemical Society, 45, 115-121. ; _Citation_title . _Citation_status . _Citation_type . _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID ? _Journal_abbreviation . _Journal_name_full . _Journal_volume . _Journal_issue . _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first . _Page_last . _Year . _Details . save_ save_ref_2 _Saveframe_category citation _Citation_full ; Fierke, C.A., Johnson, K.A., Benkovic, S.J.(1987) Biochemistry, 26, 4085-4092. ; _Citation_title 'Construction and evaluation of the kinetic scheme associated with dihydrofolate reductase from Escherichia coli.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 3307916 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Fierke C.A. A. . 2 Johnson K.A. A. . 3 Benkovic S.J. J. . stop_ _Journal_abbreviation Biochemistry _Journal_name_full Biochemistry _Journal_volume 26 _Journal_issue 13 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 4085 _Page_last 4092 _Year 1987 _Details ; A kinetic scheme is presented for Escherichia coli dihydrofolate reductase that predicts steady-state kinetic parameters and full time course kinetics under a variety of substrate concentrations and pHs. This scheme was derived from measuring association and dissociation rate constants and pre-steady-state transients by using stopped-flow fluorescence and absorbance spectroscopy. The binding kinetics suggest that during steady-state turnover product dissociation follows a specific, preferred pathway in which tetrahydrofolate (H4F) dissociation occurs after NADPH replaces NADP+ in the ternary complex. This step, H4F dissociation from the E X NADPH X H4F ternary complex, is proposed to be the rate-limiting step for steady-state turnover at low pH because koff = VM. The rate constant for hydride transfer from NADPH to dihydrofolate (H2F), measured by pre-steady-state transients, has a deuterium isotope effect of 3 and is rapid, khyd = 950 s-1, essentially irreversible, Keq = 1700, and pH dependent, pKa = 6.5, reflecting ionization of a single group in the active site. This scheme accounts for the apparent pKa = 8.4 observed in the steady state as due to a change in the rate-determining step from product release at low pH to hydride transfer above pH 8.4. This kinetic scheme is a necessary background to analyze the effects of single amino acid substitutions on individual rate constants. ; save_ save_ref_3 _Saveframe_category citation _Citation_full ; Sawaya, M.R., Kraut, J.(1997) Biochemistry, 36, 586-603. ; _Citation_title 'Loop and subdomain movements in the mechanism of Escherichia coli dihydrofolate reductase: crystallographic evidence.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 9012674 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Sawaya M.R. R. . 2 Kraut J. . . stop_ _Journal_abbreviation Biochemistry _Journal_name_full Biochemistry _Journal_volume 36 _Journal_issue 3 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 586 _Page_last 603 _Year 1997 _Details ; The reaction catalyzed by Escherichia coli dihydrofolate reductase (ecDHFR) cycles through five detectable kinetic intermediates: holoenzyme, Michaelis complex, ternary product complex, tetrahydrofolate (THF) binary complex, and THF.NADPH complex. Isomorphous crystal structures analogous to these five intermediates and to the transition state (as represented by the methotrexate-NADPH complex) have been used to assemble a 2.1 A resolution movie depicting loop and subdomain movements during the catalytic cycle (see Supporting Information). The structures suggest that the M20 loop is predominantly closed over the reactants in the holoenzyme, Michaelis, and transition state complexes. But, during the remainder of the cycle, when nicotinamide is not bound, the loop occludes (protrudes into) the nicotinamide-ribose binding pocket. Upon changing from the closed to the occluded conformation, the central portion of the loop rearranges from beta-sheet to 3(10) helix. The change may occur by way of an irregularly structured open loop conformation, which could transiently admit a water molecule into position to protonate N5 of dihydrofolate. From the Michaelis to the transition state analogue complex, rotation between two halves of ecDHFR, the adenosine binding subdomain and loop subdomain, closes the (p-aminobenzoyl)glutamate (pABG) binding crevice by approximately 0.5 A. Resulting enhancement of contacts with the pABG moiety may stabilize puckering at C6 of the pteridine ring in the transition state. The subdomain rotation is further adjusted by cofactor-induced movements (approximately 0.5 A) of helices B and C, producing a larger pABG cleft in the THF.NADPH analogue complex than in the THF analogue complex. Such movements may explain how THF release is assisted by NADPH binding. Subdomain rotation is not observed in vertebrate DHFR structures, but an analogous loop movement (residues 59-70) appears to similarly adjust the pABG cleft width, suggesting that these movements are important for catalysis. Loop movement, also unobserved in vertebrate DHFR structures, may preferentially weaken NADP+ vs NADPH binding in ecDHFR, an evolutionary adaptation to reduce product inhibition in the NADP+ rich environment of prokaryotes. ; save_ save_ref_4 _Saveframe_category citation _Citation_full ; Oppenheimer, N.J.(1982) in The Pyridine Nucleotide Coenzymes (Everse, J., Anderson, B., You, K., Eds), 51-89, Academic Press, New York 36, 586-603. ; _Citation_title . _Citation_status . _Citation_type . _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID ? _Journal_abbreviation . _Journal_name_full . _Journal_volume . _Journal_issue . _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first . _Page_last . _Year . _Details . save_ save_ref_5 _Saveframe_category citation _Citation_full ; Rafter, G.W. and Colowick, S.P. (1957) in Methods in Enzymology, 3, 887-890. ; _Citation_title . _Citation_status . _Citation_type . _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID ? _Journal_abbreviation . _Journal_name_full . _Journal_volume . _Journal_issue . _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first . _Page_last . _Year . _Details . save_ save_ref_6 _Saveframe_category citation _Citation_full ; Grzesiek, S. and Bax, A. (1993) J. Biomol. NMR, 3, 185-204. ; _Citation_title 'Amino acid type determination in the sequential assignment procedure of uniformly 13C/15N-enriched proteins.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 8477186 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Grzesiek S. . . 2 Bax A. . . stop_ _Journal_abbreviation 'J. Biomol. NMR' _Journal_name_full 'Journal of biomolecular NMR' _Journal_volume 3 _Journal_issue 2 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 185 _Page_last 204 _Year 1993 _Details ; Experiments and procedures are described that greatly alleviate the sequential assignment process of uniformly 13C/15N-enriched proteins by determining the type of amino acid from experiments that correlate side chain with backbone amide resonances. A recently proposed 3D NMR experiment, CBCA(CO)NH, correlates C alpha and C beta resonances to the backbone amide 1H and 15N resonances of the next residue (Grzesiek, S. and Bax, A. (1992) J. Am. Chem. Soc., 114, 6291-6293). An extension of this experiment is described which correlates the proton H beta and H alpha resonances to the amide 1H and 15N resonances of the next amino acid, and a detailed product operator description is given. A simple 2D-edited constant-time HSQC experiment is described which rapidly identifies H beta and C beta resonances of aromatic or Asn/Asp residues. The extent to which combined knowledge of the C alpha and C beta chemical shift values determines the amino acid type is investigated, and it is demonstrated that the combined C alpha and C beta chemical shifts of three or four adjacent residues usually are sufficient for defining a unique position in the protein sequence. ; save_ save_ref_7 _Saveframe_category citation _Citation_full ; Yamazaki, T., Lee, W., Arrowsmith, C.H., Muhandiram, D.R. and Kay, L.E. (1994) Journal of the American Chemical Society, 116, 11655-11666. ; _Citation_title . _Citation_status . _Citation_type . _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID ? _Journal_abbreviation . _Journal_name_full . _Journal_volume . _Journal_issue . _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first . _Page_last . _Year . _Details . save_ save_ref_8 _Saveframe_category citation _Citation_full ; Epstein, D.M., Benkovic, S.J. and Wright, P.E. (1995) Biochemistry, 34, 11037-11048. ; _Citation_title 'Dynamics of the dihydrofolate reductase-folate complex: catalytic sites and regions known to undergo conformational change exhibit diverse dynamical features.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 7669761 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Epstein D.M. M. . 2 Benkovic S.J. J. . 3 Wright P.E. E. . stop_ _Journal_abbreviation Biochemistry _Journal_name_full Biochemistry _Journal_volume 34 _Journal_issue 35 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 11037 _Page_last 11048 _Year 1995 _Details ; Backbone and tryptophan side-chain dynamics of uniformly 15N-labeled Escherichia coli dihydrofolate reductase were determined for the binary folate complex. The 15N T1 and T2 relaxation times and [1H]-15N heteronuclear NOEs were measured for 118 protonated backbone nitrogen atoms. The generalized order parameter (S2), the effective correlation time for internal motions (tau e), and the contribution to spin-spin relaxation through 15N exchange broadening (Rex) were determined for each residue by model-free analysis. Back-calculation of the relaxation rates for each resonance showed that the calculated dynamical parameters accurately predict the experimental data. Diverse dynamical features were evident in the DHFR backbone. Six sites exhibited order parameters significantly below the weighted mean S2 value (for the complex) of 0.81 +/- 0.002: residues G67 and D69 of the adenosine binding domain, and "hinge" residues K38 and V88, exhibited low S2 (0.29 < or = S2 < or = 0.6) and high tau e values (700 ps < or = tau e < or = 2 ns), as did sites within the beta A-alpha B loop and the beta F-beta G loop. Thus, large amplitude backbone motions, on the picosecond and nanosecond time scales, occurred at regions implicated in transition-state stabilization and in ligand-dependent conformational change. Significant Rex values (> or = 1 s-1) were determined for 45% of assigned resonances, many of which arise from residues surrounding the folate binding site. The mean S2 values of the occupied folate binding site and the unoccupied NADPH binding site were similar, indicating the backbone of the latter is at least as conformationally restricted as that of the occupied folate site. We conclude that the observed time-dependent structural fluctuations of the binary complex are in fact associated with catalytic properties of the molecule. ; save_ save_ref_9 _Saveframe_category citation _Citation_full ; Falzone, C.J., Cavanagh, J., Cowart, M., Palmer III, A.G., Matthews, C.R., Benkovic, S.J. and Wright, P.E. (1994) Journal of Biomolecular NMR, 4, 349-366. ; _Citation_title '1H, 15N and 13C resonance assignments, secondary structure, and the conformation of substrate in the binary folate complex of Escherichia coli dihydrofolate reductase.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 8019142 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Falzone C.J. J. . 2 Cavanagh J. . . 3 Cowart M. . . 4 Palmer A.G. G. 3rd 5 Matthews C.R. R. . 6 Benkovic S.J. J. . 7 Wright P.E. E. . stop_ _Journal_abbreviation 'J. Biomol. NMR' _Journal_name_full 'Journal of biomolecular NMR' _Journal_volume 4 _Journal_issue 3 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 349 _Page_last 366 _Year 1994 _Details ; By using fully 15N- and 15N/13C-labeled Escherichia coli dihydrofolate reductase, the sequence-specific 1H and 15N NMR assignments were achieved for 95% of the backbone resonances and for 90% of the 13C alpha resonances in the binary folate complex. These assignments were made through a variety of three-dimensional proton-detected 15N and 13C experiments. A smaller but significant subset of side-chain 1H and 13C assignments were also determined. In this complex, only one 15N or 13C resonance was detected per 15N or 13C protein nucleus, which indicated a single conformation. Proton-detected 13C experiments were also performed with unlabeled DHFR, complexed with 13C-7/13C-9 folate to probe for multiple conformations of the substrate in its binary complex. As was found for the protein resonances, only a single bound resonance corresponding to a productive conformation could be detected for C-7. These results are consistent with an earlier report based on 1H NMR data [Falzone, C.J. et al. (1990) Biochemistry, 29, 9667-9677] and suggest that the E. coli enzyme is not involved in any catalytically unproductive binding modes in the binary complex. This feature of the E. coli enzyme seems to be unique among the bacterial forms of DHFR that have been studied to date. ; save_ ################################## # Molecular system description # ################################## save_DHFR_NADPH _Saveframe_category molecular_system _Mol_system_name 'Dihydrofolate reductase complex with NADPH cofactor' _Abbreviation_common DHFR_NADPH _Enzyme_commission_number 1.5.1.3 loop_ _Mol_system_component_name _Mol_label DHFR $DHFR NADPH $NDP stop_ _System_molecular_weight . _System_physical_state native _System_oligomer_state monomer _System_paramagnetic no _System_thiol_state 'all free' loop_ _Biological_function reductase stop_ _Database_query_date . _Details . save_ ######################## # Monomeric polymers # ######################## save_DHFR _Saveframe_category monomeric_polymer _Mol_type polymer _Mol_polymer_class protein _Name_common 'Dihydrofolate reductase' _Abbreviation_common DHFR _Molecular_mass 18200 _Mol_thiol_state 'all free' _Details . ############################## # Polymer residue sequence # ############################## _Residue_count 159 _Mol_residue_sequence ; MISLIAALAVDRVIGMENAM PWNLPADLAWFKRNTLNKPV IMGRHTWESIGRPLPGRKNI ILSSQPGTDDRVTWVKSVDE AIAACGDVPEIMVIGGGRVY EQFLPKAQKLYLTHIDAEVE GDTHFPDYEPDDWESVFSEF HDADAQNSHSYCFEILERR ; loop_ _Residue_seq_code _Residue_label 1 MET 2 ILE 3 SER 4 LEU 5 ILE 6 ALA 7 ALA 8 LEU 9 ALA 10 VAL 11 ASP 12 ARG 13 VAL 14 ILE 15 GLY 16 MET 17 GLU 18 ASN 19 ALA 20 MET 21 PRO 22 TRP 23 ASN 24 LEU 25 PRO 26 ALA 27 ASP 28 LEU 29 ALA 30 TRP 31 PHE 32 LYS 33 ARG 34 ASN 35 THR 36 LEU 37 ASN 38 LYS 39 PRO 40 VAL 41 ILE 42 MET 43 GLY 44 ARG 45 HIS 46 THR 47 TRP 48 GLU 49 SER 50 ILE 51 GLY 52 ARG 53 PRO 54 LEU 55 PRO 56 GLY 57 ARG 58 LYS 59 ASN 60 ILE 61 ILE 62 LEU 63 SER 64 SER 65 GLN 66 PRO 67 GLY 68 THR 69 ASP 70 ASP 71 ARG 72 VAL 73 THR 74 TRP 75 VAL 76 LYS 77 SER 78 VAL 79 ASP 80 GLU 81 ALA 82 ILE 83 ALA 84 ALA 85 CYS 86 GLY 87 ASP 88 VAL 89 PRO 90 GLU 91 ILE 92 MET 93 VAL 94 ILE 95 GLY 96 GLY 97 GLY 98 ARG 99 VAL 100 TYR 101 GLU 102 GLN 103 PHE 104 LEU 105 PRO 106 LYS 107 ALA 108 GLN 109 LYS 110 LEU 111 TYR 112 LEU 113 THR 114 HIS 115 ILE 116 ASP 117 ALA 118 GLU 119 VAL 120 GLU 121 GLY 122 ASP 123 THR 124 HIS 125 PHE 126 PRO 127 ASP 128 TYR 129 GLU 130 PRO 131 ASP 132 ASP 133 TRP 134 GLU 135 SER 136 VAL 137 PHE 138 SER 139 GLU 140 PHE 141 HIS 142 ASP 143 ALA 144 ASP 145 ALA 146 GLN 147 ASN 148 SER 149 HIS 150 SER 151 TYR 152 CYS 153 PHE 154 GLU 155 ILE 156 LEU 157 GLU 158 ARG 159 ARG stop_ _Sequence_homology_query_date . _Sequence_homology_query_revised_last_date 2015-10-27 loop_ _Database_name _Database_accession_code _Database_entry_mol_name _Sequence_query_to_submitted_percentage _Sequence_subject_length _Sequence_identity _Sequence_positive _Sequence_homology_expectation_value BMRB 11492 Dihydrofolate_Reductase_from_E._coli 100.00 158 99.37 99.37 2.54e-111 BMRB 25019 DHFR 100.00 159 100.00 100.00 6.36e-114 PDB 1DDR "Molecule: Dihydrofolate Reductase (E.C.1.5.1.3) Complexed With Methotrexate And Urea" 100.00 159 100.00 100.00 6.36e-114 PDB 1DDS "Molecule: Dihydrofolate Reductase (E.C.1.5.1.3) Complexed With Methotrexate" 100.00 159 100.00 100.00 6.36e-114 PDB 1DHI "Long-Range Structural Effects In A Second-Site Revertant Of A Mutant Dihydrofolate Reductase" 100.00 159 98.74 99.37 2.37e-112 PDB 1DHJ "Long-Range Structural Effects In A Second-Site Revertant Of A Mutant Dihydrofolate Reductase" 100.00 159 98.11 98.74 3.16e-111 PDB 1DRA "Crystal Structure Of Unliganded Escherichia Coli Dihydrofolate Reductase. Ligand-Induced Conformational Changes And Cooperativi" 100.00 159 98.74 100.00 1.76e-112 PDB 1DRB "Crystal Structure Of Unliganded Escherichia Coli Dihydrofolate Reductase. Ligand-Induced Conformational Changes And Cooperativi" 100.00 159 98.74 99.37 9.71e-112 PDB 1DRE "Dihydrofolate Reductase Complexed With Methotrexate And Nicotinamide Adenine Dinucleotide Phosphate (Oxidized Form)" 100.00 159 99.37 100.00 3.90e-113 PDB 1DRH "Isomorphous Crystal Structures Of Escherichia Coli Dihydrofolate Reductase Complexed With Folate, 5- Deazafolate And 5,10-Didea" 100.00 159 99.37 100.00 3.90e-113 PDB 1DYH "Isomorphous Crystal Structures Of Escherichia Coli Dihydrofolate Reductase Complexed With Folate, 5- Deazafolate And 5,10-Didea" 100.00 159 99.37 100.00 3.90e-113 PDB 1DYI "Isomorphous Crystal Structures Of Escherichia Coli Dihydrofolate Reductase Complexed With Folate, 5- Deazafolate And 5,10-Didea" 100.00 159 99.37 100.00 3.90e-113 PDB 1DYJ "Isomorphous Crystal Structures Of Escherichia Coli Dihydrofolate Reductase Complexed With Folate, 5- Deazafolate And 5,10-Didea" 100.00 159 99.37 100.00 3.90e-113 PDB 1JOL "The Crystal Structure Of The Binary Complex Between Folinic Acid (leucovorin) And E. Coli Dihydrofolate Reductase" 100.00 159 99.37 100.00 3.90e-113 PDB 1JOM "The Crystal Structure Of The Binary Complex Between Folinic Acid (leucovorin) And E. Coli Dihydrofolate Reductase" 100.00 159 99.37 100.00 3.90e-113 PDB 1RA1 "Dihydrofolate Reductase Complexed With Nicotinamide Adenine Dinucleotide Phosphate (Reduced Form)" 100.00 159 99.37 100.00 3.90e-113 PDB 1RA2 "Dihydrofolate Reductase Complexed With Folate And Nicotinamide Adenine Dinucleotide Phosphate (Oxidized Form)" 100.00 159 99.37 100.00 3.90e-113 PDB 1RA3 "Dihydrofolate Reductase Complexed With Methotrexate And Nicotinamide Adenine Dinucleotide Phosphate (oxidized Form)" 100.00 159 99.37 100.00 3.90e-113 PDB 1RA8 "Dihydrofolate Reductase Complexed With Folate And 2- Monophosphoadenosine 5'-diphosphoribose" 100.00 159 99.37 100.00 3.90e-113 PDB 1RA9 "Dihydrofolate Reductase Complexed With Nicotinamide Adenine Dinucleotide Phosphate (Oxidized Form)" 100.00 159 99.37 100.00 3.90e-113 PDB 1RB2 "Dihydrofolate Reductase Complexed With Folate And Nicotinamide Adenine Dinucleotide Phosphate (Oxidized Form)" 100.00 159 99.37 100.00 3.90e-113 PDB 1RB3 "Dihydrofolate Reductase Complexed With Methotrexate And Nicotinamide Adenine Dinucleotide Phosphate (oxidized Form)" 100.00 159 99.37 100.00 3.90e-113 PDB 1RC4 "Dihydrofolate Reductase Complexed With 5,10- Dideazatetrahydrofolate And Nicotinamide Adenine Dinucleotide Phosphate (Oxidized " 100.00 159 99.37 100.00 3.90e-113 PDB 1RD7 "Dihydrofolate Reductase Complexed With Folate" 100.00 159 99.37 100.00 3.90e-113 PDB 1RE7 "Dihydrofolate Reductase Complexed With Folate" 100.00 159 99.37 100.00 3.90e-113 PDB 1RF7 "Structure Of Dihydrofolate Reductase Complexed With Dihydrofolate" 100.00 159 99.37 100.00 3.90e-113 PDB 1RG7 "Dihydrofolate Reductase Complexed With Methotrexate" 100.00 159 99.37 100.00 3.90e-113 PDB 1RH3 "Dihydrofolate Reductase Complexed With Methotrexate And Nicotinamide Adenine Dinucleotide Phosphate (Reduced Form)" 100.00 159 99.37 100.00 3.90e-113 PDB 1RX1 "Dihydrofolate Reductase (e.c.1.5.1.3) Complexed With Nicotinamide Adenine Dinucleotide Phosphate (reduced Form)" 100.00 159 99.37 100.00 3.90e-113 PDB 1RX2 "Dihydrofolate Reductase (E.C.1.5.1.3) Complexed With With Folate And Nicotinamide Adenine Dinucleotide Phosphate (Oxidized Form" 100.00 159 99.37 100.00 3.90e-113 PDB 1RX3 "Dihydrofolate Reductase (E.C.1.5.1.3) Complexed With Methotrexate And Nicotinamide Adenine Dinucleotide Phosphate (Reduced Form" 100.00 159 99.37 100.00 3.90e-113 PDB 1RX4 "Dihydrofolate Reductase (e.c.1.5.1.3) Complexed With 5,10- Dideazatetrahydrofolate And 2'-monophosphoadenosine 5'- Diphosphorib" 100.00 159 99.37 100.00 3.90e-113 PDB 1RX5 "Dihydrofolate Reductase (e.c.1.5.1.3) Complexed With 5,10- Dideazatetrahydrofolate" 100.00 159 99.37 100.00 3.90e-113 PDB 1RX6 "Dihydrofolate Reductase (E.C.1.5.1.3) Complexed With 5,10- Dideazatetrahydrofolate And Nicotinamide Adenine Dinucleotide Phosph" 100.00 159 99.37 100.00 3.90e-113 PDB 1RX7 "Structure Of Dihydrofolate Reductase Complexed With Folate" 100.00 159 99.37 100.00 3.90e-113 PDB 1RX8 "Dihydrofolate Reductase Complexed With Folate And 2'- Monophosphoadenosine 5'-Diphosphoribose" 100.00 159 99.37 100.00 3.90e-113 PDB 1RX9 "Dihydrofolate Reductase (E.C.1.5.1.3) Complexed With Nicotinamide Adenine Dinucleotide Phosphate (Oxidized Form)" 100.00 159 99.37 100.00 3.90e-113 PDB 1TDR "Expression, Characterization, And Crystallographic Analysis Of Telluromethionyl Dihydrofolate Reductase" 100.00 159 98.74 100.00 1.40e-112 PDB 2ANO "Crystal Structure Of E.coli Dihydrofolate Reductase In Complex With Nadph And The Inhibitor Ms-sh08-17" 100.00 159 99.37 100.00 3.90e-113 PDB 2ANQ "Crystal Structure Of E.coli Dhfr In Complex With Nadph And The Inhibitor Compound 10a." 100.00 159 99.37 100.00 3.90e-113 PDB 2DRC "Investigation Of The Functional Role Of Tryptophan-22 In Escherichia Coli Dihydrofolate Reductase By Site-Directed Mutagenesis" 100.00 159 98.74 100.00 4.05e-112 PDB 2INQ "Neutron Crystal Structure Of Escherichia Coli Dihydrofolate Reductase Bound To The Anti-Cancer Drug, Methotrexate" 100.00 159 99.37 100.00 3.90e-113 PDB 3DAU "Crystal Structure Of The Ternary Mtx Nadph Complex Of Escherichia Coli Dihydrofolate Reductase" 100.00 159 100.00 100.00 6.36e-114 PDB 3DRC "Investigation Of The Functional Role Of Tryptophan-22 In Escherichia Coli Dihydrofolate Reductase By Site-Directed Mutagenesis" 100.00 159 99.37 100.00 3.90e-113 PDB 3K74 "Disruption Of Protein Dynamics By An Allosteric Effector Antibody" 100.00 159 100.00 100.00 6.36e-114 PDB 3KFY "Dynamic Switching And Partial Occupancies Of A Small Molecule Inhibitor Complex Of Dhfr" 100.00 159 99.37 100.00 3.90e-113 PDB 3OCH "Chemically Self-Assembled Antibody Nanorings (Csans): Design And Characterization Of An Anti-Cd3 Igm Biomimetic" 100.00 159 99.37 100.00 3.90e-113 PDB 3QL0 "Crystal Structure Of N23pp/s148a Mutant Of E. Coli Dihydrofolate Reductase" 100.63 160 98.13 98.75 3.74e-110 PDB 3QL3 "Re-refined Coordinates For Pdb Entry 1rx2" 100.00 159 99.37 100.00 3.90e-113 PDB 3QYL "Sensitivity Of Receptor Internal Motions To Ligand Binding Affinity And Kinetic Off-rate" 100.00 159 99.37 100.00 3.90e-113 PDB 3QYO "Sensitivity Of Receptor Internal Motions To Ligand Binding Affinity And Kinetic Off-rate" 100.00 159 99.37 100.00 3.90e-113 PDB 3R33 "Evidence For Dynamic Motion In Proteins As A Mechanism For Ligand Dissociation" 100.00 159 99.37 100.00 3.90e-113 PDB 4DFR "Crystal Structures Of Escherichia Coli And Lactobacillus Casei Dihydrofolate Reductase Refined At 1.7 Angstroms Resolution. I. " 100.00 159 98.74 100.00 1.40e-112 PDB 4EIG "Ca1698 Camel Antibody Fragment In Complex With Dhfr" 100.00 159 100.00 100.00 6.36e-114 PDB 4EIZ "Structure Of Nb113 Bound To Apodhfr" 100.00 159 100.00 100.00 6.36e-114 PDB 4EJ1 "Binding Of Nb113 Camelid Antibody Fragment With The Binary Dhfr:folate Complex" 100.00 159 100.00 100.00 6.36e-114 PDB 4FHB "Enhancing Dhfr Catalysis By Binding Of An Allosteric Regulator Nanobody (nb179)" 100.00 159 100.00 100.00 6.36e-114 PDB 4I13 "Nanobody Ca1697 Binding To The Dhfr.folate Binary Complex" 100.00 159 100.00 100.00 6.36e-114 PDB 4I1N "R104a-ca1697 Nanobody Binding To The Binary Dhfr.folate Complex" 100.00 159 100.00 100.00 6.36e-114 PDB 4KJJ "Cryogenic Wt Dhfr" 100.00 159 100.00 100.00 6.36e-114 PDB 4KJK "Room Temperature Wt Dhfr" 100.00 159 100.00 100.00 6.36e-114 PDB 4KJL "Room Temperature N23pps148a Dhfr" 100.63 160 98.13 98.75 3.74e-110 PDB 4NX6 "Single Room Temperature Model Of Dhfr" 100.00 159 100.00 100.00 6.36e-114 PDB 4NX7 "Single Cryogenic Temperature Model Of Dhfr" 100.00 159 100.00 100.00 6.36e-114 PDB 4P3Q "Room-temperature Wt Dhfr, Time-averaged Ensemble" 100.00 159 100.00 100.00 6.36e-114 PDB 4P3R "Cryogenic Wt Dhfr, Time-averaged Ensemble" 100.00 159 100.00 100.00 6.36e-114 PDB 4P66 "Electrostatics Of Active Site Microenvironments Of E. Coli Dhfr" 100.00 159 98.11 98.11 1.21e-110 PDB 4P68 "Electrostatics Of Active Site Microenvironments For E. Coli Dhfr" 100.00 159 98.11 98.11 1.01e-110 PDB 4PSS "Multiconformer Model For Escherichia Coli Dihydrofolate Reductase At 100k" 100.00 159 99.37 99.37 2.15e-112 PDB 4PST "Multiconformer Model For Escherichia Coli Dihydrofolate Reductase At 277 K" 100.00 159 99.37 99.37 2.15e-112 PDB 4PSY "100k Crystal Structure Of Escherichia Coli Dihydrofolate Reductase" 100.00 159 99.37 99.37 2.15e-112 PDB 4PTH "Ensemble Model For Escherichia Coli Dihydrofolate Reductase At 100k" 100.00 159 99.37 99.37 2.15e-112 PDB 4PTJ "Ensemble Model For Escherichia Coli Dihydrofolate Reductase At 277k" 100.00 159 99.37 99.37 2.15e-112 PDB 4QLE "Crystal Structure Of I14a Dhfr Mutant Complexed With Folate And Nadp+" 100.00 159 99.37 99.37 3.99e-113 PDB 4QLF "Crystal Structure Of I14g Dhfr Mutant Complexed With Folate And Nadp+" 100.00 159 99.37 99.37 1.27e-112 PDB 4QLG "Crystal Structure Of I14v Dhfr Mutant Complexed With Folate And Nadp+" 100.00 159 99.37 100.00 1.05e-113 PDB 4RGC "277k Crystal Structure Of Escherichia Coli Dihydrofolate Reductase" 100.00 159 99.37 99.37 2.15e-112 PDB 5CC9 "L28f E.coli Dihydrofolate Reductase Complexed With 5,10- Dideazatetrahydrofolate And Oxidized Nicotinamide Adenine Dinucleotide" 100.00 159 99.37 99.37 2.47e-113 PDB 5CCC "Wild-type E.coli Dihydrofolate Reductase Complexed With 5,10- Dideazatetrahydrofolate And Oxidized Nicotinamide Adenine Dinucle" 100.00 159 100.00 100.00 6.36e-114 PDB 5DFR "Crystal Structure Of Unliganded Escherichia Coli Dihydrofolate Reductase. Ligand-Induced Conformational Changes And Cooperativi" 100.00 159 99.37 100.00 3.90e-113 PDB 6DFR "Crystal Structures Of Escherichia Coli Dihydrofolate Reductase. The Nadp+ Holoenzyme And The Folate(Dot)nadp+ Ternary Complex. " 100.00 159 99.37 100.00 3.90e-113 PDB 7DFR "Crystal Structures Of Escherichia Coli Dihydrofolate Reductase. The Nadp+ Holoenzyme And The Folate(Dot)nadp+ Ternary Complex. " 100.00 159 99.37 100.00 3.90e-113 DBJ BAA05974 "fusion protein, composed of HCV p21 (NS2), E.coli dihydroforate reductase, substrate polypeptide for HCV serine proteinase and " 99.37 847 100.00 100.00 1.17e-105 DBJ BAB33474 "dihydrofolate reductase type I; trimethoprim resistance [Escherichia coli O157:H7 str. Sakai]" 100.00 159 99.37 99.37 2.37e-112 DBJ BAB96616 "dihydrofolate reductase [Escherichia coli str. K12 substr. W3110]" 100.00 159 100.00 100.00 6.36e-114 DBJ BAG75573 "dihydrofolate reductase [Escherichia coli SE11]" 100.00 159 100.00 100.00 6.36e-114 DBJ BAI23410 "dihydrofolate reductase [Escherichia coli O26:H11 str. 11368]" 100.00 159 100.00 100.00 6.36e-114 EMBL CAA28755 "unnamed protein product [Escherichia coli]" 100.00 159 98.74 99.37 5.15e-112 EMBL CAD01243 "dihydrofolate reductase type I [Salmonella enterica subsp. enterica serovar Typhi str. CT18]" 100.00 159 97.48 98.74 6.99e-112 EMBL CAP74618 "Dihydrofolate reductase [Escherichia coli LF82]" 100.00 159 100.00 100.00 6.36e-114 EMBL CAQ30568 "dihydrofolate reductase [Escherichia coli BL21(DE3)]" 100.00 159 100.00 100.00 6.36e-114 EMBL CAQ87642 "dihydrofolate reductase [Escherichia fergusonii ATCC 35469]" 100.00 159 100.00 100.00 6.36e-114 GB AAA87976 "dihydrofolate reductase [Escherichia coli]" 100.00 159 100.00 100.00 6.36e-114 GB AAC73159 "dihydrofolate reductase [Escherichia coli str. K-12 substr. MG1655]" 100.00 159 100.00 100.00 6.36e-114 GB AAG54351 "dihydrofolate reductase type I; trimethoprim resistance [Escherichia coli O157:H7 str. EDL933]" 100.00 159 99.37 99.37 2.37e-112 GB AAN41711 "dihydrofolate reductase type I [Shigella flexneri 2a str. 301]" 100.00 159 100.00 100.00 6.36e-114 GB AAN78554 "Dihydrofolate reductase [Escherichia coli CFT073]" 100.00 204 100.00 100.00 9.78e-114 PIR AC0513 "dihydrofolate reductase type I [imported] - Salmonella enterica subsp. enterica serovar Typhi (strain CT18)" 100.00 159 97.48 98.74 6.99e-112 REF NP_308078 "dihydrofolate reductase [Escherichia coli O157:H7 str. Sakai]" 100.00 159 99.37 99.37 2.37e-112 REF NP_414590 "dihydrofolate reductase [Escherichia coli str. K-12 substr. MG1655]" 100.00 159 100.00 100.00 6.36e-114 REF NP_454699 "dihydrofolate reductase type I [Salmonella enterica subsp. enterica serovar Typhi str. CT18]" 100.00 159 97.48 98.74 6.99e-112 REF NP_706004 "dihydrofolate reductase [Shigella flexneri 2a str. 301]" 100.00 159 100.00 100.00 6.36e-114 REF WP_000378105 "MULTISPECIES: dihydrofolate reductase [Proteobacteria]" 100.00 196 100.00 100.00 1.16e-113 SP P0ABQ4 "RecName: Full=Dihydrofolate reductase" 100.00 159 100.00 100.00 6.36e-114 SP P0ABQ5 "RecName: Full=Dihydrofolate reductase" 100.00 159 100.00 100.00 6.36e-114 SP P0ABQ6 "RecName: Full=Dihydrofolate reductase" 100.00 159 100.00 100.00 6.36e-114 stop_ save_ ############# # Ligands # ############# save_NDP _Saveframe_category ligand _Mol_type non-polymer _Name_common "NDP (NADPH DIHYDRO-NICOTINAMIDE-ADENINE-DINUCLEOTIDE PHOSPHATE)" _BMRB_code . _PDB_code NDP _Molecular_mass 745.421 _Mol_charge 0 _Mol_paramagnetic . _Mol_aromatic yes _Details ; Information obtained from PDB's Chemical Component Dictionary at http://wwpdb-remediation.rutgers.edu/downloads.html Downloaded on Mon Jul 18 09:25:37 2011 ; loop_ _Atom_name _PDB_atom_name _Atom_type _Atom_chirality _Atom_charge _Atom_oxidation_number _Atom_unpaired_electrons PA PA P . 0 . ? O1A O1A O . 0 . ? O2A O2A O . 0 . ? O5B O5B O . 0 . ? C5B C5B C . 0 . ? C4B C4B C . 0 . ? O4B O4B O . 0 . ? C3B C3B C . 0 . ? O3B O3B O . 0 . ? C2B C2B C . 0 . ? O2B O2B O . 0 . ? C1B C1B C . 0 . ? N9A N9A N . 0 . ? C8A C8A C . 0 . ? N7A N7A N . 0 . ? C5A C5A C . 0 . ? C6A C6A C . 0 . ? N6A N6A N . 0 . ? N1A N1A N . 0 . ? C2A C2A C . 0 . ? N3A N3A N . 0 . ? C4A C4A C . 0 . ? O3 O3 O . 0 . ? PN PN P . 0 . ? O1N O1N O . 0 . ? O2N O2N O . 0 . ? O5D O5D O . 0 . ? C5D C5D C . 0 . ? C4D C4D C . 0 . ? O4D O4D O . 0 . ? C3D C3D C . 0 . ? O3D O3D O . 0 . ? C2D C2D C . 0 . ? O2D O2D O . 0 . ? C1D C1D C . 0 . ? N1N N1N N . 0 . ? C2N C2N C . 0 . ? C3N C3N C . 0 . ? C7N C7N C . 0 . ? O7N O7N O . 0 . ? N7N N7N N . 0 . ? C4N C4N C . 0 . ? C5N C5N C . 0 . ? C6N C6N C . 0 . ? P2B P2B P . 0 . ? O1X O1X O . 0 . ? O2X O2X O . 0 . ? O3X O3X O . 0 . ? HOA2 HOA2 H . 0 . ? H51A H51A H . 0 . ? H52A H52A H . 0 . ? H4B H4B H . 0 . ? H3B H3B H . 0 . ? HO3A HO3A H . 0 . ? H2B H2B H . 0 . ? H1B H1B H . 0 . ? H8A H8A H . 0 . ? H61A H61A H . 0 . ? H62A H62A H . 0 . ? H2A H2A H . 0 . ? H21N H21N H . 0 . ? H51N H51N H . 0 . ? H52N H52N H . 0 . ? H4D H4D H . 0 . ? H3D H3D H . 0 . ? HO3N HO3N H . 0 . ? H2D H2D H . 0 . ? HO2N HO2N H . 0 . ? H1D H1D H . 0 . ? H2N H2N H . 0 . ? H71N H71N H . 0 . ? H72N H72N H . 0 . ? H41N H41N H . 0 . ? H42N H42N H . 0 . ? H5N H5N H . 0 . ? H6N H6N H . 0 . ? HOP2 HOP2 H . 0 . ? HOP3 HOP3 H . 0 . ? stop_ loop_ _Bond_order _Bond_atom_one_atom_name _Bond_atom_two_atom_name _PDB_bond_atom_one_atom_name _PDB_bond_atom_two_atom_name DOUB PA O1A ? ? SING PA O2A ? ? SING PA O5B ? ? SING PA O3 ? ? SING O2A HOA2 ? ? SING O5B C5B ? ? SING C5B C4B ? ? SING C5B H51A ? ? SING C5B H52A ? ? SING C4B O4B ? ? SING C4B C3B ? ? SING C4B H4B ? ? SING O4B C1B ? ? SING C3B O3B ? ? SING C3B C2B ? ? SING C3B H3B ? ? SING O3B HO3A ? ? SING C2B O2B ? ? SING C2B C1B ? ? SING C2B H2B ? ? SING O2B P2B ? ? SING C1B N9A ? ? SING C1B H1B ? ? SING N9A C8A ? ? SING N9A C4A ? ? DOUB C8A N7A ? ? SING C8A H8A ? ? SING N7A C5A ? ? SING C5A C6A ? ? DOUB C5A C4A ? ? SING C6A N6A ? ? DOUB C6A N1A ? ? SING N6A H61A ? ? SING N6A H62A ? ? SING N1A C2A ? ? DOUB C2A N3A ? ? SING C2A H2A ? ? SING N3A C4A ? ? SING O3 PN ? ? DOUB PN O1N ? ? SING PN O2N ? ? SING PN O5D ? ? SING O2N H21N ? ? SING O5D C5D ? ? SING C5D C4D ? ? SING C5D H51N ? ? SING C5D H52N ? ? SING C4D O4D ? ? SING C4D C3D ? ? SING C4D H4D ? ? SING O4D C1D ? ? SING C3D O3D ? ? SING C3D C2D ? ? SING C3D H3D ? ? SING O3D HO3N ? ? SING C2D O2D ? ? SING C2D C1D ? ? SING C2D H2D ? ? SING O2D HO2N ? ? SING C1D N1N ? ? SING C1D H1D ? ? SING N1N C2N ? ? SING N1N C6N ? ? DOUB C2N C3N ? ? SING C2N H2N ? ? SING C3N C7N ? ? SING C3N C4N ? ? DOUB C7N O7N ? ? SING C7N N7N ? ? SING N7N H71N ? ? SING N7N H72N ? ? SING C4N C5N ? ? SING C4N H41N ? ? SING C4N H42N ? ? DOUB C5N C6N ? ? SING C5N H5N ? ? SING C6N H6N ? ? DOUB P2B O1X ? ? SING P2B O2X ? ? SING P2B O3X ? ? SING O2X HOP2 ? ? SING O3X HOP3 ? ? stop_ _Mol_thiol_state . _Sequence_homology_query_date . save_ #################### # Natural source # #################### save_natural_source _Saveframe_category natural_source loop_ _Mol_label _Organism_name_common _NCBI_taxonomy_ID _Superkingdom _Kingdom _Genus _Species _Strain _Plasmid $DHFR 'E. coli' 562 Eubacteria . Escherichia coli K12 pET-22b+ stop_ save_ ######################### # Experimental source # ######################### save_experimental_source _Saveframe_category experimental_source loop_ _Mol_label _Production_method _Host_organism_name_common _Genus _Species _Strain _Vector_type _Vector_name _Vendor_name _Details $DHFR 'recombinant technology' 'E. coli' . . K12 plasmid pET-22b+ . . $NDP vendor . . . . . . Sigma 'Enzymatically reduced' stop_ save_ ##################################### # Sample contents and methodology # ##################################### ######################## # Sample description # ######################## save_sample_1 _Saveframe_category sample _Sample_type solution _Details . loop_ _Mol_label _Concentration_value _Concentration_value_units _Isotopic_labeling $DHFR 1.0 mM '[U-13C; U-15N]' NADPH 40.0 mM . 'potassium phosphate' 70.0 mM . KCl 25.0 mM . D2O 7 % '[U-99.99% 2H]' NaN3 0.02 % . DTT 1 mM . DSS 20 uM . stop_ save_ save_sample_2 _Saveframe_category sample _Sample_type solution _Details . loop_ _Mol_label _Concentration_value _Concentration_value_units _Isotopic_labeling $DHFR 1.0 mM '[U-13C; U-15N; U-2H]' NADPH 40.0 mM . 'potassium phosphate' 40.0 mM . KCl 25.0 mM . D2O 7 % . NaN3 0.02 % . DTT 1.0 mM . DSS 20.0 uM . stop_ save_ ############################ # Computer software used # ############################ save_NMRPipe _Saveframe_category software _Name NMRPipe _Version . loop_ _Task 'spectrum processing' stop_ _Details . save_ save_NMRView _Saveframe_category software _Name NMRView _Version . loop_ _Task 'spectrum analysis and assignment' stop_ _Details . save_ save_seq_prob _Saveframe_category software _Name seq_prob _Version . loop_ _Task 'sequence specific assignment' stop_ _Details . _Citation_label $ref_6 save_ ######################### # Experimental detail # ######################### ################################## # NMR Spectrometer definitions # ################################## save_NMR_spectrometer_1 _Saveframe_category NMR_spectrometer _Manufacturer Bruker _Model AMX _Field_strength 500 _Details . save_ save_NMR_spectrometer_2 _Saveframe_category NMR_spectrometer _Manufacturer Bruker _Model AMX-II _Field_strength 500 _Details . save_ save_NMR_spectrometer_3 _Saveframe_category NMR_spectrometer _Manufacturer Bruker _Model AMX _Field_strength 600 _Details . save_ save_NMR_spectrometer_4 _Saveframe_category NMR_spectrometer _Manufacturer Bruker _Model DRX _Field_strength 600 _Details . save_ ############################# # NMR applied experiments # ############################# save_15N-HSQC_1 _Saveframe_category NMR_applied_experiment _Experiment_name 15N-HSQC _Sample_label . save_ save_HNCA_2 _Saveframe_category NMR_applied_experiment _Experiment_name HNCA _Sample_label . save_ save_HNCACB_3 _Saveframe_category NMR_applied_experiment _Experiment_name HNCACB _Sample_label . save_ save_CBCA(CO)NH_4 _Saveframe_category NMR_applied_experiment _Experiment_name CBCA(CO)NH _Sample_label . save_ save_HNCO_5 _Saveframe_category NMR_applied_experiment _Experiment_name HNCO _Sample_label . save_ save_HN(CA)CO_6 _Saveframe_category NMR_applied_experiment _Experiment_name HN(CA)CO _Sample_label . save_ save_15N-HSQC-NOESY-HSQC_7 _Saveframe_category NMR_applied_experiment _Experiment_name 15N-HSQC-NOESY-HSQC _Sample_label . save_ save_ddHNCA_8 _Saveframe_category NMR_applied_experiment _Experiment_name ddHNCA _Sample_label . save_ save_ddHN(CO)CA_9 _Saveframe_category NMR_applied_experiment _Experiment_name ddHN(CO)CA _Sample_label . save_ save_ddHN(CA)CB_10 _Saveframe_category NMR_applied_experiment _Experiment_name ddHN(CA)CB _Sample_label . save_ save_ddHN(CO)CACB_11 _Saveframe_category NMR_applied_experiment _Experiment_name ddHN(CO)CACB _Sample_label . save_ save_dd_-_deuterium_decoupled_experiments_12 _Saveframe_category NMR_applied_experiment _Experiment_name 'dd - deuterium decoupled experiments' _Sample_label . save_ save_NMR_spec_expt__0_1 _Saveframe_category NMR_applied_experiment _Experiment_name 15N-HSQC _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_2 _Saveframe_category NMR_applied_experiment _Experiment_name HNCA _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_3 _Saveframe_category NMR_applied_experiment _Experiment_name HNCACB _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_4 _Saveframe_category NMR_applied_experiment _Experiment_name CBCA(CO)NH _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_5 _Saveframe_category NMR_applied_experiment _Experiment_name HNCO _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_6 _Saveframe_category NMR_applied_experiment _Experiment_name HN(CA)CO _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_7 _Saveframe_category NMR_applied_experiment _Experiment_name 15N-HSQC-NOESY-HSQC _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_8 _Saveframe_category NMR_applied_experiment _Experiment_name ddHNCA _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_9 _Saveframe_category NMR_applied_experiment _Experiment_name ddHN(CO)CA _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_10 _Saveframe_category NMR_applied_experiment _Experiment_name ddHN(CA)CB _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_11 _Saveframe_category NMR_applied_experiment _Experiment_name ddHN(CO)CACB _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_12 _Saveframe_category NMR_applied_experiment _Experiment_name 'dd - deuterium decoupled experiments' _BMRB_pulse_sequence_accession_number . _Details . save_ ####################### # Sample conditions # ####################### save_cond_1 _Saveframe_category sample_conditions _Details . loop_ _Variable_type _Variable_value _Variable_value_error _Variable_value_units pH 7.6 0.1 n/a temperature 282 0.1 K stop_ save_ #################### # NMR parameters # #################### ############################## # Assigned chemical shifts # ############################## ################################ # Chemical shift referencing # ################################ save_chemical_shift_reference_set_1 _Saveframe_category chemical_shift_reference _Details . loop_ _Mol_common_name _Atom_type _Atom_isotope_number _Atom_group _Chem_shift_units _Chem_shift_value _Reference_method _Reference_type _External_reference_sample_geometry _External_reference_location _External_reference_axis _Indirect_shift_ratio DSS H 1 'methyl protons' ppm 0.0 internal direct . . . 1.0 DSS N 15 'methyl protons' ppm 0.0 . indirect . . . 0.101329118 DSS C 13 'methyl protons' ppm 0.0 . indirect . . . 0.251449530 stop_ save_ ################################### # Assigned chemical shift lists # ################################### ################################################################### # Chemical Shift Ambiguity Index Value Definitions # # # # The values other than 1 are used for those atoms with different # # chemical shifts that cannot be assigned to stereospecific atoms # # or to specific residues or chains. # # # # Index Value Definition # # # # 1 Unique (including isolated methyl protons, # # geminal atoms, and geminal methyl # # groups with identical chemical shifts) # # (e.g. ILE HD11, HD12, HD13 protons) # # 2 Ambiguity of geminal atoms or geminal methyl # # proton groups (e.g. ASP HB2 and HB3 # # protons, LEU CD1 and CD2 carbons, or # # LEU HD11, HD12, HD13 and HD21, HD22, # # HD23 methyl protons) # # 3 Aromatic atoms on opposite sides of # # symmetrical rings (e.g. TYR HE1 and HE2 # # protons) # # 4 Intraresidue ambiguities (e.g. LYS HG and # # HD protons or TRP HZ2 and HZ3 protons) # # 5 Interresidue ambiguities (LYS 12 vs. LYS 27) # # 6 Intermolecular ambiguities (e.g. ASP 31 CA # # in monomer 1 and ASP 31 CA in monomer 2 # # of an asymmetrical homodimer, duplex # # DNA assignments, or other assignments # # that may apply to atoms in one or more # # molecule in the molecular assembly) # # 9 Ambiguous, specific ambiguity not defined # # # ################################################################### save_assigned_chemical_shift_set_1 _Saveframe_category assigned_chemical_shifts _Details . loop_ _Experiment_label 15N-HSQC HNCA HNCACB CBCA(CO)NH HNCO HN(CA)CO 15N-HSQC-NOESY-HSQC ddHNCA ddHN(CO)CA ddHN(CA)CB ddHN(CO)CACB 'dd - deuterium decoupled experiments' stop_ loop_ _Sample_label $sample_1 stop_ _Sample_conditions_label $cond_1 _Chem_shift_reference_set_label $chemical_shift_reference_set_1 _Mol_system_component_name DHFR _Text_data_format . _Text_data . loop_ _Atom_shift_assign_ID _Residue_author_seq_code _Residue_seq_code _Residue_label _Atom_name _Atom_type _Chem_shift_value _Chem_shift_value_error _Chem_shift_ambiguity_code 1 . 1 MET CA C 55.509 . 1 2 . 1 MET CB C 32.998 . 1 3 . 2 ILE N N 124.139 . 1 4 . 2 ILE H H 9.428 . 1 5 . 2 ILE CA C 61.227 . 1 6 . 2 ILE CB C 39.116 . 1 7 . 2 ILE C C 174.439 . 1 8 . 3 SER N N 125.727 . 1 9 . 3 SER H H 9.414 . 1 10 . 3 SER CA C 56.372 . 1 11 . 3 SER CB C 65.647 . 1 12 . 3 SER C C 173.602 . 1 13 . 4 LEU N N 121.477 . 1 14 . 4 LEU H H 8.503 . 1 15 . 4 LEU CA C 53.446 . 1 16 . 4 LEU CB C 43.633 . 1 17 . 4 LEU C C 175.507 . 1 18 . 5 ILE N N 119.082 . 1 19 . 5 ILE H H 8.468 . 1 20 . 5 ILE CA C 57.940 . 1 21 . 5 ILE CB C 41.612 . 1 22 . 5 ILE C C 172.998 . 1 23 . 6 ALA N N 128.256 . 1 24 . 6 ALA H H 8.672 . 1 25 . 6 ALA CA C 52.264 . 1 26 . 6 ALA CB C 26.631 . 1 27 . 6 ALA C C 174.299 . 1 28 . 7 ALA N N 127.606 . 1 29 . 7 ALA H H 10.408 . 1 30 . 7 ALA CA C 50.950 . 1 31 . 7 ALA CB C 20.864 . 1 32 . 7 ALA C C 174.717 . 1 33 . 8 LEU N N 122.570 . 1 34 . 8 LEU H H 9.139 . 1 35 . 8 LEU CA C 54.017 . 1 36 . 8 LEU CB C 45.871 . 1 37 . 8 LEU C C 175.972 . 1 38 . 9 ALA N N 126.109 . 1 39 . 9 ALA H H 8.644 . 1 40 . 9 ALA CA C 49.915 . 1 41 . 9 ALA CB C 19.396 . 1 42 . 9 ALA C C 176.204 . 1 43 . 10 VAL N N 117.960 . 1 44 . 10 VAL H H 7.636 . 1 45 . 10 VAL CA C 65.081 . 1 46 . 10 VAL CB C 31.628 . 1 47 . 10 VAL C C 177.970 . 1 48 . 11 ASP N N 122.427 . 1 49 . 11 ASP H H 9.247 . 1 50 . 11 ASP CA C 56.037 . 1 51 . 11 ASP CB C 38.734 . 1 52 . 11 ASP C C 174.903 . 1 53 . 12 ARG N N 107.745 . 1 54 . 12 ARG H H 8.530 . 1 55 . 12 ARG CA C 57.354 . 1 56 . 12 ARG CB C 27.627 . 1 57 . 12 ARG C C 175.740 . 1 58 . 13 VAL N N 120.461 . 1 59 . 13 VAL H H 7.100 . 1 60 . 13 VAL CA C 66.022 . 1 61 . 13 VAL CB C 33.050 . 1 62 . 14 ILE CA C 60.770 . 1 63 . 14 ILE CB C 41.092 . 1 64 . 14 ILE C C 175.577 . 1 65 . 15 GLY N N 105.202 . 1 66 . 15 GLY H H 7.318 . 1 67 . 15 GLY CA C 45.156 . 1 68 . 15 GLY C C 170.884 . 1 69 . 16 MET N N 119.421 . 1 70 . 16 MET H H 8.763 . 1 71 . 16 MET CA C 55.335 . 1 72 . 16 MET CB C 34.818 . 1 73 . 17 GLU N N 130.383 . 1 74 . 17 GLU H H 10.204 . 1 75 . 17 GLU CA C 57.611 . 1 76 . 17 GLU CB C 27.052 . 1 77 . 17 GLU C C 175.577 . 1 78 . 18 ASN N N 114.761 . 1 79 . 18 ASN H H 9.778 . 1 80 . 18 ASN CA C 54.293 . 1 81 . 18 ASN CB C 38.749 . 1 82 . 18 ASN C C 175.577 . 1 83 . 19 ALA N N 119.752 . 1 84 . 19 ALA H H 7.572 . 1 85 . 19 ALA CA C 50.367 . 1 86 . 19 ALA CB C 22.174 . 1 87 . 19 ALA C C 176.367 . 1 88 . 20 MET N N 120.626 . 1 89 . 20 MET H H 8.543 . 1 90 . 20 MET CA C 52.916 . 1 91 . 20 MET CB C 32.114 . 1 92 . 21 PRO CA C 62.534 . 1 93 . 21 PRO CB C 28.919 . 1 94 . 21 PRO C C 173.881 . 1 95 . 22 TRP N N 116.084 . 1 96 . 22 TRP H H 7.259 . 1 97 . 22 TRP CA C 57.283 . 1 98 . 22 TRP CB C 29.010 . 1 99 . 22 TRP C C 173.649 . 1 100 . 23 ASN N N 116.606 . 1 101 . 23 ASN H H 8.943 . 1 102 . 23 ASN CA C 53.318 . 1 103 . 23 ASN CB C 40.188 . 1 104 . 23 ASN C C 173.091 . 1 105 . 24 LEU N N 126.273 . 1 106 . 24 LEU H H 9.394 . 1 107 . 24 LEU CA C 51.668 . 1 108 . 24 LEU CB C 43.763 . 1 109 . 25 PRO CA C 65.319 . 1 110 . 25 PRO CB C 31.490 . 1 111 . 25 PRO C C 179.294 . 1 112 . 26 ALA N N 120.775 . 1 113 . 26 ALA H H 9.436 . 1 114 . 26 ALA CA C 55.064 . 1 115 . 26 ALA CB C 19.304 . 1 116 . 26 ALA C C 181.385 . 1 117 . 27 ASP N N 117.260 . 1 118 . 27 ASP H H 7.740 . 1 119 . 27 ASP CA C 57.083 . 1 120 . 27 ASP CB C 43.412 . 1 121 . 27 ASP C C 177.598 . 1 122 . 28 LEU N N 118.610 . 1 123 . 28 LEU H H 7.568 . 1 124 . 28 LEU CA C 58.210 . 1 125 . 28 LEU CB C 40.330 . 1 126 . 28 LEU C C 180.316 . 1 127 . 29 ALA N N 120.365 . 1 128 . 29 ALA H H 7.734 . 1 129 . 29 ALA CA C 55.091 . 1 130 . 29 ALA CB C 18.052 . 1 131 . 29 ALA C C 178.795 . 1 132 . 30 TRP N N 123.417 . 1 133 . 30 TRP H H 7.308 . 1 134 . 30 TRP CA C 59.982 . 1 135 . 30 TRP CB C 29.996 . 1 136 . 30 TRP C C 177.738 . 1 137 . 31 PHE N N 122.806 . 1 138 . 31 PHE H H 9.373 . 1 139 . 31 PHE CA C 63.312 . 1 140 . 31 PHE CB C 38.873 . 1 141 . 31 PHE C C 179.526 . 1 142 . 32 LYS N N 121.564 . 1 143 . 32 LYS H H 8.556 . 1 144 . 32 LYS CA C 60.460 . 1 145 . 32 LYS CB C 32.522 . 1 146 . 32 LYS C C 178.016 . 1 147 . 33 ARG N N 116.397 . 1 148 . 33 ARG H H 7.884 . 1 149 . 33 ARG CA C 58.692 . 1 150 . 33 ARG CB C 29.764 . 1 151 . 33 ARG C C 178.435 . 1 152 . 34 ASN N N 111.439 . 1 153 . 34 ASN H H 7.102 . 1 154 . 34 ASN CA C 54.505 . 1 155 . 34 ASN CB C 39.262 . 1 156 . 35 THR N N 106.642 . 1 157 . 35 THR H H 7.142 . 1 158 . 35 THR CA C 61.829 . 1 159 . 35 THR CB C 70.543 . 1 160 . 35 THR C C 174.485 . 1 161 . 36 LEU N N 124.315 . 1 162 . 36 LEU H H 7.183 . 1 163 . 36 LEU CA C 57.060 . 1 164 . 36 LEU CB C 41.825 . 1 165 . 36 LEU C C 173.997 . 1 166 . 37 ASN N N 115.771 . 1 167 . 37 ASN H H 8.426 . 1 168 . 37 ASN CA C 54.693 . 1 169 . 37 ASN CB C 37.520 . 1 170 . 37 ASN C C 173.382 . 1 171 . 38 LYS N N 119.764 . 1 172 . 38 LYS H H 7.689 . 1 173 . 38 LYS CA C 54.164 . 1 174 . 38 LYS CB C 34.506 . 1 175 . 39 PRO CA C 62.500 . 1 176 . 39 PRO CB C 32.291 . 1 177 . 39 PRO C C 175.600 . 1 178 . 40 VAL N N 111.645 . 1 179 . 40 VAL H H 8.527 . 1 180 . 40 VAL CA C 56.588 . 1 181 . 40 VAL CB C 34.228 . 1 182 . 40 VAL C C 173.718 . 1 183 . 41 ILE N N 121.233 . 1 184 . 41 ILE H H 8.481 . 1 185 . 41 ILE CA C 59.481 . 1 186 . 41 ILE CB C 40.676 . 1 187 . 41 ILE C C 174.834 . 1 188 . 42 MET N N 123.295 . 1 189 . 42 MET H H 9.035 . 1 190 . 42 MET CA C 52.199 . 1 191 . 42 MET CB C 39.636 . 1 192 . 42 MET C C 174.555 . 1 193 . 43 GLY N N 105.432 . 1 194 . 43 GLY H H 9.048 . 1 195 . 43 GLY CA C 44.369 . 1 196 . 43 GLY C C 175.136 . 1 197 . 44 ARG N N 118.763 . 1 198 . 44 ARG H H 7.633 . 1 199 . 44 ARG CA C 61.019 . 1 200 . 44 ARG CB C 30.068 . 1 201 . 44 ARG C C 178.551 . 1 202 . 45 HIS N N 113.616 . 1 203 . 45 HIS H H 7.429 . 1 204 . 45 HIS CA C 57.916 . 1 205 . 45 HIS CB C 27.052 . 1 206 . 45 HIS C C 178.179 . 1 207 . 46 THR N N 121.167 . 1 208 . 46 THR H H 8.076 . 1 209 . 46 THR CA C 68.772 . 1 210 . 46 THR CB C 68.772 . 1 211 . 46 THR C C 176.413 . 1 212 . 47 TRP N N 123.330 . 1 213 . 47 TRP H H 8.331 . 1 214 . 47 TRP CA C 59.650 . 1 215 . 47 TRP CB C 30.276 . 1 216 . 47 TRP C C 177.134 . 1 217 . 48 GLU N N 117.821 . 1 218 . 48 GLU H H 8.199 . 1 219 . 48 GLU CA C 58.884 . 1 220 . 48 GLU CB C 28.577 . 1 221 . 48 GLU C C 178.597 . 1 222 . 49 SER N N 114.305 . 1 223 . 49 SER H H 7.873 . 1 224 . 49 SER CA C 60.489 . 1 225 . 49 SER CB C 63.572 . 1 226 . 49 SER C C 175.901 . 1 227 . 50 ILE N N 120.112 . 1 228 . 50 ILE H H 7.958 . 1 229 . 50 ILE CA C 64.625 . 1 230 . 50 ILE CB C 39.014 . 1 231 . 50 ILE C C 179.248 . 1 232 . 51 GLY N N 106.515 . 1 233 . 51 GLY H H 7.677 . 1 234 . 51 GLY CA C 46.139 . 1 235 . 51 GLY C C 172.534 . 1 236 . 52 ARG N N 116.964 . 1 237 . 52 ARG H H 6.868 . 1 238 . 52 ARG CA C 53.644 . 1 239 . 52 ARG CB C 29.825 . 1 240 . 53 PRO CA C 62.072 . 1 241 . 53 PRO CB C 31.805 . 1 242 . 53 PRO C C 177.041 . 1 243 . 54 LEU N N 126.301 . 1 244 . 54 LEU H H 9.885 . 1 245 . 54 LEU CA C 53.228 . 1 246 . 54 LEU CB C 40.851 . 1 247 . 55 PRO C C 179.743 . 1 248 . 56 GLY N N 112.525 . 1 249 . 56 GLY H H 7.682 . 1 250 . 56 GLY CA C 46.769 . 1 251 . 56 GLY C C 173.161 . 1 252 . 57 ARG N N 116.941 . 1 253 . 57 ARG H H 7.211 . 1 254 . 57 ARG CA C 53.950 . 1 255 . 57 ARG CB C 35.037 . 1 256 . 57 ARG C C 174.787 . 1 257 . 58 LYS N N 123.554 . 1 258 . 58 LYS H H 8.060 . 1 259 . 58 LYS CA C 56.652 . 1 260 . 58 LYS CB C 32.197 . 1 261 . 58 LYS C C 175.066 . 1 262 . 59 ASN N N 125.039 . 1 263 . 59 ASN H H 9.057 . 1 264 . 59 ASN CA C 52.949 . 1 265 . 59 ASN CB C 41.145 . 1 266 . 59 ASN C C 172.650 . 1 267 . 60 ILE N N 126.137 . 1 268 . 60 ILE H H 8.878 . 1 269 . 60 ILE CA C 59.750 . 1 270 . 60 ILE CB C 39.050 . 1 271 . 60 ILE C C 172.557 . 1 272 . 61 ILE N N 127.122 . 1 273 . 61 ILE H H 8.876 . 1 274 . 61 ILE CA C 57.669 . 1 275 . 61 ILE CB C 37.036 . 1 276 . 61 ILE C C 175.879 . 1 277 . 62 LEU N N 125.423 . 1 278 . 62 LEU H H 8.223 . 1 279 . 62 LEU CA C 53.771 . 1 280 . 62 LEU CB C 42.895 . 1 281 . 62 LEU C C 175.740 . 1 282 . 63 SER N N 114.761 . 1 283 . 63 SER H H 8.689 . 1 284 . 63 SER CA C 58.654 . 1 285 . 63 SER CB C 65.012 . 1 286 . 63 SER C C 174.346 . 1 287 . 64 SER N N 122.762 . 1 288 . 64 SER H H 10.221 . 1 289 . 64 SER CA C 60.477 . 1 290 . 64 SER CB C 64.414 . 1 291 . 64 SER C C 175.112 . 1 292 . 65 GLN N N 123.017 . 1 293 . 65 GLN H H 8.652 . 1 294 . 65 GLN CA C 53.124 . 1 295 . 65 GLN CB C 29.513 . 1 296 . 66 PRO CA C 62.826 . 1 297 . 66 PRO CB C 32.010 . 1 298 . 66 PRO C C 177.343 . 1 299 . 67 GLY N N 109.454 . 1 300 . 67 GLY H H 8.134 . 1 301 . 67 GLY CA C 42.550 . 1 302 . 67 GLY C C 174.508 . 1 303 . 68 THR N N 106.177 . 1 304 . 68 THR H H 5.752 . 1 305 . 68 THR CA C 60.312 . 1 306 . 68 THR CB C 69.166 . 1 307 . 68 THR C C 174.346 . 1 308 . 69 ASP N N 120.330 . 1 309 . 69 ASP H H 7.432 . 1 310 . 69 ASP CA C 55.282 . 1 311 . 69 ASP CB C 41.825 . 1 312 . 69 ASP C C 176.390 . 1 313 . 70 ASP N N 126.917 . 1 314 . 70 ASP H H 9.036 . 1 315 . 70 ASP CA C 55.265 . 1 316 . 70 ASP CB C 40.276 . 1 317 . 70 ASP C C 177.203 . 1 318 . 71 ARG N N 118.232 . 1 319 . 71 ARG H H 8.986 . 1 320 . 71 ARG CA C 57.307 . 1 321 . 71 ARG CB C 31.990 . 1 322 . 71 ARG C C 176.111 . 1 323 . 72 VAL N N 108.493 . 1 324 . 72 VAL H H 7.287 . 1 325 . 72 VAL CA C 58.159 . 1 326 . 72 VAL CB C 33.500 . 1 327 . 72 VAL C C 173.068 . 1 328 . 73 THR N N 117.244 . 1 329 . 73 THR H H 8.088 . 1 330 . 73 THR CA C 62.714 . 1 331 . 73 THR CB C 70.249 . 1 332 . 73 THR C C 172.022 . 1 333 . 74 TRP N N 128.837 . 1 334 . 74 TRP H H 8.906 . 1 335 . 74 TRP CA C 56.035 . 1 336 . 74 TRP CB C 28.864 . 1 337 . 74 TRP C C 176.832 . 1 338 . 75 VAL N N 116.622 . 1 339 . 75 VAL H H 9.203 . 1 340 . 75 VAL CA C 58.945 . 1 341 . 75 VAL CB C 35.914 . 1 342 . 75 VAL C C 174.857 . 1 343 . 76 LYS N N 115.584 . 1 344 . 76 LYS H H 8.277 . 1 345 . 76 LYS CA C 55.553 . 1 346 . 76 LYS CB C 34.096 . 1 347 . 76 LYS C C 175.623 . 1 348 . 77 SER N N 108.749 . 1 349 . 77 SER H H 7.223 . 1 350 . 77 SER CA C 57.195 . 1 351 . 77 SER CB C 66.708 . 1 352 . 77 SER C C 174.067 . 1 353 . 78 VAL N N 122.695 . 1 354 . 78 VAL H H 8.968 . 1 355 . 78 VAL CA C 67.094 . 1 356 . 78 VAL CB C 31.443 . 1 357 . 78 VAL C C 177.366 . 1 358 . 79 ASP N N 118.071 . 1 359 . 79 ASP H H 8.615 . 1 360 . 79 ASP CA C 57.585 . 1 361 . 79 ASP CB C 39.714 . 1 362 . 79 ASP C C 180.084 . 1 363 . 80 GLU N N 120.635 . 1 364 . 80 GLU H H 8.000 . 1 365 . 80 GLU CA C 59.202 . 1 366 . 80 GLU CB C 30.731 . 1 367 . 80 GLU C C 179.271 . 1 368 . 81 ALA N N 122.901 . 1 369 . 81 ALA H H 8.264 . 1 370 . 81 ALA CA C 55.487 . 1 371 . 81 ALA CB C 17.961 . 1 372 . 81 ALA C C 177.970 . 1 373 . 82 ILE N N 116.075 . 1 374 . 82 ILE H H 8.027 . 1 375 . 82 ILE CA C 65.674 . 1 376 . 82 ILE CB C 38.706 . 1 377 . 82 ILE C C 180.456 . 1 378 . 83 ALA N N 123.706 . 1 379 . 83 ALA H H 8.175 . 1 380 . 83 ALA CA C 54.979 . 1 381 . 83 ALA CB C 17.970 . 1 382 . 83 ALA C C 180.525 . 1 383 . 84 ALA N N 119.346 . 1 384 . 84 ALA H H 8.075 . 1 385 . 84 ALA CA C 53.776 . 1 386 . 84 ALA CB C 18.072 . 1 387 . 84 ALA C C 177.157 . 1 388 . 85 CYS N N 114.394 . 1 389 . 85 CYS H H 7.402 . 1 390 . 85 CYS CA C 62.015 . 1 391 . 85 CYS CB C 27.847 . 1 392 . 85 CYS C C 175.391 . 1 393 . 86 GLY N N 103.101 . 1 394 . 86 GLY H H 7.287 . 1 395 . 86 GLY CA C 44.919 . 1 396 . 86 GLY C C 173.277 . 1 397 . 87 ASP N N 122.162 . 1 398 . 87 ASP H H 8.665 . 1 399 . 87 ASP CA C 53.206 . 1 400 . 87 ASP CB C 39.505 . 1 401 . 87 ASP C C 175.414 . 1 402 . 88 VAL N N 114.973 . 1 403 . 88 VAL H H 7.316 . 1 404 . 88 VAL CA C 57.906 . 1 405 . 88 VAL CB C 32.322 . 1 406 . 89 PRO CA C 64.519 . 1 407 . 89 PRO CB C 32.203 . 1 408 . 89 PRO C C 177.854 . 1 409 . 90 GLU N N 116.615 . 1 410 . 90 GLU H H 7.729 . 1 411 . 90 GLU CA C 55.820 . 1 412 . 90 GLU CB C 32.845 . 1 413 . 90 GLU C C 173.370 . 1 414 . 91 ILE N N 130.104 . 1 415 . 91 ILE H H 8.847 . 1 416 . 91 ILE CA C 61.274 . 1 417 . 91 ILE CB C 41.393 . 1 418 . 91 ILE C C 173.835 . 1 419 . 92 MET N N 121.489 . 1 420 . 92 MET H H 7.974 . 1 421 . 92 MET CA C 51.931 . 1 422 . 92 MET CB C 30.106 . 1 423 . 92 MET C C 174.090 . 1 424 . 93 VAL N N 125.298 . 1 425 . 93 VAL H H 9.324 . 1 426 . 93 VAL CA C 62.091 . 1 427 . 93 VAL CB C 31.443 . 1 428 . 93 VAL C C 177.226 . 1 429 . 94 ILE N N 118.482 . 1 430 . 94 ILE H H 8.554 . 1 431 . 94 ILE CA C 60.996 . 1 432 . 94 ILE CB C 37.667 . 1 433 . 94 ILE C C 173.579 . 1 434 . 95 GLY N N 102.691 . 1 435 . 95 GLY H H 6.056 . 1 436 . 95 GLY CA C 41.349 . 1 437 . 95 GLY C C 174.578 . 1 438 . 96 GLY N N 112.501 . 1 439 . 96 GLY H H 7.700 . 1 440 . 96 GLY CA C 46.522 . 1 441 . 96 GLY C C 173.927 . 1 442 . 97 GLY N N 108.472 . 1 443 . 97 GLY H H 7.425 . 1 444 . 97 GLY CA C 49.396 . 1 445 . 97 GLY C C 175.414 . 1 446 . 98 ARG N N 123.629 . 1 447 . 98 ARG H H 9.877 . 1 448 . 98 ARG CA C 58.360 . 1 449 . 98 ARG CB C 29.664 . 1 450 . 98 ARG C C 180.944 . 1 451 . 99 VAL N N 122.974 . 1 452 . 99 VAL H H 7.497 . 1 453 . 99 VAL CA C 68.544 . 1 454 . 99 VAL CB C 31.531 . 1 455 . 99 VAL C C 178.899 . 1 456 . 100 TYR N N 120.179 . 1 457 . 100 TYR H H 9.621 . 1 458 . 100 TYR CA C 60.157 . 1 459 . 100 TYR CB C 37.954 . 1 460 . 100 TYR C C 178.365 . 1 461 . 101 GLU N N 115.906 . 1 462 . 101 GLU H H 8.182 . 1 463 . 101 GLU CA C 59.932 . 1 464 . 101 GLU CB C 29.680 . 1 465 . 101 GLU C C 178.620 . 1 466 . 102 GLN N N 114.072 . 1 467 . 102 GLN H H 7.301 . 1 468 . 102 GLN CA C 57.887 . 1 469 . 102 GLN CB C 32.714 . 1 470 . 102 GLN C C 177.459 . 1 471 . 103 PHE N N 113.616 . 1 472 . 103 PHE H H 8.190 . 1 473 . 103 PHE CA C 60.481 . 1 474 . 103 PHE CB C 41.531 . 1 475 . 103 PHE C C 177.180 . 1 476 . 104 LEU N N 123.339 . 1 477 . 104 LEU H H 8.538 . 1 478 . 104 LEU CA C 60.925 . 1 479 . 104 LEU CB C 38.250 . 1 480 . 105 PRO CA C 65.342 . 1 481 . 105 PRO CB C 31.212 . 1 482 . 105 PRO C C 177.482 . 1 483 . 106 LYS N N 112.927 . 1 484 . 106 LYS H H 7.439 . 1 485 . 106 LYS CA C 55.572 . 1 486 . 106 LYS CB C 34.595 . 1 487 . 106 LYS C C 176.065 . 1 488 . 107 ALA N N 122.651 . 1 489 . 107 ALA H H 8.008 . 1 490 . 107 ALA CA C 52.493 . 1 491 . 107 ALA CB C 20.935 . 1 492 . 108 GLN N N 118.294 . 1 493 . 108 GLN H H 9.323 . 1 494 . 108 GLN CA C 55.580 . 1 495 . 108 GLN CB C 31.524 . 1 496 . 108 GLN C C 175.484 . 1 497 . 109 LYS N N 120.843 . 1 498 . 109 LYS H H 7.822 . 1 499 . 109 LYS CA C 56.015 . 1 500 . 109 LYS CB C 36.898 . 1 501 . 109 LYS C C 174.137 . 1 502 . 110 LEU N N 121.616 . 1 503 . 110 LEU H H 9.015 . 1 504 . 110 LEU CA C 52.973 . 1 505 . 110 LEU CB C 44.462 . 1 506 . 110 LEU C C 174.764 . 1 507 . 111 TYR N N 122.037 . 1 508 . 111 TYR H H 9.408 . 1 509 . 111 TYR CA C 56.299 . 1 510 . 111 TYR CB C 38.435 . 1 511 . 111 TYR C C 174.206 . 1 512 . 112 LEU N N 122.458 . 1 513 . 112 LEU H H 9.734 . 1 514 . 112 LEU CA C 52.718 . 1 515 . 112 LEU CB C 45.119 . 1 516 . 112 LEU C C 175.670 . 1 517 . 113 THR N N 117.736 . 1 518 . 113 THR H H 8.083 . 1 519 . 113 THR CA C 60.162 . 1 520 . 113 THR CB C 68.818 . 1 521 . 113 THR C C 173.416 . 1 522 . 114 HIS N N 126.104 . 1 523 . 114 HIS H H 9.292 . 1 524 . 114 HIS CA C 55.089 . 1 525 . 114 HIS CB C 30.900 . 1 526 . 114 HIS C C 175.833 . 1 527 . 115 ILE N N 127.126 . 1 528 . 115 ILE H H 9.135 . 1 529 . 115 ILE CA C 60.741 . 1 530 . 115 ILE CB C 39.220 . 1 531 . 115 ILE C C 176.832 . 1 532 . 116 ASP N N 129.899 . 1 533 . 116 ASP H H 8.415 . 1 534 . 116 ASP CA C 53.509 . 1 535 . 116 ASP CB C 38.500 . 1 536 . 116 ASP C C 173.927 . 1 537 . 117 ALA N N 124.188 . 1 538 . 117 ALA H H 7.801 . 1 539 . 117 ALA CA C 51.049 . 1 540 . 117 ALA CB C 20.298 . 1 541 . 117 ALA C C 174.578 . 1 542 . 118 GLU N N 123.420 . 1 543 . 118 GLU H H 8.629 . 1 544 . 118 GLU CA C 55.278 . 1 545 . 118 GLU CB C 29.178 . 1 546 . 118 GLU C C 175.321 . 1 547 . 119 VAL N N 119.754 . 1 548 . 119 VAL H H 8.278 . 1 549 . 119 VAL CA C 58.730 . 1 550 . 119 VAL CB C 35.321 . 1 551 . 119 VAL C C 174.787 . 1 552 . 120 GLU N N 124.162 . 1 553 . 120 GLU H H 8.474 . 1 554 . 120 GLU CA C 56.408 . 1 555 . 120 GLU CB C 30.245 . 1 556 . 120 GLU C C 175.995 . 1 557 . 121 GLY N N 107.202 . 1 558 . 121 GLY H H 8.594 . 1 559 . 121 GLY CA C 45.973 . 1 560 . 121 GLY C C 172.882 . 1 561 . 122 ASP N N 116.551 . 1 562 . 122 ASP H H 8.885 . 1 563 . 122 ASP CA C 52.187 . 1 564 . 122 ASP CB C 42.339 . 1 565 . 122 ASP C C 176.320 . 1 566 . 123 THR N N 115.610 . 1 567 . 123 THR H H 7.541 . 1 568 . 123 THR CA C 62.798 . 1 569 . 123 THR CB C 72.991 . 1 570 . 123 THR C C 172.859 . 1 571 . 124 HIS N N 126.951 . 1 572 . 124 HIS H H 9.615 . 1 573 . 124 HIS CA C 56.550 . 1 574 . 124 HIS CB C 33.613 . 1 575 . 124 HIS C C 174.044 . 1 576 . 125 PHE N N 124.958 . 1 577 . 125 PHE H H 9.357 . 1 578 . 125 PHE CA C 57.077 . 1 579 . 125 PHE CB C 41.787 . 1 580 . 126 PRO CA C 62.511 . 1 581 . 126 PRO CB C 31.988 . 1 582 . 126 PRO C C 173.951 . 1 583 . 127 ASP N N 117.656 . 1 584 . 127 ASP H H 8.230 . 1 585 . 127 ASP CA C 54.293 . 1 586 . 127 ASP CB C 40.603 . 1 587 . 127 ASP C C 173.463 . 1 588 . 128 TYR N N 119.752 . 1 589 . 128 TYR H H 7.564 . 1 590 . 128 TYR CA C 55.365 . 1 591 . 128 TYR CB C 39.202 . 1 592 . 128 TYR C C 173.602 . 1 593 . 129 GLU N N 123.652 . 1 594 . 129 GLU H H 8.913 . 1 595 . 129 GLU CA C 53.124 . 1 596 . 129 GLU CB C 29.721 . 1 597 . 130 PRO CA C 65.984 . 1 598 . 130 PRO CB C 32.205 . 1 599 . 130 PRO C C 178.504 . 1 600 . 131 ASP N N 114.886 . 1 601 . 131 ASP H H 9.228 . 1 602 . 131 ASP CA C 56.561 . 1 603 . 131 ASP CB C 39.958 . 1 604 . 131 ASP C C 176.111 . 1 605 . 132 ASP N N 117.958 . 1 606 . 132 ASP H H 8.256 . 1 607 . 132 ASP CA C 55.010 . 1 608 . 132 ASP CB C 41.316 . 1 609 . 132 ASP C C 175.159 . 1 610 . 133 TRP N N 119.886 . 1 611 . 133 TRP H H 7.841 . 1 612 . 133 TRP CA C 56.052 . 1 613 . 133 TRP CB C 34.125 . 1 614 . 133 TRP C C 173.951 . 1 615 . 134 GLU N N 122.976 . 1 616 . 134 GLU H H 9.636 . 1 617 . 134 GLU CA C 54.295 . 1 618 . 134 GLU CB C 32.498 . 1 619 . 134 GLU C C 175.809 . 1 620 . 135 SER N N 121.612 . 1 621 . 135 SER H H 9.164 . 1 622 . 135 SER CA C 58.652 . 1 623 . 135 SER CB C 62.312 . 1 624 . 135 SER C C 176.274 . 1 625 . 136 VAL N N 122.018 . 1 626 . 136 VAL H H 9.083 . 1 627 . 136 VAL CA C 60.947 . 1 628 . 136 VAL CB C 32.472 . 1 629 . 136 VAL C C 175.902 . 1 630 . 137 PHE N N 123.857 . 1 631 . 137 PHE H H 7.942 . 1 632 . 137 PHE CA C 58.406 . 1 633 . 137 PHE CB C 42.875 . 1 634 . 137 PHE C C 173.706 . 1 635 . 138 SER N N 119.592 . 1 636 . 138 SER H H 7.680 . 1 637 . 138 SER CA C 57.104 . 1 638 . 138 SER CB C 64.241 . 1 639 . 138 SER C C 173.254 . 1 640 . 139 GLU N N 126.127 . 1 641 . 139 GLU H H 8.778 . 1 642 . 139 GLU CA C 56.060 . 1 643 . 139 GLU CB C 34.866 . 1 644 . 139 GLU C C 173.927 . 1 645 . 140 PHE N N 128.944 . 1 646 . 140 PHE H H 8.776 . 1 647 . 140 PHE CA C 58.690 . 1 648 . 140 PHE CB C 40.361 . 1 649 . 140 PHE C C 174.555 . 1 650 . 141 HIS N N 123.125 . 1 651 . 141 HIS H H 8.203 . 1 652 . 141 HIS CA C 54.280 . 1 653 . 141 HIS CB C 31.790 . 1 654 . 141 HIS C C 172.301 . 1 655 . 142 ASP N N 120.304 . 1 656 . 142 ASP H H 8.168 . 1 657 . 142 ASP CA C 53.300 . 1 658 . 142 ASP CB C 42.445 . 1 659 . 142 ASP C C 175.786 . 1 660 . 143 ALA N N 122.135 . 1 661 . 143 ALA H H 8.221 . 1 662 . 143 ALA CA C 53.023 . 1 663 . 143 ALA CB C 19.125 . 1 664 . 143 ALA C C 177.203 . 1 665 . 144 ASP N N 121.209 . 1 666 . 144 ASP H H 9.149 . 1 667 . 144 ASP CA C 53.013 . 1 668 . 144 ASP CB C 41.862 . 1 669 . 144 ASP C C 177.250 . 1 670 . 145 ALA N N 117.949 . 1 671 . 145 ALA H H 8.285 . 1 672 . 145 ALA CA C 55.011 . 1 673 . 145 ALA CB C 18.189 . 1 674 . 145 ALA C C 178.829 . 1 675 . 146 GLN N N 113.097 . 1 676 . 146 GLN H H 7.969 . 1 677 . 146 GLN CA C 56.569 . 1 678 . 146 GLN CB C 30.929 . 1 679 . 146 GLN C C 175.112 . 1 680 . 147 ASN N N 119.624 . 1 681 . 147 ASN H H 8.257 . 1 682 . 147 ASN CA C 52.376 . 1 683 . 147 ASN CB C 41.089 . 1 684 . 147 ASN C C 173.625 . 1 685 . 148 SER N N 117.007 . 1 686 . 148 SER H H 9.016 . 1 687 . 148 SER CA C 60.746 . 1 688 . 148 SER CB C 63.312 . 1 689 . 148 SER C C 172.534 . 1 690 . 149 HIS N N 117.355 . 1 691 . 149 HIS H H 6.926 . 1 692 . 149 HIS CA C 53.735 . 1 693 . 149 HIS CB C 33.815 . 1 694 . 149 HIS C C 173.858 . 1 695 . 150 SER N N 113.840 . 1 696 . 150 SER H H 8.728 . 1 697 . 150 SER CA C 58.416 . 1 698 . 150 SER CB C 64.348 . 1 699 . 150 SER C C 173.161 . 1 700 . 151 TYR N N 114.698 . 1 701 . 151 TYR H H 7.650 . 1 702 . 151 TYR CA C 54.796 . 1 703 . 151 TYR CB C 39.211 . 1 704 . 151 TYR C C 172.232 . 1 705 . 152 CYS N N 118.531 . 1 706 . 152 CYS H H 8.318 . 1 707 . 152 CYS CA C 55.246 . 1 708 . 152 CYS CB C 30.113 . 1 709 . 152 CYS C C 174.113 . 1 710 . 153 PHE N N 128.452 . 1 711 . 153 PHE H H 8.390 . 1 712 . 153 PHE CA C 55.579 . 1 713 . 153 PHE CB C 40.112 . 1 714 . 153 PHE C C 175.066 . 1 715 . 154 GLU N N 124.254 . 1 716 . 154 GLU H H 9.866 . 1 717 . 154 GLU CA C 54.515 . 1 718 . 154 GLU CB C 35.075 . 1 719 . 154 GLU C C 174.601 . 1 720 . 155 ILE N N 123.751 . 1 721 . 155 ILE H H 8.700 . 1 722 . 155 ILE CA C 60.162 . 1 723 . 155 ILE CB C 40.260 . 1 724 . 155 ILE C C 175.159 . 1 725 . 156 LEU N N 125.884 . 1 726 . 156 LEU H H 9.325 . 1 727 . 156 LEU CA C 53.291 . 1 728 . 156 LEU CB C 45.662 . 1 729 . 156 LEU C C 175.902 . 1 730 . 157 GLU N N 119.589 . 1 731 . 157 GLU H H 9.380 . 1 732 . 157 GLU CA C 54.483 . 1 733 . 157 GLU CB C 33.570 . 1 734 . 157 GLU C C 176.251 . 1 735 . 158 ARG N N 127.120 . 1 736 . 158 ARG H H 8.323 . 1 737 . 158 ARG CA C 57.378 . 1 738 . 158 ARG CB C 30.711 . 1 739 . 158 ARG C C 176.460 . 1 740 . 159 ARG N N 131.571 . 1 741 . 159 ARG H H 8.040 . 1 742 . 159 ARG CA C 58.741 . 1 743 . 159 ARG CB C 30.970 . 1 stop_ save_