/*ghn_ca.c 3D HNCA gradient sensitivity enhanced version. Correlates Ca(i) with N(i), NH(i), and N(i+1), NH(i+1). Uses constant time evolution for the 15N shifts. Standard features include maintaining the 13C carrier in the Ca region throughout using off-res SLP pulses; square pulses on Ca with first null at 13CO; one lobe sinc pulses on 13CO with first null at Ca; one lobe sinc pulse to put H2O back along z (the sinc one-lobe is significantly more selective than gaussian, square, or seduce 90 pulses); optional 2H decoupling when CaCb magnetization is transverse for 4 channel spectrometers. Magic-angle option for coherence transfer gradients. TROSY option for N15/H1 evolution/detection. pulse sequence: Ikura, Kay, and Bax, Biochem, 29, 4659 (1990) Grzesiek and Bax, JMR, 96, 432 (1992) Muhandiram and Kay, JMR, B103, 203 (1994) Kay, Xu, and Yamazaki, JMR, A109, 129-133 (1994) SLP pulses: J Magn. Reson. 96, 94-102 (1992) TROSY: Weigelt, JACS, 120, 10778 (1998) Modified from hnco_3c_pfg_laue.c by RM 12/11/92 to add gradient SE. Modified by LEK Sept. 19, 1993, Nov 26, 1993, and Dec. 22, 1993 to minimally excite water etc. Revised and improved to a standard format by MRB, BKJ and GG for the BioPack, January 1997, so as to include calculation of the above standard features within the pulse sequence code and associated macro. TROSY added Dec 98, based on similar addition to gNhsqc. (Version Dec 1998). Added optional CO/C-beta decoupling. Cbdec flag controls option. This decoupling will possibly interfere with alpha carbons that have 13C shifts overlapping the beta regions (e.g. downfield from 63ppm and upfield from 52ppm) depending on the waveform used. The waveform should be created to decouple both C=O and beta carbons. If Cbdec='y' a shaped 13C pulse is used to decouple C=O during t1. (EK jan01) Modified the amplitude of the flipback pulse(s) (pwHs) to permit user adjustment around theoretical value (tpwrs). If tpwrsf < 4095.0 the value of tpwrs is increased 6db and values of tpwrsf of 2048 or so should give equivalent amplitude. In cases of severe radiation damping( which happens during pwHs) the needed flip angle may be much less than 90 degrees, so tpwrsf should be lowered to a value to minimize the observed H2O signal in single-scan experiments (with ssfilter='n').(GG jan01) Made the waltz16 field strength enterable (waltzB1) in Hz. (GG jan03) CHOICE OF DECOUPLING AND 2D MODES Set dm = 'nnn', dmm = 'ccc' Set dm2 = 'nny', dmm2 = 'ccg' (or 'ccw', or 'ccp') for 15N decoupling. Set dm3 = 'nnn' for no 2H decoupling, or 'nyn' and dmm3 = 'cwc' for 2H decoupling. Must set = 1,2 and phase2 = 1,2 for States-TPPI acquisition in t1 [13C] and t2 [15N]. The flag f1180/f2180 should be set to 'y' if t1/t2 is to be started at halfdwell time. This will give 90, -180 phasing in f1/f2. If it is set to 'n' the phasing should be 0,0 and will still give a perfect baseline. Thus, set f1180='n' for (0,0) in 13C and f2180='n' for (0,0) in 15N. f1180='y' is ignored if ni=0, and f2180='y' is ignored if ni2=0. Constant Time C-13 option - Eriks Kupce, Oxford, 21.11.2006 Semi-Constant Time option - Eriks Kupce, Oxford, 26.01.2006, based on example provided by Marco Tonelli at NMRFAM DETAILED INSTRUCTIONS FOR USE OF ghn_ca 1. Obtain a printout of the Philosopy behind the BioPack development, and General Instructions using the macro: "printon man('BioPack') printoff". These Detailed Instructions for ghn_ca may be printed using: "printon man('ghn_ca') printoff". 2. Apply the setup macro "ghn_ca". This loads the relevant parameter set and also sets ni=ni2=0 and phase=phase2=1 ready for a 1D spectral check. At the middle of the t1 period, the 180 degree pulses on CO and 15N are swapped to a 180 degree pulse on Ca, for the first increment of t1, to refocus Ca chemical-shift evolution ensuring a zero first-order phase correction in F1. This is also the case for the 1D spectral check, or for 2D/15N spectra, when ni=0. 3. Center H1 frequency on H2O (4.7ppm), C13 on 56ppm, and N15 frequency on the amide region (120ppm). The C13 frequency remains at 56ppm, ie at Ca throughout the sequence. 4. The normal 13C 180 degree pulse on CO at the middle of t1 induces a phase shift, which should be field-invariant, and so this phase shift has been calibrated and compensated in the pulse sequence. This phase shift can be checked by setting ni=1 whereby a special 1D method is invoked in which both the 13C CO 180 degree pulse and the simultaneous 15N 180 degree pulse are applied just as for all t1 times other than t1=0. First eliminate the CO pulse by setting pwC9=0 and obtain a 1D spectrum. This spectrum will have reduced intensity compared to ni=0 because of 13Ca chemical-shift evolution during the time of the 180 pulses. If the phase shift is adequately compensated, a second very similar 1D spectrum will be obtained with pwC9=pwC9a. As described in more detail for ghn_co, a more sensitive comparison of the two spectra with pwC9=0,pwC9a can be obtained with phase=2. If not adequately compensated, the first increment will be out of phase with all succeeding increments and a zero-order phase-shift will be necessary in F1, which is easily done after the 2D/3D transform. Alternatively, change the calibration by changing the phshift9 parameter in the INITIALIZE VARIABLES section of the code. The pulse pwC9 is automatically reset to its calibrated value (=pwC9a) within the pulse sequence code for 3D work and 2D/t1 studies. DO NOT CHANGE pwC9a from its calibrated value. 5. H2O preservation is achieved according to Kay et al, except that a sinc one-lobe selective pulse is used to put H2O back along z. This is much more selective than a hard, Seduce1, or gaussian pulse. 6. Another difference from the work of Kay et al is that the phases of both Ca 90 degree pulses are alternated to eliminate artifacts from the CO 180 degree pulse. 7. timeTN (14 ms) was determined for alphalytic protease and is listed in dg2 for possible readjustment by the user. 8. The coherence-transfer gradients using power levels gzlvl1 and gzlvl2 may be either z or magic-angle gradients. For the latter, a proper /vnmr/imaging/gradtable entry must be present and syscoil must contain the value of this entry (name of gradtable). The amplitude of the gzlvl1 and gzlvl2 should be lower than for a z axis probe to have the x and y gradient levels within the 32k range. For any value, a dps display (using power display) shows the x,y and z dac values. These must be <=32k. 9. TROSY: Set TROSY='y' and dm2='nnn' for a TROSY spectrum of the bottom right peak of the 2D coupled NH quartet (high-field H1, low-field N15). The TROSY spectrum gives 50% S/N compared to the decoupled spectrum for a small peptide. To select any of the other three peaks of the 2D coupled quartet, in a clockwise direction from bottom right, change t4/t10 from x/y to x/-y to -x/-y to -x/y. NOTE, the phases of the SE train are almost the same as those determined for the gNhsqc sequence. The major difference is that kappa is eliminated compared to normal ghn_ca so the N15 magnetization has not evolved with respect to the attached H's. I.e. the N15 state would be Ix rather than IySz if there was no coherence gradient - this imparts a 90 degree shift so t8 is changed to y (from x in the normal spectrum). Also gzlvl1 is after the 180 N15 pulse rather than before as in gNhsqc, so the sign of icosel and the t4/t10 phase2 increments are also swapped compared to gNhsqc. For ghn_c... type sequences, H1 decoupling during the first timeTN is replaced by a pi pulse at kappa/2 to reduce S/N loss for large molecules during the first TN period. For these sequences H2O flipback is achieved with two sinc one-lobe pulses, an additional one just before the SE train, similar to gNhsqc. 10. Radiation Damping: At fields 600MHz and higher with high-Q probes, radiation damping is a factor to be considered. Its primary effect is in the flipback pulse calibration. Radiation damping causes a rotation back to the +Z axis even without a flipback pulse. Hence, the pwHs pulse often needs to be reduced in its flip-angle. This can be accomplished by using the parameter tpwrsf. If this value is less than 4095.0 the value of tpwrs (calculated in the psg code) is increased by 6dB, thereby permitting the value of tpwrsf to be optimized to obtain minimum H2O in the spectrum. The value of tpwrsf is typically lower than 2048 (half-maximum to compensate for the extra 6dB in tpwrs). 11. PROJECTION-RECONSTRUCTION experiments: Projection-Reconstruction experiments are enabled by setting the projection angle, pra to values between 0 and 90 degrees (0 < pra < 90). Note, that for these experiments axis='ph', ni>1, ni2=0, phase=1,2 and phase2=1,2 must be used. Processing: use wft2dx macro for positive tilt angles and wft2dy for negative tilt angles. wft2dx = wft2d(1,0,-1,0,0,1,0,1,0,1,0,1,-1,0,1,0) wft2dy = wft2d(1,0,-1,0,0,-1,0,-1,0,1,0,1,1,0,-1,0) The following relationships can be used to inter-convert the frequencies (in Hz) between the tilted, F1(+)F3, F1(-)F3 and the orthogonal, F1F3, F2F3 planes: F1(+) = F1*cos(pra) + F2*sin(pra) F1(-) = F1*cos(pra) - F2*sin(pra) F1 = 0.5*[F1(+) + F1(-)]/cos(pra) F2 = 0.5*[F1(+) - F1(-)]/sin(pra) References: E.Kupce and R.Freeman, J. Amer. Chem. Soc., vol. 125, pp. 13958-13959 (2003). E.Kupce and R.Freeman, J. Amer. Chem. Soc., vol. 126, pp. 6429-6440 (2004). Related: S.Kim and T.Szyperski, J. Amer. Chem. Soc., vol. 125, pp. 1385-1393 (2003). Eriks Kupce, Oxford, 26.08.2004. */ #include static int /* T is for TROSY='y', phx etc also enable TROSY phase changes */ phx[1]={0}, phy[1]={1}, phi3[2] = {0,2}, phi5[4] = {0,0,2,2}, phi9[8] = {0,0,0,0,2,2,2,2}, rec[4] = {0,2,2,0}, recT[4] = {3,1,1,3}; static double d2_init=0.0, d3_init=0.0; pulsesequence() { /* DECLARE AND LOAD VARIABLES */ char f1180[MAXSTR], /* Flag to start t1 @ halfdwell */ f2180[MAXSTR], /* Flag to start t2 @ halfdwell */ mag_flg[MAXSTR], /* magic-angle coherence transfer gradients */ SCT[MAXSTR], /* Semi-constant time flag for N-15 evolution */ CT_c[MAXSTR], /* Constant time flag for C-13 evolution */ TROSY[MAXSTR], /* do TROSY on N15 and H1 */ Cbdec[MAXSTR], /* co&cb decoupling flag */ Cbdseq[MAXSTR]; /* co&cb decoupling sequence */ int icosel, /* used to get n and p type */ t1_counter, /* used for states tppi in t1 */ t2_counter, /* used for states tppi in t2 */ PRexp, /* projection-reconstruction flag */ ni2 = getval("ni2"); double tau1, /* t1 delay */ tau2, /* t2 delay */ timeTN = getval("timeTN"), /* constant time for 15N evolution */ timeTC = getval("timeTC"), /* constant time for 13C evolution */ t2a=0.0, t2b=0.0, halfT2=0.0, CTdelay=0.0, kappa = 5.4e-3, lambda = 2.4e-3, csa, sna, pra = M_PI*getval("pra")/180.0, pwClvl = getval("pwClvl"), /* coarse power for C13 pulse */ pwC = getval("pwC"), /* C13 90 degree pulse length at pwClvl */ rf0, /* maximum fine power when using pwC pulses */ /* 90 degree pulse at Ca (56ppm), first off-resonance null at CO (174ppm) */ pwC1, /* 90 degree pulse length on C13 at rf1 */ rf1, /* fine power for 4.7 kHz rf for 600MHz magnet */ /* 180 degree pulse at Ca (56ppm), first off-resonance null at CO(174ppm) */ pwC2, /* 180 degree pulse length at rf2 */ rf2, /* fine power for 10.5 kHz rf for 600MHz magnet */ /* the following pulse lengths for SLP pulses are automatically calculated */ /* by the macro "proteincal". SLP pulse shapes, "offC9" etc are called */ /* directly from your shapelib. */ pwC9 = getval("pwC9"), /*180 degree pulse at CO(174ppm) null at Ca(56ppm) */ pwC9a = getval("pwC9a"), /* pwC9a=pwC9, but not set to zero when pwC9=0 */ phshift9, /* phase shift induced on Ca by pwC9 ("offC9") pulse */ pwZ, /* the largest of pwC9 and 2.0*pwN */ pwZ1, /* the larger of pwC9a and 2.0*pwN for 1D experiments */ rf9, /* fine power for the pwC9 ("offC9") pulse */ Cbdpwr = getval("Cbdpwr"), /* power level for CO&cb decoupling */ Cbdmf = getval("Cbdmf"), /* dmf for CO&cb decoupling @ cbdpwr */ Cbdres = getval("Cbdres"), /* dres for the CO&Cb decoupling */ compH = getval("compH"), /* adjustment for C13 amplifier compression */ compC = getval("compC"), /* adjustment for C13 amplifier compression */ pwHs = getval("pwHs"), /* H1 90 degree pulse length at tpwrs */ tpwrs, /* power for the pwHs ("H2Osinc") pulse */ tpwrsf = getval("tpwrsf"), /* fine power for pwHs pulse */ /* use to adjust for radiation-damping */ waltzB1 = getval("waltzB1"), /* waltz16 field strength (in Hz) */ pwHd, /* H1 90 degree pulse length at tpwrd */ tpwrd, /* rf for WALTZ decoupling */ pwNlvl = getval("pwNlvl"), /* power for N15 pulses */ pwN = getval("pwN"), /* N15 90 degree pulse length at pwNlvl */ sw1 = getval("sw1"), sw2 = getval("sw2"), gt1 = getval("gt1"), /* coherence pathway gradients */ gzcal = getval("gzcal"), /* g/cm to DAC conversion factor */ gzlvl1 = getval("gzlvl1"), gzlvl2 = getval("gzlvl2"), gt0 = getval("gt0"), /* other gradients */ gt3 = getval("gt3"), gt4 = getval("gt4"), gt5 = getval("gt5"), gstab = getval("gstab"), gzlvl0 = getval("gzlvl0"), gzlvl3 = getval("gzlvl3"), gzlvl4 = getval("gzlvl4"), gzlvl5 = getval("gzlvl5"), gzlvl6 = getval("gzlvl6"); getstr("f1180",f1180); getstr("f2180",f2180); getstr("mag_flg",mag_flg); getstr("SCT",SCT); getstr("CT_c",CT_c); getstr("TROSY",TROSY); getstr("Cbdec",Cbdec); getstr("Cbdseq",Cbdseq); /* LOAD PHASE TABLE */ settable(t3,2,phi3); settable(t4,1,phx); settable(t5,4,phi5); if (TROSY[A]=='y') {settable(t8,1,phy); settable(t9,1,phx); settable(t10,1,phy); settable(t11,1,phx); settable(t12,4,recT);} else {settable(t8,1,phx); settable(t9,8,phi9); settable(t10,1,phx); settable(t11,1,phy); settable(t12,4,rec);} /* INITIALIZE VARIABLES */ if( dpwrf < 4095 ) { printf("reset dpwrf=4095 and recalibrate C13 90 degree pulse"); psg_abort(1); } /* maximum fine power for pwC pulses */ rf0 = 4095.0; /* 90 degree pulse on Ca, null at CO 118ppm away */ pwC1 = sqrt(15.0)/(4.0*118.0*dfrq); rf1 = 4095.0*(compC*pwC)/pwC1; rf1 = (int) (rf1 + 0.5); /* 180 degree pulse on Ca, null at CO 118ppm away */ pwC2 = sqrt(3.0)/(2.0*118.0*dfrq); rf2 = (4095.0*compC*pwC*2.0)/pwC2; rf2 = (int) (rf2 + 0.5); if( rf2 > 4095.0 ) { printf("increase pwClvl and recalibrate so that C13 90 is less\n than 24us*600/sfrq"); psg_abort(1);} /* 180 degree one-lobe sinc pulse on CO, null at Ca 118ppm away */ rf9 = (compC*4095.0*pwC*2.0*1.65)/pwC9a; /* needs 1.65 times more */ rf9 = (int) (rf9 + 0.5); /* power than a square pulse */ /* the pwC9 pulse at the middle of t1 */ if ((ni2 > 0.0) && (ni == 1.0)) ni = 0.0; if (pwC9a > 2.0*pwN) pwZ = pwC9a; else pwZ = 2.0*pwN; if (Cbdec[A]=='y') pwZ = 2.0*(pwN + 2.0*POWER_DELAY + WFG2_START_DELAY - WFG3_START_DELAY); if ((pwC9==0.0) && (pwC9a>2.0*pwN)) pwZ1=pwC9a-2.0*pwN; else pwZ1=0.0; if (ni > 1) pwC9 = pwC9a; if ( pwC9 > 0 ) phshift9 = 320.0; else phshift9 = 0.0; /* selective H20 one-lobe sinc pulse */ tpwrs = tpwr - 20.0*log10(pwHs/(compH*pw*1.69)); /* needs 1.69 times more */ tpwrs = (int) (tpwrs); /* power than a square pulse */ /* power level and pulse time for WALTZ 1H decoupling */ pwHd = 1/(4.0 * waltzB1) ; tpwrd = tpwr - 20.0*log10(pwHd/(compH*pw)); tpwrd = (int) (tpwrd + 0.5); /* set up Projection-Reconstruction experiment */ tau1 = d2; tau2 = d3; PRexp=0; csa = 1.0; sna = 0.0; if((pra > 0.0) && (pra < 90.0)) /* PR experiments */ { PRexp = 1; csa = cos(pra); sna = sin(pra); tau1 = d2*csa; tau2 = d2*sna; } /* CHECK VALIDITY OF PARAMETER RANGES */ if(SCT[A] == 'n') { if (PRexp) { if( 0.5*ni*sna/sw1 > timeTN - WFG3_START_DELAY) { printf(" ni is too big. Make ni equal to %d or less.\n", ((int)((timeTN - WFG3_START_DELAY)*2.0*sw1/sna))); psg_abort(1);} } else { if ( 0.5*ni2*1/(sw2) > timeTN - WFG3_START_DELAY) { printf(" ni2 is too big. Make ni2 equal to %d or less.\n", ((int)((timeTN - WFG3_START_DELAY)*2.0*sw2))); psg_abort(1);} } } if(CT_c[A] == 'y') { if ( 0.5*ni*csa/sw1 > timeTC) { printf(" ni is too big. Make ni less than %d or less.\n", ((int)(timeTC*2.0*sw1/csa - 4e-6 - SAPS_DELAY))); psg_abort(1);} } if ( dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y' ) { printf("incorrect dec1 decoupler flags! Should be 'nnn' "); psg_abort(1);} if ( dm2[A] == 'y' || dm2[B] == 'y' ) { printf("incorrect dec2 decoupler flags! Should be 'nny' "); psg_abort(1);} if ( dm3[A] == 'y' || dm3[C] == 'y' ) { printf("incorrect dec3 decoupler flags! Should be 'nyn' or 'nnn' "); psg_abort(1);} if ( dpwr2 > 50 ) { printf("dpwr2 too large! recheck value "); psg_abort(1);} if ( pw > 20.0e-6 ) { printf(" pw too long ! recheck value "); psg_abort(1);} if ( pwN > 100.0e-6 ) { printf(" pwN too long! recheck value "); psg_abort(1);} if ( TROSY[A]=='y' && dm2[C] == 'y') { text_error("Choose either TROSY='n' or dm2='n' ! "); psg_abort(1);} /* PHASES AND INCREMENTED TIMES */ /* Phase incrementation for hypercomplex 2D data, States-Haberkorn element */ if (phase1 == 2) tsadd(t3,1,4); if (TROSY[A]=='y') { if (phase2 == 2) icosel = +1; else {tsadd(t4,2,4); tsadd(t10,2,4); icosel = -1;} } else { if (phase2 == 2) {tsadd(t10,2,4); icosel = +1;} else icosel = -1; } /* Calculate modifications to phases for States-TPPI acquisition */ if( ix == 1) d2_init = d2; t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 ); if(t1_counter % 2) { tsadd(t3,2,4); tsadd(t12,2,4); } if( ix == 1) d3_init = d3; t2_counter = (int) ( (d3-d3_init)*sw2 + 0.5 ); if(t2_counter % 2) { tsadd(t8,2,4); tsadd(t12,2,4); } /* Set up CONSTANT/SEMI-CONSTANT time evolution in N15 */ halfT2 = 0.0; CTdelay = timeTN + pwC2 + WFG_START_DELAY - SAPS_DELAY; if(ni>1) { if(f1180[A] == 'y') /* Set up f1180 */ tau1 += 0.5*csa/sw1; /* if not PRexp then csa = 1.0 */ if(PRexp) { halfT2 = 0.5*(ni-1)/sw1; /* ni2 is not defined */ if(f1180[A] == 'y') { tau2 += 0.5*sna/sw1; halfT2 += 0.25*sna/sw1; } t2b = t1_counter*((halfT2 - CTdelay)/(ni-1)); } } if (ni2>1) { halfT2 = 0.5*(ni2-1)/sw2; if(f2180[A] == 'y') /* Set up f2180 */ { tau2 += 0.5/sw2; halfT2 += 0.25/sw2; } t2b = t2_counter*((halfT2 - CTdelay)/(ni2-1)); } tau1 = tau1/2.0; tau2 = tau2/2.0; if(tau1 < 0.2e-6) tau1 = 0.0; if(tau2 < 0.2e-6) tau2 = 0.0; if(t2b < 0.0) t2b = 0.0; t2a = CTdelay - tau2 + t2b; if(t2a < 0.2e-6) t2a = 0.0; /* uncomment these lines to check t2a and t2b printf("%d: t2a = %.12f", t2_counter,t2a); printf(" ; t2b = %.12f\n", t2b); */ /* BEGIN PULSE SEQUENCE */ status(A); delay(d1); if ( dm3[B] == 'y' ) { lk_hold(); lk_sampling_off();} /*freezes z0 correction, stops lock pulsing*/ rcvroff(); obspower(tpwr); decpower(pwClvl); dec2power(pwNlvl); decpwrf(rf0); obsoffset(tof); txphase(zero); delay(1.0e-5); if (TROSY[A] == 'n') dec2rgpulse(pwN, zero, 0.0, 0.0); /* destroy N15 and C13 magnetization */ decrgpulse(pwC, zero, 0.0, 0.0); zgradpulse(gzlvl0, 0.5e-3); delay(1.0e-4); if (TROSY[A] == 'n') dec2rgpulse(pwN, one, 0.0, 0.0); decrgpulse(pwC, zero, 0.0, 0.0); zgradpulse(0.7*gzlvl0, 0.5e-3); delay(5.0e-4); rgpulse(pw,zero,0.0,0.0); /* 1H pulse excitation */ dec2phase(zero); zgradpulse(gzlvl0, gt0); delay(lambda - gt0); sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0); txphase(one); zgradpulse(gzlvl0, gt0); delay(lambda - gt0); rgpulse(pw, one, 0.0, 0.0); txphase(two); if (tpwrsf < 4095.0) {obspwrf(tpwrsf); tpwrs = tpwrs+6;} /* increases tpwrs by 6dB, now need tpwrsf to be ~ 2048 for equivalence */ obspower(tpwrs); if (TROSY[A]=='y') {txphase(two); shaped_pulse("H2Osinc", pwHs, two, 5.0e-4, 0.0); if (tpwrsf < 4095.0) obspwrf(4095.0); obspower(tpwr); zgradpulse(gzlvl3, gt3); delay(2.0e-4); dec2rgpulse(pwN, zero, 0.0, 0.0); delay(0.5*kappa - 2.0*pw); rgpulse(2.0*pw, two, 0.0, 0.0); obspower(tpwrd); /* POWER_DELAY */ decphase(zero); dec2phase(zero); decpwrf(rf2); delay(timeTN - 0.5*kappa - POWER_DELAY); } else {txphase(zero); shaped_pulse("H2Osinc", pwHs, zero, 5.0e-4, 0.0); if (tpwrsf < 4095.0) obspwrf(4095.0); obspower(tpwrd); zgradpulse(gzlvl3, gt3); delay(2.0e-4); dec2rgpulse(pwN, zero, 0.0, 0.0); txphase(one); delay(kappa - pwHd - 2.0e-6 - PRG_START_DELAY); rgpulse(pwHd,one,0.0,0.0); txphase(zero); delay(2.0e-6); obsprgon("waltz16", pwHd, 90.0); /* PRG_START_DELAY */ xmtron(); decphase(zero); dec2phase(zero); decpwrf(rf2); delay(timeTN - kappa); } sim3pulse(0.0, pwC2, 2.0*pwN, zero, zero, zero, 0.0, 0.0); decphase(t3); decpwrf(rf1); delay(timeTN); dec2rgpulse(pwN, zero, 0.0, 0.0); if (TROSY[A]=='n') {xmtroff(); obsprgoff(); rgpulse(pwHd,three,2.0e-6,0.0);} zgradpulse(gzlvl3, gt3); txphase(one); delay(2.0e-4); if ( dm3[B] == 'y' ) /* begins optional 2H decoupling */ { dec3rgpulse(1/dmf3,one,10.0e-6,2.0e-6); dec3unblank(); dec3phase(zero); delay(2.0e-6); setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3); } rgpulse(pwHd,one,0.0,0.0); txphase(zero); delay(2.0e-6); obsprgon("waltz16", pwHd, 90.0); xmtron(); decrgpulse(pwC1, t3, 0.0, 0.0); decphase(zero); /* xxxxxxxxxxxxxxxxxxxxxx 13Ca EVOLUTION xxxxxxxxxxxxxxxxxx */ if (ni==1.0) /* special 1D check of pwC9 phase enabled when ni=1 */ { decpwrf(rf9); delay(10.0e-6 + SAPS_DELAY + 0.5*pwZ1); /* WFG3_START_DELAY */ sim3shaped_pulse("", "offC9", "", 0.0, pwC9, 2.0*pwN, zero, zero, zero, 2.0e-6, 0.0); initval(phshift9, v9); decstepsize(1.0); dcplrphase(v9); /* SAPS_DELAY */ delay(10.0e-6 + WFG3_START_DELAY + 0.5*pwZ1); } else if(CT_c[A] == 'y') /* xxxxxxx 13Ca Constant Time EVOLUTION xxxxxxxx */ { decpwrf(rf9); if(tau1 - 2.0*pwC1/PI - WFG_START_DELAY -POWER_DELAY > 0.0) { delay(tau1 -2.0*pwC1/PI -POWER_DELAY -WFG_START_DELAY); sim3shaped_pulse("","offC9","",0.0,pwC9a, 2.0*pwN, zero, zero, zero, 0.0, 0.0); } else sim3shaped_pulse("","offC9","",0.0,pwC9a, 2.0*pwN, zero, zero, zero, 0.0, 0.0); delay(timeTC- 2.0e-6 -WFG_STOP_DELAY-POWER_DELAY); decpwrf(rf2); decrgpulse(pwC2, zero, 2.0e-6, 2.0e-6); /* 13Ca 180 degree pulse */ delay(timeTC-tau1- 4.0e-6 -SAPS_DELAY); phshift9 = 50.0; /* = 320+90 - correct for 90 degree phase shift in F1 */ initval(phshift9, v9); decstepsize(1.0); dcplrphase(v9); /* SAPS_DELAY */ } else /* xxxxxxx 13Ca Conventional EVOLUTION xxxxxxxxx */ { if ((ni>1.0) && (tau1>0.0)) /* total 13C evolution equals d2 exactly */ { /* 2.0*pwC1/PI compensates for evolution at 64% rate during pwC1 */ decpwrf(rf9); if(tau1 - 2.0*pwC1/PI - WFG3_START_DELAY - 0.5*pwZ > 0.0) { if(Cbdec[A]=='y') { hlv(ct,v6); hlv(v6,v6); /* v6 = 00001111... for Cbdec='y' */ decpower(Cbdpwr); decpwrf(4095.0); decphase(v6); decprgon(Cbdseq,1.0/Cbdmf,Cbdres); decon(); /* COCb decoupling on */ delay(tau1 - 2.0*pwC1/PI - pwN - WFG2_START_DELAY - POWER_DELAY); dec2rgpulse(2.0*pwN,zero,0.0,0.0); delay(tau1 - 2.0*pwC1/PI - pwN - POWER_DELAY - WFG2_STOP_DELAY); decoff(); decprgoff(); /* COCb decoupling off */ decpower(pwClvl); } else { /* WFG3_START_DELAY */ delay(tau1 - 2.0*pwC1/PI - WFG3_START_DELAY - 0.5*pwZ); sim3shaped_pulse("", "offC9", "", 0.0, pwC9a, 2.0*pwN, zero, zero, zero, 0.0, 0.0); initval(phshift9, v9); decstepsize(1.0); dcplrphase(v9); /* SAPS_DELAY */ delay(tau1 - 2.0*pwC1/PI - SAPS_DELAY - 0.5*pwZ - 2.0e-6); } } else { initval(180.0, v9); decstepsize(1.0); dcplrphase(v9); /* SAPS_DELAY */ delay(2.0*tau1 - 4.0*pwC1/PI - SAPS_DELAY - 2.0e-6); } } else /* 13Ca evolution refocused for 1st increment */ { decpwrf(rf2); decrgpulse(pwC2, zero, 2.0e-6, 0.0); } } decphase(t5); decpwrf(rf1); decrgpulse(pwC1, t5, 2.0e-6, 0.0); /* xxxxxxxxxxxxxxxxxx OPTIONS FOR N15 EVOLUTION xxxxxxxxxxxxxxxxxxxxx */ dec2phase(t8); xmtroff(); obsprgoff(); rgpulse(pwHd,three,2.0e-6,0.0); txphase(one); dcplrphase(zero); if ( dm3[B] == 'y' ) /* turns off 2H decoupling */ { setstatus(DEC3ch, FALSE, 'c', FALSE, dmf3); dec3rgpulse(1/dmf3,three,2.0e-6,2.0e-6); dec3blank(); lk_autotrig(); /* resumes lock pulsing */ } zgradpulse(gzlvl4, gt4); decphase(zero); decpwrf(rf2); delay(2.0e-4); if (TROSY[A]=='n') {rgpulse(pwHd,one,0.0,0.0); txphase(zero); delay(2.0e-6); obsprgon("waltz16", pwHd, 90.0); xmtron();} dec2rgpulse(pwN, t8, 0.0, 0.0); /* N15 EVOLUTION BEGINS HERE */ dec2phase(t9); if(SCT[A] == 'y') { delay(t2a); dec2rgpulse(2.0*pwN, t9, 0.0, 0.0); delay(t2b); decrgpulse(pwC2, zero, 0.0, 0.0); } else { delay(timeTN - tau2); sim3pulse(0.0, pwC2, 2.0*pwN, zero, zero, t9, 0.0, 0.0); } dec2phase(t10); decpwrf(rf9); if (TROSY[A]=='y') { if (tau2 > gt1 + 2.0*GRADIENT_DELAY + 1.5e-4 + pwHs) { txphase(three); delay(timeTN - pwC9a - WFG_START_DELAY); /* WFG_START_DELAY */ decshaped_pulse("offC9", pwC9a, zero, 0.0, 0.0); delay(tau2 - gt1 - 2.0*GRADIENT_DELAY - 1.5e-4 - pwHs); if (mag_flg[A]=='y') magradpulse(gzcal*gzlvl1, gt1); else zgradpulse(gzlvl1, gt1); /* 2.0*GRADIENT_DELAY */ obspower(tpwrs); /* POWER_DELAY */ if (tpwrsf<4095.0) { obspwrf(tpwrsf); delay(1.0e-4 - POWER_DELAY -PWRF_DELAY);} else delay(1.0e-4 - POWER_DELAY); shaped_pulse("H2Osinc", pwHs, three, 0.0, 0.0); txphase(t4); if (tpwrsf < 4095.0) {obspwrf(4095.0); delay(0.5e-4 - POWER_DELAY -PWRF_DELAY);} else delay(0.5e-4 - POWER_DELAY); obspower(tpwr); /* POWER_DELAY */ } else if (tau2 > pwHs + 0.5e-4) { txphase(three); delay(timeTN-pwC9a-WFG_START_DELAY-gt1-2.0*GRADIENT_DELAY-1.0e-4); if (mag_flg[A]=='y') magradpulse(gzcal*gzlvl1, gt1); else zgradpulse(gzlvl1, gt1); /* 2.0*GRADIENT_DELAY */ obspower(tpwrs); /* POWER_DELAY */ if (tpwrsf<4095.0) {obspwrf(tpwrsf); delay(1.0e-4 - POWER_DELAY);} else delay(1.0e-4 - POWER_DELAY); /* WFG_START_DELAY */ decshaped_pulse("offC9", pwC9a, zero, 0.0, 0.0); delay(tau2 - pwHs - 0.5e-4); shaped_pulse("H2Osinc", pwHs, three, 0.0, 0.0); txphase(t4); if (tpwrsf < 4095.0) {obspwrf(4095.0); delay(0.5e-4 - POWER_DELAY - PWRF_DELAY);} else delay(0.5e-4 - POWER_DELAY); obspower(tpwr); /* POWER_DELAY */ } else { txphase(three); delay(timeTN - pwC9a - WFG_START_DELAY - gt1 - 2.0*GRADIENT_DELAY - 1.5e-4 - pwHs); if (mag_flg[A]=='y') magradpulse(gzcal*gzlvl1, gt1); else zgradpulse(gzlvl1, gt1); /* 2.0*GRADIENT_DELAY */ obspower(tpwrs); /* POWER_DELAY */ if (tpwrsf<4095.0) {obspwrf(tpwrsf); delay(1.0e-4 - POWER_DELAY - PWRF_DELAY);} else delay(1.0e-4 - POWER_DELAY); /* WFG_START_DELAY */ shaped_pulse("H2Osinc", pwHs, three, 0.0, 0.0); txphase(t4); if (tpwrsf < 4095.0) {obspwrf(4095.0); delay(0.5e-4 - POWER_DELAY - PWRF_DELAY);} else delay(0.5e-4 - POWER_DELAY); obspower(tpwr); /* POWER_DELAY */ decshaped_pulse("offC9", pwC9a, zero, 0.0, 0.0); delay(tau2); } } else { if (tau2 > kappa) { delay(timeTN - pwC9a - WFG_START_DELAY); /* WFG_START_DELAY */ decshaped_pulse("offC9", pwC9a, zero, 0.0, 0.0); delay(tau2 - kappa - PRG_STOP_DELAY - pwHd - 2.0e-6); xmtroff(); obsprgoff(); /* PRG_STOP_DELAY */ rgpulse(pwHd,three,2.0e-6,0.0); txphase(t4); delay(kappa - gt1 - 2.0*GRADIENT_DELAY - 1.0e-4); if (mag_flg[A]=='y') magradpulse(gzcal*gzlvl1, gt1); else zgradpulse(gzlvl1, gt1); /* 2.0*GRADIENT_DELAY */ obspower(tpwr); /* POWER_DELAY */ delay(1.0e-4 - POWER_DELAY); } else if (tau2 > (kappa - pwC9a - WFG_START_DELAY)) { delay(timeTN + tau2 - kappa - PRG_STOP_DELAY - pwHd - 2.0e-6); xmtroff(); obsprgoff(); /* PRG_STOP_DELAY */ rgpulse(pwHd,three,2.0e-6,0.0); txphase(t4); /* WFG_START_DELAY */ decshaped_pulse("offC9", pwC9a, zero, 0.0, 0.0); delay(kappa -pwC9a -WFG_START_DELAY -gt1 -2.0*GRADIENT_DELAY -1.0e-4); if (mag_flg[A]=='y') magradpulse(gzcal*gzlvl1, gt1); else zgradpulse(gzlvl1, gt1); /* 2.0*GRADIENT_DELAY */ obspower(tpwr); /* POWER_DELAY */ delay(1.0e-4 - POWER_DELAY); } else if (tau2 > gt1 + 2.0*GRADIENT_DELAY + 1.0e-4) { delay(timeTN + tau2 - kappa - PRG_STOP_DELAY - pwHd - 2.0e-6); xmtroff(); obsprgoff(); /* PRG_STOP_DELAY */ rgpulse(pwHd,three,2.0e-6,0.0); txphase(t4); delay(kappa - tau2 - pwC9a - WFG_START_DELAY); /* WFG_START_DELAY */ decshaped_pulse("offC9", pwC9a, zero, 0.0, 0.0); delay(tau2 - gt1 - 2.0*GRADIENT_DELAY - 1.0e-4); if (mag_flg[A]=='y') magradpulse(gzcal*gzlvl1, gt1); else zgradpulse(gzlvl1, gt1); /* 2.0*GRADIENT_DELAY */ obspower(tpwr); /* POWER_DELAY */ delay(1.0e-4 - POWER_DELAY); } else { delay(timeTN + tau2 - kappa - PRG_STOP_DELAY - pwHd - 2.0e-6); xmtroff(); obsprgoff(); /* PRG_STOP_DELAY */ rgpulse(pwHd,three,2.0e-6,0.0); txphase(t4); delay(kappa-tau2-pwC9a-WFG_START_DELAY-gt1-2.0*GRADIENT_DELAY-1.0e-4); if (mag_flg[A]=='y') magradpulse(gzcal*gzlvl1, gt1); else zgradpulse(gzlvl1, gt1); /* 2.0*GRADIENT_DELAY */ obspower(tpwr); /* POWER_DELAY */ delay(1.0e-4 - POWER_DELAY); /* WFG_START_DELAY */ decshaped_pulse("offC9", pwC9a, zero, 0.0, 0.0); delay(tau2); } } /* xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx */ if (TROSY[A]=='y') rgpulse(pw, t4, 0.0, 0.0); else sim3pulse(pw, 0.0, pwN, t4, zero, t10, 0.0, 0.0); txphase(zero); dec2phase(zero); zgradpulse(gzlvl5, gt5); if (TROSY[A]=='y') delay(lambda - 0.65*(pw + pwN) - gt5); else delay(lambda - 1.3*pwN - gt5); sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0); zgradpulse(gzlvl5, gt5); txphase(one); dec2phase(t11); delay(lambda - 1.3*pwN - gt5); sim3pulse(pw, 0.0, pwN, one, zero, t11, 0.0, 0.0); txphase(zero); dec2phase(zero); zgradpulse(gzlvl6, gt5); delay(lambda - 1.3*pwN - gt5); sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0); dec2phase(t10); zgradpulse(gzlvl6, gt5); if (TROSY[A]=='y') delay(lambda - 1.6*pwN - gt5); else delay(lambda - 0.65*pwN - gt5); if (TROSY[A]=='y') dec2rgpulse(pwN, t10, 0.0, 0.0); else rgpulse(pw, zero, 0.0, 0.0); delay((gt1/10.0) + 1.0e-4 +gstab - 0.5*pw + 2.0*GRADIENT_DELAY + POWER_DELAY); rgpulse(2.0*pw, zero, 0.0, rof1); dec2power(dpwr2); /* POWER_DELAY */ if (mag_flg[A] == 'y') magradpulse(icosel*gzcal*gzlvl2, gt1/10.0); else zgradpulse(icosel*gzlvl2, gt1/10.0); /* 2.0*GRADIENT_DELAY */ delay(gstab); rcvron(); statusdelay(C,1.0e-4 - rof1); if (dm3[B]=='y') lk_sample(); setreceiver(t12); }