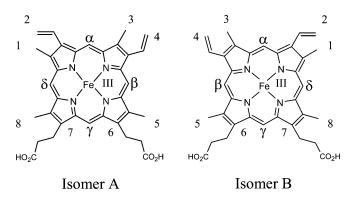
REVIEW

Mario Rivera · Gregori A. Caignan

Recent developments in the ¹³C NMR spectroscopic analysis of paramagnetic hemes and heme proteins


Received: 12 August 2003 / Revised: 7 October 2003 / Accepted: 10 October 2003 / Published online: 20 January 2004 © Springer-Verlag 2004

Abstract Despite the wealth of information that has been obtained from the study of paramagnetic hemes and heme proteins by ¹H NMR spectroscopy, there are certain limitations imposed by the nature of paramagnetically affected resonances that are difficult to overcome. Although it has long been recognized that ¹³C NMR spectroscopy is likely to be a powerful complementary technique to overcome some of these limitations, the low sensitivity and low natural abundance of ¹³C nuclei has resulted in a lag in the application of ¹³C NMR spectroscopy to the study of paramagnetic hemes and heme proteins. The tremendous advances in methodology and instrumentation witnessed in the NMR field, coupled to the advent of recombinant DNA methods that have made possible the preparation and purification of significant quantities of proteins, and the biosynthesis of ¹³C-labeled heme, have contributed to an increased interest in the study of paramagnetic heme active sites by ¹³C NMR spectroscopy. As a consequence, ¹³C NMR spectroscopy is emerging as a powerful tool to study heme electronic structure and structurefunction relationships in heme-containing proteins. In this report we strive to summarize some of the recent developments in the analysis of paramagnetic hemes and hemecontaining proteins by ¹³C NMR spectroscopy.

Introduction

Heme-containing proteins and enzymes are vital components of most living organisms [1]. A common feature among heme proteins is the heme prosthetic group (protoheme IX) (Fig. 1), which upon interacting with the protein polypeptide, is capable of tuning its reactivity and performing a large variety of chemical functions. Hence, heme proteins participate in electron-transfer reactions (cyto-

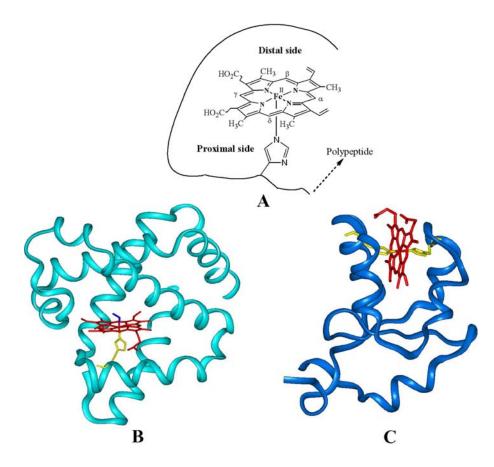
M. Rivera () · G. A. Caignan Contribution from the Department of Chemistry, The University of Kansas, KS 66045–7582 Lawrence, USA e-mail: mrivera@ku.edu chromes) [2], oxygen activation and insertion reactions (monooxygenases) [3], oxygen transport and storage (hemoglobin and myoglobin) [4], oxygen sensing in nitrogen-fixing bacteria (FixL) [5], heme metabolism (heme oxygenase) [6, 7], and regulatory functions based on nitric oxide (guanylyl cyclase, nitrophorins) [8, 9], to name a few. It is therefore important to elucidate how nature tunes the redox properties and reactivity of the ubiquitous heme within a protein so that the resultant activity is that of oxygen binding, oxygen activation, oxygen sensing, or electron transport at different redox potentials. In this context, the heme active site is a chromophore that is amenable to be studied by a variety of spectroscopic techniques, such as nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR), resonance Raman, electronic absorption, and magnetic circular dichroic (MCD) spectroscopies.

Fig. 1 Protoheme IX. The *numbering scheme* follows the Fisher nomenclature more commonly used in the magnetic resonance literature [15, 29]. By using this nomenclature the heme substituents are identified by their common names and a number indicating their position on the heme macrocycle (e.g., 1 methyl, 2 vinyl, 6 propionate). The substituents with more than one carbon are further characterized by the use of *Greek letters* to designate the number of bonds separating their carbons from the pyrrole ring (e.g., 2 vinyl- α , 6 propionate- β). In the asymmetric polypeptide fold, two heme isomeric forms (**A** and **B**) result from a 180° rotation of the heme about the α – γ meso axis

Fig.2 Common spin states for the physiologically relevant oxidation states of iron

S = 0	S = 2	
x ² -y ²	x ² -y ²	
z^2 —	z^2	
xz, yz $\underbrace{\uparrow \downarrow}$ $\underbrace{\uparrow \downarrow}$	xz, yz <u>1 1</u>	
xy	xy <u> </u>	

Iron (III)


Iron (II)

$S = 1/2, (d_{xy})^1$	$S = 1/2, d_{\pi}$	S = 3/2	S = 5/2	
x ² -y ²				
Z ²	z ²	z^2	z^2	
xy	xz, yz	xz, yz 📥 🛉	xz, yz 📩 📩	
z, yz 🕂 🕂	xy	xy	xy 📩	
	Iron (I S =			
	x ² -y ²			
	z^2 xz, yz \checkmark	 <u></u>		
	xy			

The oxidation state of the heme iron is an important modulator of the physical, chemical, and biochemical properties of heme proteins. For instance, myoglobin and hemoglobin form an oxyferrous complex, whereas the ferric oxidation state of these two heme proteins is non-functional. Electron-transfer proteins (cytochrome b_5 , cytochrome c) have evolved to rapidly shuttle between the ferric and ferrous oxidation states, and oxygen-activating heme proteins (cytochrome P450, peroxidases) exhibit changes in the oxidation state of the heme iron (Fe^{II}, Fe^{III}, Fe^{IV}) as the reaction progresses through the catalytic cycle. It is therefore desirable to probe the heme active site in the different oxidation states.

The electronic structure of the heme changes with the oxidation and coordination state of the iron. Heme proteins can adopt different spin states as the relative energies of the metal orbitals are disrupted by endogenous (protein donated) and exogenous ligands of varying field strengths (Fig. 2). For example, the heme iron in the deoxy form of hemoglobin and myoglobin is pentacoordinated; four equatorial positions are occupied by the pyrrole nitrogens in the heme, and one of the axial positions is occupied by a proximal histidine ligand, as shown schematically in Fig. 3A. The pentacoordinated Fe(II) in deoxymyoglobin adopts a high-spin, S=2 state. However, if an additional strong-field ligand, like O₂ or CO, coordinates opposite the proximal histidine (the distal side), the resulting hexacoordinated ferrous iron adopts a low-spin, S=0 configuration. This is illustrated by a view of the active site of oxymyoglobin in Fig. 3B. In a similar manner, ferric heme oxygenase, which is coordinated by an endogenous histidine and a weak-field water ligand on the distal side [10, 11] is found in the high-spin, S=5/2 state. Replacement of the water molecule by a strong-field ligand like cyanide

Fig. 3 A Schematic representation of the Fe(II) heme in deoxymyoglobin. **B** A view of the heme active site of oxymyoglobin, where the proximal histidine ligand is *yellow*, the heme is *red*, and the distal O₂ ligand is *blue* (PDB access code 1AJ6). A view of the active site of mitochondrial cytochrome b_5 , where the heme (*red*) is coordinated by two axial histidine ligands shown in *yellow* (PDB access code is 1B5 M)

produces a low-spin, S=1/2 state. By comparison, heme proteins that function in electron transfer are typically hexacoordinated in the ferric (S=1/2) as well as in the ferrous (S=0) oxidation states. The active site structure of the electron-transfer protein cytochrome b_5 , in which the heme is coordinated by two axial histidine ligands, is shown in Fig. 3C. The coordination state of the heme iron often dictates the spin state, making the latter a useful tool to probe the ligation state of the metal center. More importantly, these coordination/spin state changes contribute to the mechanism of activity of all heme proteins, thus underscoring the importance of their investigation by spectroscopic means.

Heme complexes and heme proteins fall into the category of paramagnetic molecules, as all of the common iron electronic configurations, with the exception of Fe(II) low-spin, S=0, possess one or more unpaired electrons (Fig. 2). These unpaired electrons have a profound effect on the observed NMR chemical shifts as a consequence of the strong electron–nuclear hyperfine interaction. This interaction, which gives rise to the paramagnetic shift (δ_{para}) is composed of a scalar or contact contribution (δ_{con}) that arises from unpaired spin delocalization onto nuclei on the ligands, and a dipolar or through-space contribution, δ_{dip} (Eq. 1) [12]. The typically large chemical shifts observed for paramagnetically affected resonances (δ_{obs}) can be segmented into diamagnetic and paramagnetic contributions (Eq. 2).

$$\delta_{\text{para}} = \delta_{\text{con}} + \delta_{\text{dip}} \tag{1}$$

$$\delta_{\rm obs} = \delta_{\rm dia} + \delta_{\rm para} \tag{2}$$

Thus, in order to isolate and analyze the paramagnetic (δ_{para}) , also called isotropic (δ_{iso}) or hyperfine (δ_{hyp}) shifts, the corresponding chemical shifts of an isostructural diamagnetic molecule (δ_{dia}) should be subtracted from the observed shifts (Eq. 3) [13].

$$\delta_{\text{para}} = \delta_{\text{obs}} - \delta_{\text{dia}} \tag{3}$$

It is important to understand the nature of the contact and dipolar shift contributions in order to appreciate and interpret the information that can be obtained from paramagnetic shifts. The contact contribution to the paramagnetic shift is brought about by scalar coupling between electron spins and individual nuclei. When a single spin level with an isotropic g tensor is populated, and to the extent that Curie law is valid (usually approximately applicable for ferrihemes), the contact shift can be expressed by Eq. 4, where S is the total spin quantum number, g is the isotropic (average) g value, γ is the magnetogyric ratio of the nucleus in question, T is the absolute temperature, β is the Bohr magneton, k is the Boltzmann constant, and A is the hyperfine (scalar) coupling constant for coupling the spin of the electron to the spin of the nucleus of interest [14, 15, 16, 17, 18].

$$\delta_{\rm con} = \frac{Ag\beta S(S+1)}{3\gamma_{\rm N}\hbar kT} \tag{4}$$

Interpretation of the contact contribution to the ¹H paramagnetic shift in terms of metal ligand covalency is done in the context of the McConnell equation [19] (Eq. 5), which relates the hyperfine coupling for each individual proton in an aromatic fragment ($A^{\rm H}$) to the unpaired spin density at the carbon to which the proton is attached ($\rho_{\rm C}$). $Q_{\rm H}$ is an empirical parameter (-63 MHz).

$$A^{\rm H} = Q_{\rm H} \rho_{\rm C} \tag{5}$$

In the case of an aromatic carbon atom the hyperfine coupling constant $A^{\rm C}$ can be related to the spin density centered on its π orbital ($\rho^{\pi}_{\rm C}$) and to the spin density centered on the π orbitals of the three atoms x_i bonded to it (ρ^{π}_{xi}) (Eq. 6) [20]. $S^{\rm C}$ accounts for spin polarization of the 1 s orbital by unpaired spin density located on the p_z (π) orbital of the same carbon atom, $Q_{\rm Cxi}$ accounts for spin polarization of the 2 s orbitals on neighboring carbons by unpaired π spin density on the observed carbon atom, and Q_{xiC} for spin polarization of the 2 s electrons on the observed carbon atom by π spin density on the neighboring carbons [17, 21, 22, 23, 24].

$$A^{\rm C} = (S^{\rm C} + \sum_{i=1}^{3} Q^{\rm C}_{\rm Cxi}) \rho^{\pi}_{\rm C} + \sum_{i=1}^{3} Q^{\rm C}_{\rm xiC} \rho^{\pi}_{\rm xi}$$
(6)

For a methyl carbon atom bound to the pyrrole β carbon of heme, one obtains Eq. 7, where C' denotes the aromatic carbon to which the methyl group is bound ($Q^{C}_{C'C^{\sim}}$ -39 MHz) [18, 21, 25]. It is therefore clear that the δ_{con} contribution to the observed shift for a heme methyl carbon depends only on the unpaired electron density on the pyrrole β carbon to which the methyl carbon is bound. The relevance of Eq. 7 to the study of heme electronic structure by ¹³C NMR spectroscopy will become evident later in this review.

$$A^{\rm C} = Q^{\rm C}_{\rm CC} \rho^{\pi}_{\rm C} \tag{7}$$

The dipolar contribution to the isotropic shift results from through-space interactions (dipole coupling) of the nuclear and electron magnetic moments. For heteronuclei (¹³C) the δ_{dip} contribution to the isotropic shift consists of two terms, a metal centered (δ^{M}_{dip}) and a ligand centered (δ^{L}_{dip}) contribution. The term δ^{M}_{dip} results from coupling between the nucleus under observation and the unpaired spin density on the metal, and the term δ^{L}_{dip} results from coupling between the nucleus under observation and unpaired spin density on the p_z orbitals of the ligand. The δ^{L}_{dip} term is known to be small in low-spin ferrihemes [26], and in the case of heme substituents such as heme methyls, which do not participate directly in the delocalized π orbitals, δ^{L}_{dip} is negligible [25, 27]. A general expression for the predominant δ^{M}_{dip} contribution is given by Eq. 8:

$$\delta_{\rm dip}^{\rm M} = \frac{1}{12\pi_0 N} \begin{cases} \left[\chi_{zz} - \frac{1}{2} (\chi_{xx} + \chi_{yy}) \right] \left(\frac{3\cos^2 \theta - 1}{r^3} \right) \\ + \frac{3}{2} (\chi_{xx} - \chi_{yy}) \left(\frac{\sin^2 \theta \cos^2 2\Omega}{r^3} \right) \end{cases}$$
(8)

where *r* is the metal nucleus distance vector, *N* is Avogadro's number, χ_{ii} are the principal components of the magnetic susceptibility tensor, θ is the angle between the proton-metal vector and the *z* molecular axis, Ω is the angle

between the projection of the *r* vector on the *xy* plane and the *x* axis, and $_0$ is the vacuum permeability [15, 28, 29].

The linewidths of paramagnetically affected resonances can be very large as a consequence of the effect of the electron magnetic moment on nuclear relaxation. In the case of low-spin ferric hemes and relatively small heme proteins Curie relaxation [30, 31] can be ignored and the relaxation rate (R_{obs}) of a resonance in a paramagnetic system is expressed as the sum of paramagnetic (R_{para}) and diamagnetic (R_{dia}) terms (Eq. 9) [32].

$$R_{\rm obs} = R_{\rm para} + R_{\rm dia} \tag{9}$$

The work of Solomon [33] and Bloembergen [34] pointed out that dipolar and contact interactions need to be considered to understand the effect of electron-nuclear interactions that lead to efficient nuclear relaxation. This topic has been reviewed exhaustively [35, 36]. Thus, the expressions for $R_{1\text{para}}$ (1/ $T_{1\text{ para}}$) and $R_{2\text{para}}$ (1/ $T_{2\text{para}}$) describing the relaxation of a heme methyl carbon (¹³CH₃) [32, 37] are given by Eqs. 10 and 11. The first term denotes nuclear relaxation through the electron-nuclear dipole-dipole interaction (dipolar relaxation) and the second term represents relaxation through hyperfine contact interactions between electrons and nuclei. Most constants have been previously defined; $r_{\rm M}$ and $r_{\rm L}$ represent the distance between the nucleus and the metal, and the C_{β} -13CH₃ bond length, respectively, ρ is the unpaired electron density at the pyrrole β carbon (C_{β}) to which the ¹³CH₃ is bound, $\omega_{\rm C}$ the ¹³C nuclear resonance frequency, $\omega_{\rm S}$ the electron resonance frequency, τ_c the correlation time for the dipolar interaction, and τ_{e} the correlation time for the contact exchange interaction. The dipolar exchange interaction $\tau_{\rm c}$ comprises the rotational correlation time ($\tau_{\rm r}$), chemical exchange effects characterized by τ_{ex} , and electron relaxation time constants T_{1e} and T_{2e} (Eq. 12), whereas the contact interaction $\tau_{\rm e}$ depends on $T_{1\rm e}$ and $T_{2\rm e}$ and τ_{ex} (Eq. 13).

$$\frac{1}{T_{1\text{para}}} = \frac{2}{15} \left[S(S+1)\gamma_{\text{C}}^2 g^2 \beta^2 \right] \left[\frac{1}{r_{\text{M}}^6} + \frac{\rho^2}{r_{\text{L}}^6} \right] \\ \left[\frac{\tau_{\text{c}}}{1 + (\omega_{\text{C}} - \omega_{\text{S}})^2 \tau_{\text{c}}^2} + \frac{3\tau_{\text{c}}}{1 + \omega_{\text{C}}^2 \tau_{\text{c}}^2} + \frac{6\tau_{\text{c}}}{1 + (\omega_{\text{C}} + \omega_{\text{S}})^2 \tau_{\text{c}}^2} \right] \\ + \frac{2}{3} \left[\frac{S(S+1)A_{\text{con}}^2}{\hbar^2} \right] \left[\frac{\tau_{\text{e}}}{1 + (\omega_{\text{C}} - \omega_{\text{S}})^2 \tau_{\text{e}}^2} \right]$$
(10)

$$\frac{1}{T_{2para}} = \frac{1}{15} \left[S(S+1)\gamma_{C}^{2}g^{2}\beta^{2} \right] \left[\frac{1}{r_{M}^{6}} + \frac{\rho^{2}}{r_{L}^{6}} \right] \\ \left[4\tau_{c} + \frac{\tau_{c}}{1+(\omega_{C}-\omega_{S})^{2}\tau_{c}^{2}} + \frac{3\tau_{c}}{1+\omega_{C}^{2}\tau_{c}^{2}} \right] \\ + \frac{6\tau_{c}}{1+\omega_{S}^{2}\tau_{c}^{2}} + \frac{6\tau_{c}}{1+(\omega_{C}+\omega_{S})^{2}\tau_{c}^{2}} \right] \\ + \frac{1}{3} \left[\frac{S(S+1)A_{con}^{2}}{3\hbar^{2}} \right] \left[\tau_{e} + \frac{\tau_{e}}{1+(\omega_{C}-\omega_{S})^{2}\tau_{e}^{2}} \right]$$
(11)

$$\frac{1}{\tau_{\rm c}} = \frac{1}{T_{\rm e}} + \frac{1}{\tau_{\rm r}} + \frac{1}{\tau_{\rm ex}}$$
(12)

$$\frac{1}{\tau_{\rm e}} = \frac{1}{T_{\rm e}} + \frac{1}{\tau_{\rm ex}} \tag{13}$$

In the case of large molecules such as heme proteins, expressions 10 and 11 can be simplified to Eqs. 14 and 15, respectively, where it can be seen that the rates of relaxation $R_{1\text{para}}$ and $R_{2\text{para}}$ for the heme methyl carbons are proportional to the unpaired electron density on the C_{β} carbon (ρ) to which the methyl carbon is bound [32]. These relationships (Eqs. 14 and 15) have been used to demonstrate that the paramagnetic terms do not contribute predominantly to the relaxation of the heme methyl carbon in ferric low-spin myoglobin. These findings are in stark contrast to the relaxation of heme peripheral protons, which is dominated by the paramagnetic contribution [37]. Thus, provided that the paramagnetic contributions are quantitatively estimated, it should be possible to interpret the relaxation behavior of carbon resonances in terms of internal molecular motion [37]. Despite its promise, this aspect of ¹³C NMR spectroscopy applied to paramagnetic heme proteins has not yet been studied in detail or exploited to gain detailed understanding of the heme active site. Some of the reasons why ¹³C NMR spectroscopy has not been widely used, a reality that seems to be rapidly changing, are discussed below.

$$\frac{1}{T_{\text{lpara}}} = \frac{2}{5} \left[S(S+1)\gamma_{\text{C}}^2 g^2 \beta^2 \right] \left[\frac{1}{r_{\text{M}}^6} + \frac{\rho^2}{r_{\text{L}}^6} \right] T_{\text{le}}$$
(14)

$$\frac{1}{T}_{2\text{para}} = \frac{7}{15} \left[S(S+1)\gamma_{\text{C}}^2 g^2 \beta^2 \right] \left[\frac{1}{r_{\text{M}}^6} + \frac{\rho^2}{r_{\text{L}}^6} \right] T_{\text{le}} + \frac{1}{3} \left[\frac{S(S+1)A_{\text{con}}^2}{\hbar^2} \right] T_{\text{le}}$$
(15)

¹³C NMR spectroscopy in the analysis of heme proteins

The high sensitivity of the proton has led to an overwhelming emphasis on the utilization of ¹H NMR spectroscopy to study paramagnetic heme proteins [36, 38, 39, 40]. For these molecules ¹H NMR spectroscopy is capable of providing unique structural and electronic information for the heme active site and residues near the active site because of the large hyperfine shifts that result from unpaired electron density [12, 16, 29, 41, 42, 43]. Nevertheless, ¹H NMR spectroscopy of paramagnetic proteins has some fundamental limitations: (a) Asymmetric delocalization of unpaired electron density results in large isotropic shifts for some of the heme substituents but small to negligible isotropic shifts for others. This means that some of the resonances originating from the heme are resolved from the diamagnetic envelope of resonances and thus are relatively easy to observe, whereas other heme resonances are not resolved from the diamagnetic envelope and consequently their observation and assignment are difficult. (b) Heme substituents in the reduced (usually diamagnetic) state lack isotropic shifts and are therefore difficult to examine by ¹H NMR spectroscopy. (c) Efficient spin-spin relaxation often makes through-bond protonproton correlations in COSY and TOCSY experiments unobservable. The development of cross peak coherence in these experiments $(\pi Jt = \pi/2)$ requires that t = 1/(2J). Hence, 70 ms and 35 ms, respectively, are required to develop cross peak coherences for vicinal (J=7 Hz) and geminal (J=14 Hz) ¹H-¹H couplings. Since cross peak coherence must develop completely during the detection period, La Mar has pointed out that in the case of paramagnetic systems, where the condition $T_2^{-1} > ^3J_{\rm HH}$ applies, the COSY cross peaks from signals with short T_2 values will be weak and sometimes undetectable [38, 44]. In fact, it has been proposed that the COSY cross peaks observed in paramagnetic systems originate from dipolar coupling and Curie spin-nuclear spin relaxation [44, 45]. By comparison, the larger heteronuclear coupling ${}^{1}J_{CH}\approx 140 \text{ Hz}$ requires only approximately 4 ms for the development of cross peak coherence, thus making heteronuclear correlation experiments immensely attractive when one is interested in studying paramagnetic heme centers by NMR spectroscopy. In diamagnetic molecules, connectivities are detected across portions of molecules without the use of small ${}^{3}J_{\rm HH}$, using heteronuclear correlation experiments based on scalar 13C-13C and 13C-15N correlations. The relatively large value of the ${}^{1}J_{CC}$ ($\approx 50 \text{ Hz}$) is much larger than typical ${}^{3}J_{\rm HH}$; hence, similar experiments should be directly applicable to the observation and assignment of paramagnetically affected resonances.

Despite the potential utility of ¹³C NMR spectroscopy in the study of paramagnetic proteins, until relatively recently, the inherent lower sensitivity of ¹³C has largely limited the effective use of natural abundance ¹³C NMR spectroscopy to observe resonances originating from the paramagnetic heme cofactor. In the 1970s and 1980s the most common application of ¹³C NMR spectroscopy to the analysis of heme proteins involved the characterization of resonances originating from the distal carbonmonoxy (CO) ligand of heme proteins coordinated by a ¹³C-enriched CO molecule [46, 47]. An early attempt to overcome the problems imposed by the low natural abundance of ¹³C nuclei was to develop synthetic methods to introduce ¹³C labels into the vinyl groups of the heme macrocycle [39, 48]. These pioneering experiments, which permitted the observation of ¹³C resonances from heme vinyl groups in high-spin and low-spin myoglobin derivatives [39], demonstrated the practicality and importance of applying ¹³C NMR spectroscopy to the analysis of paramagnetic heme proteins. More recently, the ¹H–¹³C COSY spectra of natural abundance ferricytochrome c [49] and that of sperm whale myoglobin [50], were utilized to assign the ¹³C resonances originating from the heme methyl groups. Subsequently, the proton-detected heteronuclear multiple quantum coherence (HMQC) experiment [51] was utilized to identify several heme carbons and their corresponding proton resonances in the paramagnetic active site of cytochrome c_{550} [52], which culminated in the

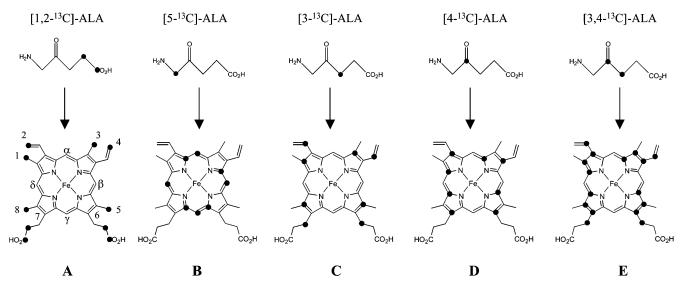
CO₂H CO_2H CO ₂H HO₂C CO 2H CO₂H CO₂H ALA dehydratase PBG deaminase Η̈́Ν HO NH HN П νΗ юлн HO₂C PBG ALA с́о₂н со₂н 1-hydroxymethylbilane Uroporphyrinogen III synthase CO₂H CO₂H CO 2H HO₂C СО-Н .CO ₂H ΗN I ŃН Copro'gen Uro'gen HN oxidase decarboxylase HN NH ΗN II IV. O₂H но2ć ĊО₂ Н CO₂H СО-н ĊΟл Н СО-Н CO2H

Protoporphyrin IX

Coproporphyrinogen III

Uroporphyrinogen III

1469


Fig. 4 Heme biosynthesis pathway; *highlighted atoms* are ¹³C-labeled

assignment of most proton and carbon resonances for tuna ferricytochrome c [53]. This experiment has found widespread use in the identification of ¹H and ¹³C resonances originating from protonated carbon atoms in paramagnetic heme centers [54, 55, 56]. However, resonances not resolved from the paramagnetic envelope are often difficult to assign, even with the aid of the HMQC experiment [57, 58]

Biosynthetic preparation of ¹³C-labeled heme

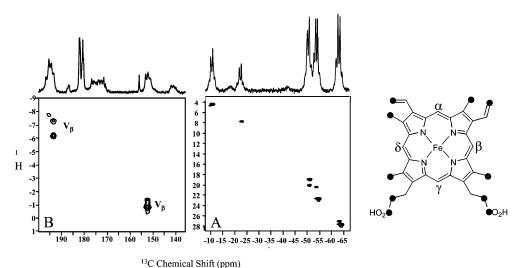
A biosynthetic strategy that takes advantage of developments in recombinant DNA methodology and knowledge of the heme biosynthesis pathway has been developed to prepare isotopically enriched heme [59]. The first committed precursor in the biosynthetic pathway of heme is δ -aminolevulinic acid (ALA) [60, 61]. It can be seen from the biosynthetic pathway schematically shown in Fig. 4 that all atoms in the heme molecule are derived from ALA. Consequently, it should be possible to add isotopically enriched ALA to a growing bacterial culture in order to enhance heme biosynthesis and therefore obtain isotopically enriched heme [62, 63]. The problem with this approach has been that when free protoporphyrin IX or free heme accumulate in the bacterial cell, intermediates in the biosynthetic pathway of heme such as coproporphyrinogen III and uroporphyrinogen III are excreted from the cell before they are converted into protoheme IX [62, 63], therefore causing isotopic dilution of the labeled precursor.

The problems caused by accumulation of free heme have been solved [59] by coupling the ability to control the biosynthetic pathway of heme with the bacterial overexpression of rat liver outer mitochondrial membrane cytochrome b_5 (OM cyt b_5), a heme binding protein [64]. Important in the success of this biosynthetic approach are the properties embedded in the expression system (pET 11a) [65]. The pET 11a plasmid maintains the OM cyt b_5 under control of strong bacteriophage T7 transcription and translation signals [65]. To initiate protein expression, the plasmid harboring the OM cyt b_5 gene is transferred into a host containing a chromosomal copy of the T7 RNA polymerase gene. The host, in this case the bacterial strain BL21(DE3), is a lysogen of the bacteriophage λ DE3, which contains the T7 RNA polymerase gene under control of the inducible lac UV5 promoter. T7 RNA polymerase is significantly more active than E. coli RNA polymerase. Consequently, once the transcription of the target gene $(OM \operatorname{cyt} b_5)$ has been induced the resources of the cell are used to aggressively transcribe the OM cyt b_5 gene located downstream from the T7 RNA polymerase promoter. When

Fig. 5 ¹³C-Labeling patterns obtained when protoporphyrin IX is biosynthesized from $[1,2^{-13}C]$ -ALA (**A**), $[5^{-13}C]$ -ALA (**B**), $[3^{-13}C]$ -ALA (**C**), $[4^{-13}C]$ -ALA (**D**) and $[3,4^{-13}C]$ -ALA (**E**). \bullet positions labeled with ¹³C

this highly efficient expression of OM cyt b_5 is coupled to the enhanced biosynthesis of heme, which is brought about by the addition of exogenous labeled ALA, the following advantages are obtained:

- (a) *E. coli* cells are grown in the absence of labeled ALA until a critical mass of bacteria is obtained [64].
- (b) When the overexpression of OM cyt b_5 is induced with simultaneous addition of a suitably labeled ALA, labeled heme is rapidly produced and subsequently sequestered by apo-OM cyt b_5 . The rates of heme release from OM cyt b_5 are much slower than those for heme release from microsomal cytochromes b_5 and other heme proteins [66, 67, 68]. Consequently, the incorporation of newly synthesized heme into apo-OM cyt b_5 avoids the accumulation of free heme, thereby preventing the undesirable isotopic scrambling.
- (c) Purification of the labeled heme is straightforward since it is co-purified with OM cyt b_5 in two chromatographic steps.
- (d) Because the heme in OM cyt b_5 is not covalently attached to the polypeptide, the macrocycle can be easily extracted from the protein and used to reconstitute other heme proteins with removable hemes [69, 70].

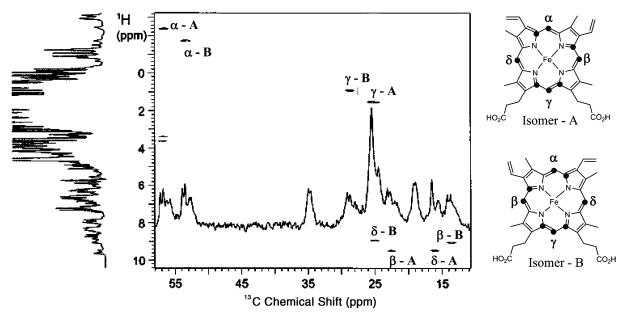

The fact that labeled heme is synthesized in *E. coli* according to the pathway summarized in Fig. 4 means that a judicious choice of labeled precursor (ALA) must be made in order to facilitate the assignment of the heme resonances of interest. For example, when $[1,2^{-13}C]-\delta$ -amino-levulinic acid ($[1,2^{-13}C]$ -ALA) is used as a heme precursor, heme labeled at the four methyl, two vinyl β , two heme propionate β , and two carbonyl carbons is obtained [59, 71] (Fig. 5A). In a similar manner, heme labeled at all four *meso* and selected pyrrole α carbons can be obtained by utilizing [5⁻¹³C]-ALA as a heme precursor (Fig. 5B).

¹³C-labeling schemes that have been utilized in the study of heme proteins, together with their corresponding isotopically marked ALA precursors, are summarized in Fig. 5 [59, 69, 70, 71, 72, 73, 74]. The usefulness of the biosynthetic methods described above depends on the availability of labeled ALA precursors, such as those shown in Fig. 5, in order to facilitate the preparation of labeled hemes. Although a few singly labeled ALAs are commercially available, several of the doubly and singly labeled ALAs of Fig. 5 are not. This problem has been somewhat circumvented by the development and description of simple synthetic routes for the preparation of the ¹³C-labeled ALAs shown in Fig. 5. These synthetic methods utilize relatively inexpensive and readily available ¹³C-labeled starting materials [75, 76].

In a related approach, the heme propionate carbonyl carbons of heme A in cytochrome *c* oxidase from *Paracoccus denitrificans* were labeled with ¹³C for subsequent FTIR difference spectroscopic studies [77]. This was accomplished by deleting the *hemA* gene of the *P. denitrificans* strain PD1222 that codes for 5-aminolevulinate synthase, which is the enzyme that catalyzes the condensation of glycine and succinyl-coenzyme A to form δ -aminolevulinic acid. Since *P. denitrificans* possesses only one gene locus for ALA synthase (*HemA*), deletion of this gene results in heme auxotrophy [78]. Supplementation of the growth medium with ALA restored normal growth and when [1-¹³C]-ALA was added the carbonyl carbons of heme A in cytochrome *c* oxidase were labeled with high efficiency [77].

Resonance assignment strategies that capitalize on the availability of 13C-labeled heme

The assignments of resonances originating from paramagnetic heme active sites are typically carried out with the aid of one- and two-dimensional ¹H NMR spectroscopic experiments [29]. Hence, assignments are carried out with experiments that are based on ¹H–¹H scalar correlations **Fig. 6A,B** Low (**A**) and high (**B**) frequency (¹³C) portions of the HMQC spectrum of cyanide-inhibited heme oxygenase from *Pseudomonas aeru-ginosa* heme oxygenase (*pa*-HO-CN) reconstituted with heme derived from [1,2-¹³C]-ALA showing both contour plot and 1-D ¹³C spectrum. Reprinted from reference [69]


41

(COSY), heteronuclear scalar correlations (HMQC and HSQC), and homonuclear dipolar correlations, in much the same way in which assignments are obtained for diamagnetic molecules. The most important distinction is that rapid relaxation induced by the unpaired electron(s) has the effect of lowering the intensities of cross peaks and compromising the effectiveness of pulse sequences that incorporate several delays [29]. For instance, the deleterious impact that short T_2 values have on the detectability of COSY cross peaks has been discussed above. Despite these difficulties, through careful tailoring of parameters to account for the fast relaxation imparted to the signals by the unpaired electron(s), ¹H NMR spectroscopy has been successfully used to provide a wealth of information about the physical, chemical, and dynamic properties of heme active sites in heme proteins and heme-containing enzymes [12, 16, 29, 41, 42, 43]. However, the assignment of heme resonances not resolved from the envelope of diamagnetic resonances in moderately large heme proteins, or in heme proteins that exist as a mixture of two heme orientational isomers, or in more complex mixtures involving heme isomerism and more than one heme seating, can still be problematic. As will be discussed below, these problems can be overcome, or at least attenuated by employing heme proteins reconstituted with ¹³C-labeled heme to carry out the assignments.

¹³C NMR spectroscopy has been recently utilized to obtain the assignments of resonances originating from heme substituent groups in the paramagnetic, cyanide-in-hibited, ferric state of the enzyme heme oxygenase from *Pseudomonas aeruginosa* [69]. The assignments were carried out with the aid of labeled heme obtained from [1,2-¹³C]-ALA and [5-¹³C]-ALA (Figs. 5A and B, respectively). The sample reconstituted with heme labeled as in Fig. 5A allowed the efficient identification of all methyl carbon resonances, which are located between –10 and –65 ppm (see Fig. 6). These resonances can be readily attributed to heme methyl groups because they display the typical ${}^{1}J_{CH}\approx$ 140 Hz quartets. Note that labeling only the heme active site and not the polypeptide permits the ready

identification of methyl ¹H signals in the HMQC spectrum, including those that would normally be obscured by the diamagnetic signals, approximately 4 and 8 ppm in the ¹H dimension of the spectrum of Fig. 6A. The eight cross peaks originating from heme methyl resonances, instead of the expected four from each of the four methyl groups in heme, stem from the coexistence of two heme orientational isomers (see Fig. 1). The labeling scheme of Fig. 5A also permits the straightforward identification of resonances originating from heme vinyl β and heme propionate β groups. These are readily discernable, because vinyl β carbons display a ¹J_{CH} triplet (Fig. 6B), whereas propionate β carbons, which are located next to the ¹³C-labeled carbonyls, exhibit triplets (¹J_{CH}≈140 Hz) of doublets (¹J_{CC}≈ 55 Hz).

The assignments of heme resonances are typically obtained with the aid of NOESY experiments [12, 29]. The labeling pattern obtained from [5-13C]-ALA provides a unique entry point to interpret the NOESY map. This entry point is provided by the fact that one of the meso carbons (all four are labeled) is unique in that it is not bonded to a ¹³C-labeled pyrrole α carbon, and therefore produces a ${}^{1}J_{CH}$ doublet. By comparison, the resonances arising from *meso* carbons adjacent to ¹³C-labeled pyrrole α carbons consist of AMX quartets, that is, a ${}^{1}J_{CH}$ doublet further split by a ${}^{1}J_{CC}$ coupling. This situation is clearly seen in the spectrum of OM cytochrome b_5 reconstituted with heme labeled as in Fig. 5B. This protein exists in solution as an equimolar mixture of two heme orientational isomers and the corresponding one-dimensional ¹³C NMR spectrum is shown in Fig. 7. It can be seen that the α -meso carbons from isomers A and B (ca. 55 ppm) exhibit clearly defined AMX quartets in the one-dimensional ¹³C NMR spectrum. A similar situation is observed for *meso* carbon β in isomer A (≈ 23 ppm) and *meso* carbon γ (≈ 28 ppm) in isomer B. By comparison, the peak originating from meso carbon δ in isomer A (16 ppm) is clearly a ${}^{1}J_{CH}$ doublet, hence, providing a unique entry point that permits the dipolar correlations and therefore assignment of heme resonances originating from isomer A [72]. It is interesting to

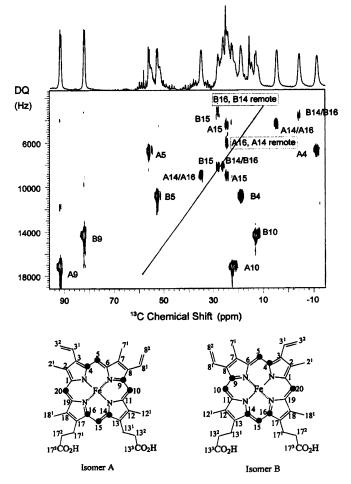
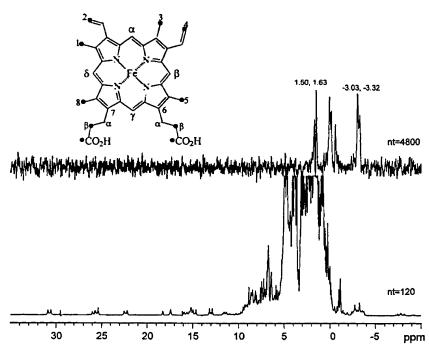


Fig.7 A portion of the HMQC spectrum obtained with a sample of OM cytochrome b_5 containing heme biosynthesized from [5-¹³C]-ALA. The labeled carbon atoms in both heme isomers are highlighted by \bullet . The 1-D ¹³C NMR spectrum, which was acquired without ¹H decoupling, is included to illustrate the asymmetric linewidths within each multiplet. Adapted from reference [72]

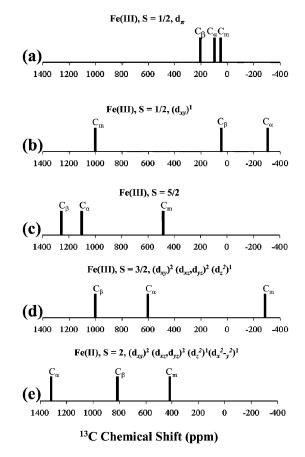
point out that within each AMX quartet the doublet at higher frequency is sharper than the doublet at lower frequency. This is believed to originate from cross correlation between Curie relaxation and dipole–dipole relaxation [72], which resembles the cross correlation between dipole–dipole relaxation and chemical shift anisotropy relaxation that has been utilized to increase the accessible size of molecules that can be studied by solution-state NMR [79].

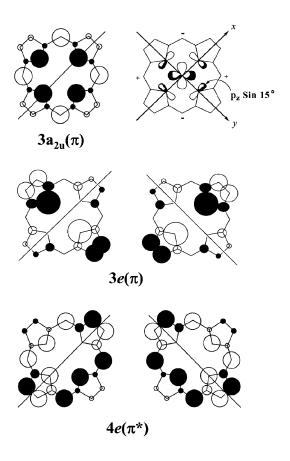

In cases where unambiguous assignments cannot be obtained with the strategy described above, it is possible to label the heme using [3-¹³C]-ALA as a precursor, which results in the isotopic labeling of heme vinyl α and heme propionate α carbons (Fig. 5C). Thus, the three labeling schemes, Figs. 5A–C, permit the relatively straightforward identification of the ¹H and ¹³C resonances originating from all protonated groups in the heme. This has the effect of largely facilitating the identification of heme resonances located under the interpretation of dipolar correlations significantly less ambiguous.

In diamagnetic molecules the assignment of quaternary carbons is ordinarily obtained from the heteronuclear multiple bond correlation (HMBC) experiment [51]. In paramagnetic molecules, however, the relatively long delays of the HMBC experiment ${}^{(2}J_{CH})$ are at odds with fast relaxation $(T_2^{-1}>^2J_{CH})$, and this is typically manifested in the absence of long-range correlations. The relatively larger values of ${}^{1}J_{CC}$ make double quantum coherence experiments $({}^{13}C-{}^{13}C)$ attractive for the assignment of quaternary carbons in paramagnetic heme centers, provided

Fig.8 INADEQUATE spectrum obtained with a sample of OM cytochrome b_5 containing heme derived from $[5^{-13}C]$ -ALA. The labeled carbons in both heme isomers are highlighted by \bullet . The IUPAC nomenclature was used for numbering and a preceding *A* or *B* was added to distinguish the heme isomers which result from a 180° rotation around the 5–15 *meso* carbon axis. Adapted from reference [72]

Fig. 9 *Top* DRIED (${}^{1}H{-}{}^{13}C{-}^{13}C$) spectrum obtained with a sample of OM cytochrome b_5 -containing heme derived from [1,2- ${}^{13}C$]-ALA. *Bottom* traditional one pulse experiment. Adapted from reference [81]


that heme labeled at adjacent carbon atoms is available. Cytochrome b_5 reconstituted with heme labeled as in Figs. 5B and E was used to test the applicability of the ${}^{13}C{}^{-13}C$ double quantum coherence (INADEQUATE) [80] experiment for the detection and assignment of quaternary carbons in paramagnetic heme proteins [72]. The INADE-QUATE spectrum in Fig. 8 makes it evident that the assignment of several pyrrole C_{α} carbons can be obtained from previously assigned meso carbons (see above) via ¹³C-¹³C double quantum correlations. Moreover, a judicious choice of labeling scheme can render a wealth of information regarding core porphyrin carbons with a minimum number of experiments. For instance, all pyrrole C_{β} carbons and several pyrrole C_{α} carbons have been assigned with the aid of ${}^{13}C-{}^{13}C$ double quantum coherence correlations departing from the assignments corresponding to the highlighted protonated carbons in each pyrrole ring of the macrocycle labeled as in Fig. 5E [72].


In keeping with the advantages furnished by the relatively large values of ${}^{1}J_{CH}$ and ${}^{1}J_{CC}$ a new NMR experiment was devised which selectively detects ${}^{1}H$ in ${}^{1}H_{n}$ - $^{13}C^{-13}C$ fragments [81]; these fragments were introduced biosynthetically into heme by using $[1,2^{-13}C]$ -ALA as a heme precursor. The new experiment, double-resonance isotope-edited (DRIED), combines the well-known INEPT sequence [82] to transfer ¹H magnetization to ¹³C nuclei, followed by INADEQUATE to generate ¹³C-¹³C double quantum coherence between directly bound ¹³C atoms [80], and finally reverse INEPT to detect the results through the sensitive ¹H nuclei. By combining the INEPT and INADEQUATE building blocks the DRIED experiment takes advantage of the relatively short interpulse delays permissible by ${}^{1}J_{CH}$ and ${}^{1}J_{CC}$, thus avoiding the long interpulse delays that in HMBC compromise the detection of rapidly relaxing nuclei. The DRIED experiment allowed

exclusive observation of the diastereotopic heme propionate β protons in cytochrome b_5 , Fig. 9, where the ¹H– ¹³C–¹³C-edited spectrum (top trace) is compared to the traditional one-pulse experiment (bottom trace).

¹³C NMR chemical shifts of quaternary carbons and heme electronic structure

The observation and assignment of core porphyrin carbons is more challenging than that of protonated heme carbons because of their closer proximity to the heme iron, which makes these carbons more strongly affected by the unpaired electron. However, as will be discussed below, there is a straightforward correlation between the chemical shifts of these core carbons and the coordination state and electronic structure of the heme, which warrants the effort needed to observe and assign these resonances. Recent studies conducted with low-spin ferriheme complexes have contributed to solidifying the idea that chemical shifts originating from porphyrin core carbons, C_{α} , C_{β} , and C_{meso} (C_m) greatly facilitate the assessment of electronic structure [83, 84, 85, 86, 87]. Furthermore, calculations utilizing density functional theory methods have recently been used to successfully predict the chemical shift of core carbon resonances from hemes exhibiting different oxidation and spin states [88]. As an example of the usefulness of observing core carbon resonances it is illustrative to consider the two electronic configurations attained by low-spin ferrihemes: the more common $(d_{yy})^2(d_{yz},d_{yz})^3$ electronic configuration is typically abbreviated d_{π} because the unpaired electron resides in one of the d_{π} orbitals, and the less common $(d_{xz}, d_{yz})^4 (d_{xy})^1$ configuration is commonly abbreviated $(d_{xy})^1$ because the unpaired electron resides in the d_{xy} orbital (see Fig. 2) [15,

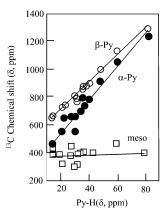
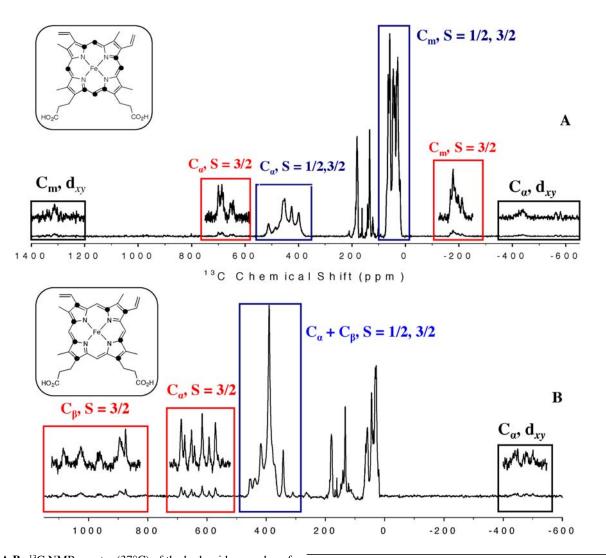


Fig. 10a–e Chemical shifts characteristic of core C_{α} , C_{β} , and C_m carbons. **a** Fe^{III}-porphyrinates with the S=1/2, d_{π} electron configuration, **b** Fe^{III}-porphyrinates with the S=1/2, $(d_{xy})^1$ electron configuration, **c** Fe^{III} porphyrinates with the S=5/2 electron configuration, **d** Fe^{III}-porphyrinates with the S=3/2, $(d_{xy})^2(d_{xz}, d_{yz})^2(d_z^2)^1$ electron configuration, and e Fe^{II}-porphyrinates with the S=2 electron configuration. The C_{α} and C_{β} resonances of deoxymyoglobin (S=2) have been reported to occur near 850 ppm [139]; however, density functional theory calculations predict the C_{α} resonance between 1,040 and 1,400 ppm. Right schematic representation (adapted from reference [15]) of the $3a_{2u}(\pi)$, $3e(\pi)$, and $4e(\pi^*)$ porphyrin orbitals. The relative size of the circles at each atom are proportional to the calculated electron density. The possible interactions between the d_{xy} orbital and the porphyrin nitrogens of a ruffled porphyrin which allow spin delocalization into the $3a_{2\mu}(\pi)$ orbital are shown schematically next to this orbital

89, 90]. Spin delocalization in ferrihemes with the common S=1/2, d_{π} electronic structure is mainly into the porphyrin $3e(\pi)$ orbital shown schematically in Fig. 10. It can be seen from the relative sizes of the circles in this schematic representation that the C_{β} carbons possess relatively large electron density, the C_{α} carbons possess relatively small electron density, and the C_m carbons have zero electron density. Thus, the corresponding shifts are located at about 200 ppm for C_{β} carbons, approximately 100 ppm for C_{α} carbons, and about 70 ppm for C_m carbons (Fig. 10a) [23, 72]. By comparison spin delocalization in ferrihemes with the less common S=1/2, $(d_{xy})^1$ electronic configuration is mainly into the $3a_{2u}(\pi)$ orbital [15], which exhibits large electron density at the C_m carbons and small electron density at the C_{α} carbons (Fig. 10). Consequently, ferrihemes possessing the $(d_{xy})^1$ electron configuration display large downfield C_m shifts ($\approx 1,000$ ppm), relatively large upfield C_α shifts (≈ 300 ppm), and small C_β shifts ($\approx 20-70$ ppm) (Fig. 10b). Since the $3a_{2u}(\pi)$ orbital has a very small spin density at the C_α position, the relatively large upfield C_α shifts are a consequence of spin polarization from the C_m carbons [84]. It should be pointed out that Fe^{III}-porphyrinates with the S=1/2, $(d_{xy})^1$ electron configuration are significantly ruffled [91] so that the nodal planes of the p_z orbitals are no longer in the *xy* plane; hence, the projections of these p_z orbitals have the proper symmetry to interact with the d_{xy} orbital, as has been shown schematically in Fig. 10 [91].

In the case of ferric porphyrinates exhibiting the highspin, S=5/2 state, half occupation of the $d_{x-y}^{2}^{2}$ orbital results in large spin delocalization to all core carbons via σ bonds [41, 88, 92, 93], which results in very large downfield shifted chemical shifts for C_{α} ($\approx 1,100$ ppm) and C_{β} (≈1,300 ppm) carbons (Fig. 10c). The meso carbons shifts are still downfield and large (≈450 ppm) [83, 87]; however, these shifts are related to π spin delocalization from one of the d_{π} orbitals into the $4e(\pi^*)$ orbital, which has large electron density at the *meso* positions (Fig. 10) [15, 41, 88, 94]. The heme active site in proteins exhibiting the ferric high-spin, S=5/2 state is typically hexacoordinated, with a proximal histidine and a distal water ligand. Examples of this coordination state are met-hemoglobin and met-myoglobin from horse heart or sperm whale [4]. Alternatively, the ferric high-spin, S=5/2 state in heme proteins can also be pentacoordinated, where only a protein

Fig. 11 Correlation of the ¹³C chemical shifts of C_{α} , C_{β} , and C_m carbons against the ¹H chemical shifts of the pyrrole hydrogens of several mono-imidazole ligated complexes of (*meso*-tetramesitylporphyrinato)Fe(III) exhibiting different contributions of the *S*=3/2 state to the quantum mechanically admixed *S*=5/2, *S*=3/2 spin state. Adapted from reference [87]



provided ligand, typically histidine, is axially coordinated. Examples of these proteins are the met-myoglobin from red muscle of the shark G. japonicus [95] and the monomeric met-myoglobin from the buccal muscle of the sea hare Aplysia limacina [96]. These two coordination states of high-spin ferric hemes display very different meso-H resonances; the hexacoordinated myoglobins and hemoglobins display *meso*-H resonances near 40 ppm, whereas the pentacoordinated myoglobins exhibit meso-H resonances at approximately -20 ppm [29, 95, 96]. However, severe line broadening of these resonances can prevent the observation of *meso*-H resonances in high-spin heme proteins. A recent study with model ferrihemes has demonstrated that C_m resonances from pentacoordinated high-spin complexes occur between 500 and 700 ppm, while C_m resonances from the hexacoordinated high-spin complexes are found between 0 and 80 ppm [97]. It was therefore suggested that the C_m resonances from enzymes reconstituted with isotopically labeled heme might constitute a good tool for the straightforward determination of coordination structure in ferric high-spin heme proteins [97].

Ferrihemes possessing the S=/2, $(d_{yy})^2(d_{yz}, d_{yz})^2(d_z^2)^1$ spin state have been shown to exhibit complicated distortions from planarity [85, 98, 99], which suggests they might exist in solution as a complex mixture of interconverting conformers with similar energies. Nonplanar hexacoordinated ferrihemes possessing a pure S=3/2 spin state also exhibit a unique pattern of ¹³C NMR shifts [86] with very large downfield β shifts (\approx 1,000 ppm), large downfield C_{α} shifts ($\approx 600 \text{ ppm}$), and large upfield C_m shifts (≈-300 ppm) (Fig. 10d). The large downfield shifts of the C_{α} and C_{β} carbons are consistent with the presence of unpaired electron density in each of the d_{xz} and d_{yz} orbitals, which are delocalized into the $3e(\pi)$ porphyrin orbital. Since this porphyrin orbital has zero electron density at the *meso* carbons, the large upfield C_m shift stems from spin polarization from the neighboring C_{α} carbon. Cytochromes c' are a unique class of heme proteins found in photosynthetic, denitrifying and nitrogen-fixing bacteria, which exhibit unusual EPR spectra that have been ascribed to a quantum mechanical admixture of high-spin (S=5/2) and intermediate-spin (S=3/2) states [100]. The relative contribution of S=3/2 to the quantum mechanically admixed S=3/2, S=5/2 spin state can vary and this has a profound effect on the ¹H [101] and ¹³C NMR spectra [87] of ferrihemes possessing the quantum mechanical spin admixed, S=5/2, S=3/2, spin state. Thus, as the S=3/2contribution increases, the C_{α} and C_{β} resonances shift upfield from approximately 1,200 ppm for a pure S=5/2 state to about 600 ppm (C_{β}) and about 400 ppm (C_{α}) for approximately 50% S=3/2 contribution. Interestingly, the C_m resonances are almost insensitive to the contribution of S=3/2 to the admixed S=5/2, S=3/2 spin system [87] (Fig. 11).

The pronounced differences between the ¹³C NMR spectra of ferrihemes with S=1/2, d_{π} and S=1/2, $(d_{xy})^1$ electronic structure were used to study ferric hemes aimed at modeling the electronic structure of the ferric hydroperoxide (Fe^{III}–OOH) [102]. This oxidizing species in heme oxygenase is known to hydroxylate the heme to produce mesohydroxyheme, the first stable intermediate in the pathway of heme catabolism [103]. The ¹³C-ENDOR spectrum of Fe(III)-meso-13C-tetraphenylporphyrin, axially coordinated by a methoxide and a tert-butyl-hydroperoxide ligand [meso-¹³C-TPPFe(OCH₃)(OO^tBu)]⁻, showed that at very low temperatures (8 K) the unpaired electron resides in a d_{π} orbital. On the other hand, the variable-temperature ¹³C NMR spectra of [meso-¹³C-TPPFe(OCH₃)(OO^tBu)]⁻ suggested a situation in which a heme with a d_{π} electron configuration and planar porphyrinate ring is in equilibrium with a ruffled ferric porphyrinate possessing a $(d_{yy})^1$ electronic configuration. These findings led to the hypothesis that at ambient temperatures ferrihemes axially coordinated by a peroxide ligand are likely to have the $(d_{yy})^1$ electronic configuration [102]. Significant about this electronic configuration is the fact that ferric porphyrinates possessing an unpaired electron in the d_{xy} orbital are significantly ruffled and place a relatively large amount of spin and electron density at the porphyrin meso carbons [15, 89, 91, 104] (see Fig. 10). Therefore, these characteristic properties of $(d_{xy})^1$ ferric porphyrinates have been hypothesized to aid the attack of the terminal oxygen of the Fe^{III}–OOH intermediate in heme oxygenase on the meso carbon [102], thus leading to the formation of *meso*-hydroxyheme [6].

In an attempt to probe the electronic structure of the hydroperoxide complex of heme oxygenase (Fe^{III}–OOH) at ambient temperatures, the hydroxide complex of this enzyme (Fe^{III}–OH) was studied by ¹³C NMR spectroscopy. The ¹³C NMR spectra of the Fe^{III}–OH complex of heme oxygenase reconstituted with heme labeled at the core porphyrin carbons are shown in Fig. 12A and B. The resonances boxed in red correspond to a population possessing the pure S=3/2 spin state, as can be seen from the unique pattern of resonances in which the C_{β} carbons resonate near 1,000 ppm, the C_{α} carbons near 700 ppm, and the C_m carbons near -200 ppm. The presence of a population with the S=1/2, $(d_{xy})^1$ spin state is apparent from the resonances boxed in black, with the characteristic C_m resonances near 1,300 ppm and C_{α} resonances near -400 ppm. The most abundant population was attributed to an S=1/2, S=3/2 spin state crossover that is characterized by C_{α} and C_{β} resonances between 300 and 600 ppm and C_{m} resonances near zero ppm, which has been recently ob-

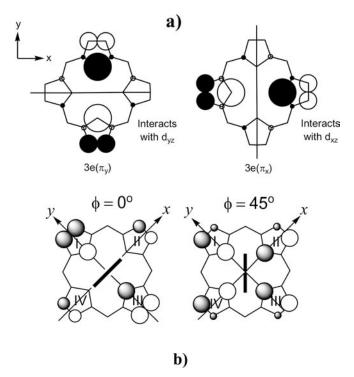


Fig. 12A,B ¹³C NMR spectra (37°C) of the hydroxide complex of *pa*-HO (pH 10.3) reconstituted with heme labeled at the C_{α} and C_{m} (**A**) and C_{α} and C_{β} carbons (**B**). Peaks corresponding to the population exhibiting the *S*=1/2, 3/2 spin state crossover are highlighted by *blue boxes*, peaks corresponding to the population with the *S*=3/2 spin state are highlighted by *red boxes*, and those corresponding to the population are highlighted by *black boxes*. This figure was reproduced from reference [70]

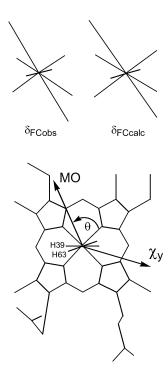
served in a model ferriheme complex [85]. The presence of these unusual spin states, which are typically accompanied by large nonplanar deformations of the macrocycle, were interpreted to suggest that the water molecules in the distal pocket of HO lower the ligand field strength of the coordinated hydroxide by virtue of hydrogen bonding. The decrease in ligand field strength of the hydroxide would increase the ligand field strength of the porphyrin, thereby inducing nonplanar deformations of the porphyring ring. Hence, if the ligand field strength of the OOH⁻ ligand in heme oxygenase is modulated in a similar manner, the nonplanar heme and unpaired electron density at the *meso* carbons (manifested by large C_m shifts) would be expected to aid in the attack of the porphyrin by the coordinated peroxide ligand [69].

¹³C NMR shifts, axial ligands, and axial ligand geometry

The electron configuration of the ferric iron in heme, d^5 , typically requires two strong-field ligands to stabilize the low-spin (S=1/2) state. Thus, ferric heme proteins exhibiting a low-spin state typically employ the histidine imidazole, the methionine thioether, or the cysteine thiolate as the axial ligands. Many of the cytochromes c and cytochrome b_{562} from *E. coli* exhibit a histidine and a methionine as axial ligands [105], whereas cytochromes b_5 , microsomal [106] or mitochondrial [71], and the four hemes of cytochrome c_3 [107] possess a bishistidine-coordinated heme. By comparison, the globins, including the inactive, Fe^{III} (met) forms of hemoglobin, myoglobin [4], and monomeric hemoglobins [108], as well as heme oxygenase [10, 11], the NO-carrying nitrophorins [109], and the peroxidases [29] have only one histidine axial ligand. Most of the molecules in the last group exhibit a water molecule (weak-field ligand) coordinated at the sixth position and are thus in the S=5/2 high-spin state. NMR spectroscopic studies of the paramagnetic active site of these high-spin proteins are typically conducted in the

Fig. 13 a Electron density and nodal properties of porphyrin $3e(\pi)$ orbitals [110], which interact with the d_{xz} and d_{yz} orbitals of low-spin Fe(III), respectively. **b** Spin density for two angles of the proximal histidine plane (represented by a *thick black line*), $\varphi=0^{\circ}$ and $\varphi=45^{\circ}$, with respect to the axis along the nitrogen atoms of pyrrole rings II and IV. The size of the *circles* is proportional to the electron density at each position. Adapted from references [111] and [15]

presence of an exogenous strong-field ligand that binds (or replaces the aqua ligand) at the sixth position, therefore converting the heme protein to its low-spin state. The S=1/2, d_{π} spin state is most commonly attained and the discussion below pertains only to this electronic configuration. The exogenous strong-field ligands are typically cyanide, imidazoles, pyridines, or azide, although cyanide is sometimes preferred because its cylindrical symmetry does not introduce a perturbation of the symmetry of the porphyrin π molecular orbitals.

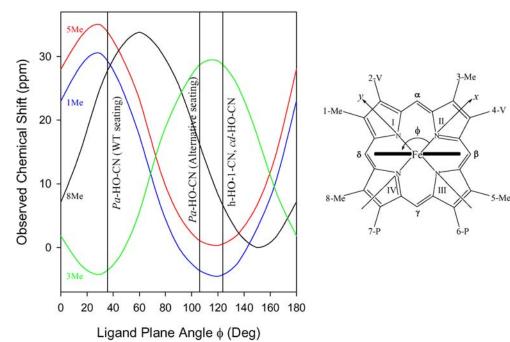

Early work conducted with met-myoglobin-cyanide revealed that the heme methyl groups exhibit significant C_2 symmetry in that the methyl group resonances appear to be grouped pairwise in the proton NMR spectrum [110]; two methyl resonances exhibit large hyperfine shifts (≈ 20 ppm) and the other two display significantly smaller shifts, resonating at approximately 8 ppm. It is nowadays clear that the orientation of planar axial ligands exerts a large influence on the spread of the methyl resonances originating from low-spin ferric heme proteins, as well as in low-spin porphyrinates [16, 111, 112]. The fundamental property that brings about this spread in the chemical shift of heme substituents is the interaction of the proximal histidine ligand with the iron-centered *e*-symmetry d orbitals, which in turn, individually interact with porphyrin $3e(\pi)$ orbitals. These interactions, which have been

presented in pictorial form [15, 89, 111], can be readily understood by considering the degenerate pair of porphine $3e(\pi)$ molecular orbitals (Fig. 13a), which interact with the d_{yz} and d_{yz} orbitals of low-spin Fe(III). The histidine imidazole π orbitals lie perpendicular to the plane of the imidazole ring, thus these orbitals interact with the iron d_{yz} and d_{yz} orbitals and the porphyrin $3e(\pi)$ orbitals. This interaction, which can be thought of as being modulated by the angle the imidazole plane makes with the axis along the nitrogen atoms of pyrrole rings II and IV, lifts the degeneracy of the $3e(\pi)$ orbitals, alters their relative energy difference, and largely determines the degree of uneven distribution of electron spin density among the four pyrrole rings in the porphyrin macrocycle (see Fig. 13b) [111, 113]. More recently the concept of counter rotation of the g or χ tensor with rotation of axial ligand planes away from the N-Fe-N axes in the heme has been used to predict the orientation of the in-plane magnetic axis utilizing ¹³C NMR [25, 114, 115, 116, 117, 118] and ¹H NMR [119, 120] spectroscopic data. These two approaches are summarized below.

It has been mentioned above that the contact shifts of ¹³C nuclei bound to pyrrole β carbons, that is, the heme methyl and heme propionate α carbons, are dominated by polarization of the carbon s electrons as a consequence of unpaired electron density ($\rho^{\pi}_{C'C}$) on the π orbital of the adjacent pyrrole β carbon (see Eqs. 4 and 7) [20]. Hence, an approach aimed at determining the geometry of the axial ligands has been developed based on the premise that the hyperfine shifts of ¹³C nuclei bound to pyrrole β carbons are well suited for this purpose because these shifts are a good approximation of the corresponding contact shift [114]. This assumption is based on the fact that the dipolar contribution to the isotropic shift is small compared to the contact contribution [25], and can therefore be ignored. By comparison, in the case of ¹H nuclei, the dipolar and contact shifts are of approximately equal magnitudes [17, 25, 107, 114]; thus, δ_{dip} cannot be ignored. Since the hyperfine shift is the sum of several contributions, including the diamagnetic shift (see Eqs. 1, 2, and 3), it is possible to obtain the ¹³C contact shift if the diamagnetic contribution is known; the value of δ_{dia} is typically obtained from the same protein in its reduced, typically low-spin S=0, diamagnetic form [121].

The contact shifts of ¹³C nuclei bound to pyrrole β carbons reflect the unpaired spin distribution in the two degenerate $e(\pi)$ molecular orbitals in an idealized porphine with D_{4h} symmetry. If a rhombic perturbation [110] is applied, which might be thought of as changing the orientation of the axial ligand planes with respect to the heme, it mixes the orbitals and lifts the degeneracy of the $e(\pi)$ molecular orbitals. The contact shifts of the heme substituents attached to the pyrrole β carbons obtained from this model can be described by the following parameters [114]: (1) the constant Q^{C}_{CC} , which represents the degree of s electron polarization induced by a π electron on an adjacent carbon, (2) molecular orbital coefficients c_1 and c_5 (in the nomenclature of Longuet–Higgins [122]), which appear to show little variation among different proteins

Fig. 14 Top schematic representation of the observed and calculated intensities for the Fermi contact shifts, $\delta_{\rm con}$ (observed) and δ_{con} (calculated), respectively, for the ¹³C nuclei bound to pyrrole β carbons in the A isomer of bovine ferricytochrome b_5 . Bottom MO and χ_v represent the orientations of the rhombic perturbation of the molecular orbitals and the magnetic y axis, respectively. Note that the magnetic axis is rotated in the opposite sense to the rhombic perturbation with respect to the iron nitrogen bonds. This figure was reproduced from reference [116]

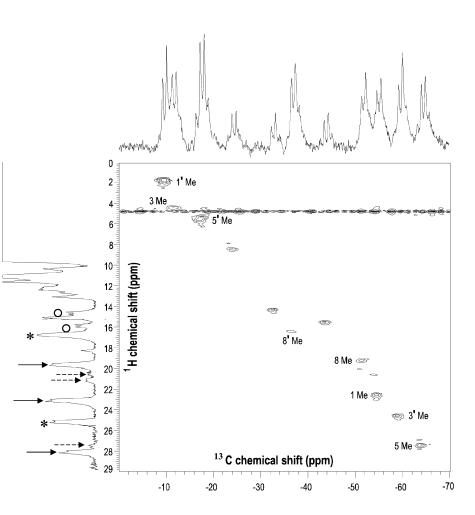

[27, 114, 116, 117, 123], (3) the orbital mixing parameter θ , and (4) the energy separation of the two $e(\pi)$ orbitals, ΔE , which is well described by a simple Boltzmann distribution between the two perturbed orbitals. Typically, a set of $\delta_{\rm con}$ values from a heme is fitted with only three parameters, namely $Q^{C}_{C'C}$, θ , and ΔE , while fixing the c_1 and c_5 coefficients with the most accurate values available [123]. The orientation of the rhombic perturbation (MO in Fig. 14), which is equivalent to the mixing parameter θ , is related to the orientation of the largest component of the susceptibility tensor χ_{v} by rotation in the opposite sense (counter rotation), relative to the axis along the nitrogen atoms of pyrrole rings II and IV [116, 123]. The orientation of the rhombic perturbation (MO) has been shown to correlate well with the average of the normals to the imidazole planes of several bishistidine-ligated ferricytochromes c_3 [107, 114, 117], cytochrome c'' [56] and cytochrome c_6 [27], thus allowing the determination of their axial ligand geometries.

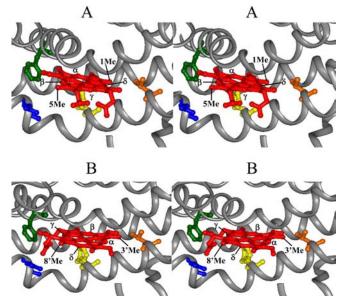
This analysis of ¹³C NMR data, which was developed using data sets from cytochrome *c*, has been extended to *b* hemes, such as those found in cytochrome b_5 [115, 116], myoglobin [115], and the peroxidases [123]. In the *b* hemes the vinyl carbons experience shifts caused by delocalization of unpaired electron density from the heme π molecular orbitals, in addition to the aforementioned polarization of the carbon selectrons by unpaired electron density in the π orbital of the neighboring pyrrole β carbon. The δ_{con} corresponding to the vinyl groups was corrected by a constant derived from theoretical treatment [115] and from an empirical correction factor [116, 123]. Results obtained with cytochrome b_5 were in reasonable agreement with the average of the orientations of the normals to the His-imidazoles observed in the crystal structure [106] of this protein. This was interpreted as an indication that the two His ligands in cytochrome b_5 have approximately equal influence on the electronic structure and that together they dominate the rhombic perturbation. This result is in contrast to previous conclusions derived from a ¹H NMR spectroscopic study which suggested that one of the His ligands (His-39) dominates the magnetic properties of cytochrome b_5 [124]. It has been pointed out that the origin of the significant differences in the ¹H shifts originating from the β -CH₂ groups of His-39 and His-63, which were interpreted as evidence of the dominant influence of His-39 [125], might originate from conformational differences [116]. Support for this hypothesis has been postulated [116] to come from the fact that the ¹³C shifts of the β -CH₂ groups in His-39 and His-63 can be seen close to each other (ca. 20 ppm) in the HMQC spectrum of Fig. 2 reported by Lee et al. [126].

The effect of axial ligand nodal plane orientation on the contact and dipolar ¹H shifts of low-spin ferrihemes has been calculated as a function of the angle of the axial ligand plane with respect to the axis along the nitrogen atoms on pyrrole rings II and IV [119]. Estimates of the $\delta_{\rm con}$ contribution to the isotropic shift were obtained from Hückel methods. Calculations of g anisotropy assuming counter rotation of the g tensor [120] were used to estimate the contribution of δ_{dip} . It was found that for systems having one axial ligand, or two axial ligands in parallel planes, the δ_{con} and δ_{dip} contributions to the isotropic shift are comparable at the meso-hydrogen position, whereas the contact contribution dominates the isotropic shifts of heme methyl groups. The predicted isotropic shifts were plotted as a function of axial ligand nodal plane orientation for b- and c-type hemes (Fig. 15) [119]. These plots, which represent a straightforward visual aid to estimate the orientation of the axial ligands, show very good agreement in the order of the predicted shifts, and reasonable agreement in the magnitude of the shifts. This approach has been made more quantitative with the finding of equations that describe the relationship between axial ligand geometry and ¹H shifts [127, 128] for c and b hemes and ¹³C [128] shifts for *c* hemes.

The plot shown in Fig. 15 summarizes calculations in the case of b hemes axially coordinated by proximal histidine and distal cyanide ligands, or by two histidine ligand s parallel to one another [119]. The plot permits the straightforward correlation of the observed shifts for the four heme methyl groups (1Me, 3Me, 5Me, and 8Me) as a function of the angle φ formed between the axial ligand plane and the molecular x axis. By using the information in this plot and the NMR resonance assignments obtained for the heme methyl groups [58, 129], it was possible to correctly predict an angle φ of 125° for the proximal imidazole plane of human heme oxygenase [119] before the X-ray crystal structure was obtained [10]. Thus, the calculations summarized in the plot of Fig. 15 provide a straightforward predictive framework to study heme-containing proteins and enzymes even if their structure is not available. More recently a study has been published that correlates the order of heme methyl resonances in the

Fig. 15 Right right-handed coordinate system and nomenclature used for describing the projection of the His-imidazole plane onto the porphyrin ring. The x axis is aligned along the nitrogen atoms of pyrrole rings II and IV of the heme, the y axis is along the nitrogen atoms of pyrrole rings I and III, and the z axis is normal to the heme. Left dependence of observed heme methyl shifts on the angle φ formed between the molecular x axis and the projection of the imidazole plane. Adapted from reference [119]


high-spin form of several ferriheme proteins [94]. There is an apparent 90° shift in the nodal plane of the orbital involved in spin delocalization compared to the histidineimidazole plane. This 90° rotation has been explained in terms of almost complete use of only one of the d_{π} (d_{xz} or d_{yz}) metal orbitals to delocalize electron density into one of the two $4e(\pi^*)$ porphyrin orbitals [94].


From the discussion above it is apparent that the predictive power of the calculations summarized in the plot of Fig. 15 depends on unambiguous assignments of the four heme methyl resonances. In certain cases enzymes reconstituted with ¹³C-labeled hemes can be used to facilitate the assignment process or to obtain unambiguous assignments of methyl resonances buried under the envelope of polypeptide signals. This approach was applied to the study of heme oxygenase from *Pseudomonas aeruginosa* (*pa*-HO). This bacterial heme oxygenase is unique in that it oxidatively cleaves the heme at the δ -meso carbon [130], whereas all other known heme oxygenases, mammalian and bacterial, cleave the heme exclusively at the α -meso carbon (see [7] and references therein). The magnitude and spread of the assigned heme methyl resonances from *pa*-HO, interpreted in the context of the plot shown in Fig. 15, indicated that the histidine imidazole plane in this enzyme forms an angle φ of approximately 35° with respect to the molecular x axis [69] (see Fig. 15). This finding strongly suggested that the heme in pa-HO is seated within the polypeptide in a manner that is distinct from that observed for all other heme oxygenases for which a structure is known. Furthermore, it was concluded that the unique oxidative regioselectivity of pa-HO is a consequence of the heme being rotated in-plane by approximately 100° relative to the orientation (seating) of the heme in all α -oxidizing heme oxygenase enzymes of known structure because the in-plane rotation places the

 δ -meso carbon within the heme oxygenase fold in the place where the α -oxidizing enzymes typically place the α -meso carbon [69].

The Asn19Lys/Phe117Tyr double mutant of *pa*-HO was constructed to probe the hypothesis that the unusual heme seating in *pa*-HO is brought about by the absence of hydrogen bonding and electrostatic contacts between the heme propionates and residues at position 19 and 117 [69]. Thus, introducing Lys-19 and Tyr-117 was expected to restore these interactions, which are present in all α -oxidizing heme oxygenases of known structure [10, 11]. The high-frequency portion of the ¹H NMR spectrum of the double mutant (Fig. 16) displays a large number of resonances; the resonances labeled with arrows and asterisks, as well as those highlighted by dotted arrows and circles were unequivocally shown to originate from heme methyl groups. This information was obtained from the HMQC spectrum of Fig. 16, which was acquired from a sample of mutant enzyme reconstituted with heme labeled as in Fig. 5A. The presence of 15 cross peaks strongly suggested that the Asn19Lys/Phe117Tyr double mutant of pa-HO exists in solution as a mixture of four different molecules: two different heme seatings create a set of two and heme orientational isomerism creates a subset of two from each heme seating isoform [69]. Exchange spectroscopy (EXSY) was used to demonstrate that the heme methyl peaks labeled by arrows, which correspond to enzyme exhibiting the heme seating characteristic of the wild type enzyme, are in dynamic exchange with a new heme seating, which exhibits the heme methyl resonances labeled by asterisks. The chemical shifts of the heme methyl groups interpreted in the context of the plot in Fig. 15 were used to conclude that the heme in the mutant enzyme displays a dynamic equilibrium between two heme seatings (shown in Fig. 17) that differ by an in-plane rotation of approximately

Fig. 16 HMQC spectrum of the cyanide-inhibited Asn-19 Lvs/Phe-117 Tyr double mutant of heme oxygenase from Pseudomonas aeruginosa (pa-HO) reconstituted with heme derived from [1,2-13C]-ALA. Only the low-frequency (^{13}C) region of the spectrum, which displays the heme methyl resonances, is shown. The 1-D ¹H and non-decoupled ¹³C spectra are shown to illustrate the $J_{\rm CH}$ splittings. Arrows and dashed arrows, respectively, represent the major and minor orientational isomers exhibiting the wild type heme seating. Asterisks and open circles, respectively, represent the major and minor orientational isomers exhibiting the alternative seating. This figure was reproduced from reference [69]

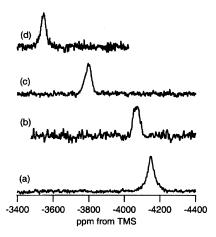


Fig. 17A,B Stereoview of the predicted wild type (**A**) and alternative (**B**) heme seatings in mutant *pa*-HO-CN, modeled into the fold of heme oxygenase. The heme is shown in *red*, Asn-19 in *blue*, and Phe-117 in *green*. The wild type seating of *pa*-HO (**A**) places the δ -meso carbon where it is susceptible to hydroxylation, whereas 110° in-plane rotation of the heme results in the alternative seating (**B**), thus positioning the α -meso carbon where it can be hydroxylated. This figure was reproduced from reference [69]

 100° [69]. The unambiguous assignments of the ¹H resonances from the heme methyl groups, especially those resonating under the crowded diamagnetic region (see Fig. 16) in this complicated mixture of isoforms, was made possible by the utilization of ¹³C-labeled heme.

In the discussion above it has been assumed that the orientation of the axial ligand dominates the asymmetry of electron spin delocalization. Other factors such as the nature of heme substituents (i.e., vinyl, methyl, and propionate), van der Waals interactions between the heme and side chains lining the heme pocket, and heme conformational distortions from planarity can provide secondary modifications of the in-plane asymmetry. A recent study pointed out that ¹³C NMR spectroscopy is well suited to elucidate the nature and extent of these secondary regulatory mechanisms [131]. These authors demonstrated that even if the magnetic axes and anisotropies are known, the intrinsic uncertainties in the orientational parameters lead to a relatively large uncertainty in the determination of the dipolar contribution to the methyl proton isotropic shifts. By comparison, the relatively small contribution of the methyl carbon dipolar shift to the isotropic shift makes the methyl carbon contact shifts more reliable indicators of the unpaired electron distribution on the heme macrocycle [114, 131]. Thus, by utilizing the ¹³CH₃ pattern of non-inversion symmetry in centro- and pseudocentro-symmetric hemes reconstituted into myoglobin, it was shown that π -

1480

Fig. 18a–d ¹³C NMR spectra of ferric heme proteins coordinated by ¹³CN. **a** Sperm whale myoglobin in 0.1 M phosphate buffer, pH=7.0. **b** Human hemoglobin in 0.1 M Tris-HCl buffer, pH=7.0. **c** Horse heart cytochrome *c* in 0.1 M phosphate buffer, pH=7.0. **d** Horseradish peroxidase in 0.1 M phosphate buffer, pH=7.0. This figure was reproduced from reference [135]

 π interactions between the heme and aromatic residues in close contact perturb the in-plane asymmetry of unpaired electron distribution. Hence, it is likely that in the quantitative interpretation of heme methyl ¹³C contact shifts in the context of axial ligand plane orientation in *b* hemes, the regulatory effect of π - π interactions will have to be taken into account [131]. Furthermore, it is important to investigate whether these secondary modulations of inplane asymmetry have important functional consequences.

A number of studies have been reported that utilize ¹³C-enriched carbon monoxide (CO) bound to the distal site of ferrous heme proteins. These studies have typically been aimed at understanding the nature of the distal pocket in globins and other heme proteins [46, 47, 132, 133]. Recently, the ⁵⁷Fe chemical shift has been found to correlate well with the C_m chemical shift of CO complexes of several Fe(II) metalloporphyrins. Consequently, the hard-to-observe ⁵⁷Fe chemical shifts can be predicted from the C_m chemical shifts in carbonmonoxy complexes of Fe(II) [133]. The C_m shifts from these carbonmonoxy complexes have also been shown to correlate with the average displacement of the *meso* carbon atoms from the plane (ruffling) of the macrocycle.

¹³C and ¹⁵N NMR spectroscopy have also been used to study the environment and electronic structure of lowspin ferriheme centers by observing the ¹³CN [134, 135] and the C¹⁵N resonance [136, 137] of bound cyanide. The ¹⁵N resonance was found to be extremely sensitive to the polarity of the distal pocket and the nature of the proximal ligand, with the consequence that it is very difficult to factor out the two effects. A recent report demonstrated convincingly that the ¹³CN resonance from biscyano protoheme IX occurs far upfield, –2,516 ppm. By comparison, the ¹³CN resonance from the cyanide–imidazole complex of protoheme IX was found much further upfield, –3,926 ppm, and that corresponding to the cyanide–imidazolate complex was found at -3,507 ppm. These findings indicate that the nature of the proximal ligand in heme proteins can be elucidated from the chemical shift of the ¹³CN resonance [135]. In fact, the ferric cyanide complexes of myoglobin, hemoglobin, cytochrome *c*, and horse radish peroxidase exhibit their corresponding ¹³CN resonance at -4,154, -4,074, -3,761, and -3,543 ppm, respectively (Fig. 18). The values of these resonances correlate well with the imidazolate character of the proximal histidine, which increases in the order of myoglobin, hemoglobin, cytochrome *c*, and horseradish peroxidase [135].

Concluding remarks and outlook

It is apparent that the analysis of heme proteins and model heme complexes by ¹³C NMR spectroscopy can provide important information regarding the electronic and coordination state of paramagnetic heme proteins and model hemes. The initial lag in the application of ¹³C NMR spectroscopy to the analysis of paramagnetic heme proteins is no doubt a consequence of low sensitivity and low natural abundance. However, revolutionary developments in methodology and instrumentation in the field of NMR spectroscopy, together with the advent of recombinant DNA methods that permit the relatively simple expression and purification of adequate amounts of protein, have largely contributed to the successful application of ¹³C NMR spectroscopy to the study of paramagnetic heme proteins. The more recent development of highly sensitive probes with superconducting frequency coils cooled below their critical temperature (CryoProbes) and the availability of ¹³Clabeled hemes is expected to further attenuate the limitations imposed by the low sensitivity and low natural abundance of ¹³C nuclei, so that the observation of core porphyrin carbons in paramagnetic heme proteins may become as commonplace as the current observation of protonated heme carbons. Furthermore, the utilization of CryoProbes allows one to increase the sensitivity of the experiment without necessarily increasing the applied magnetic field. This is likely to have important repercussions in the analysis of paramagnetic shifts of relatively large heme proteins because the Curie spin relaxation effect on T_2^{-1} , which affects line broadening, varies as the square of the applied magnetic field [35]. Finally, it is also noteworthy that enhanced paramagnetic relaxation can result in non-detectable NOE correlations that involve protons on histidine-imidazoles that are coordinated to the ferric heme iron, thus leaving the structure of the heme active site ill defined in protein structures. Thus, the analysis of ¹³C contact shifts aimed at obtaining the geometry of axial ligands is likely to render important complementary information that permits an improvement in the structure of the heme active site in the structures of paramagnetic heme proteins in solution [27, 138].

Acknowledgments The authors' research reported in this manuscript was carried out with support from grants from the National Institutes of Health (GM 50503) and the National Science Foundation (MCB-0110139).

- Turano P, Lu Y (eds) (2001) Iron in heme and related proteins. In: Bertini I, Sigel A, Sigel H (eds) Handbook on metalloproteins, vol 9. Marcel Dekker, New York, pp 269–356
- Scott RA, Mauk AG (eds) (1996) Cytochrome c. A multidisciplinary approach. University Science Books, Sausalito, CA
- 3. Sono M, Roach MP, Coulter ED, Dawson JH (1996) Chem Rev 96:2841–2847
- 4. Springer BA, Sligar SG, Olson JS, Phillips GN Jr (1994) Chem Rev 94:699–714
- Agron PG, Ditta GS, Helinski DR (1993) Proc Natl Acad Sci USA 90:3506
- Ortiz de Montellano PR (2000) Curr Opin Chem Biol 4:221– 227
- 7. Ortiz de Montellano PR, Wilks A (2000) Adv Inorg Chem 51:359–407
- Ribeiro JMC, Hazzard JM, Nussenzweig RH, Champagne DE, Walker FA (1993) Science 260:543
- 9. Bellamy TC, Garthwaite J (2002) Mol Cell Biochem 230: 165–176
- Schuller DJ, Wilks A, Ortiz de Montellano PR, Poulos TL (1999) Nature Struct Biol 6:860–867
- Schuller DJ, Zhu W, Stojiljkovic I, Wilks A, Poulos TL (2001) Biochemistry 40:11552–11558
- La Mar GN, de Ropp JS (1993) NMR methodology for paramagnetic proteins. In: Berliner LJ, Reuben J (eds) Biological magnetic resonance. Plenum, New York, pp 1–111
- 13. Satterlee JD (1990) Concepts Magn Reson 2:69-79
- 14. Kurland RJ, McGarvey BR (1970) J Magn Reson 2:286
- 15. Walker FA (2000) Proton NMR and EPR spectroscopy of paramagnetic metalloporphyrins. In: Kadish KM, Smith KM, Guilard R (eds) The porphyrin handbook. Academic Press, San Diego, pp 81–183
- 16. Satterlee JD (1986) Annu Rep Nucl Magn Reson Spectrosc 17:79–178
- 17. Bertini I, Luchinat C (1996) Coord Chem Rev 150:1–296
- 18. Wüthrich K, Baumann R (1973) Helv Chim Acta 56:585-596
- 19. McConnell HM (1956) J Chem Phys 24:764-766
- 20. Karplus M, Fraenkel GK (1961) J Chem Phys 35:1312-1323
- 21. Wüthrich K, Baumann R (1974) Helv Chim Acta 57:336–350
- 22. Wüthrich K, Billeter M, Braun W (1983) J Mol Biol 180:715– 740
- 23. Mispelter J, Momenteau M, Lhoste JM (1993) Heteronuclear magnetic resonance applications to biological and related paramagnetic models. In: Berliner LJ, Reuben J (eds) Biological magnetic resonance. Plenum, New York, pp 299–355
- 24. Goff HM (1981) J Am Chem Soc 103:3714–3722
- 25. Turner DL (1993) Eur J Biochem 211:563–568
- 26. Banci L, Bertini I, Pierattelli R, Vila JA (1994) Inorg Chem 33:4338–4343
- Louro RO, Medina M, Aguiar AP, Hervas M, De la Rosa M, Gomez-Moreno C, Turner DL, Xavier AV (1998) J Biol Inorg Chem 3:68–73
- Bertini I, Turano P (1995) The hyperfine coupling. In: La Mar GN (ed) Nuclear magnetic resonance of paramagnetic molecules. Kluwer, London, pp 29–54
- 29. La Mar GN, Satterlee JD, De Ropp JS (eds) (2000) Nuclear magnetic resonance of hemoproteins. In: Kadish KM, Smith KM, Guilard R (eds) The porphyrin handbook, vol 5. Academic Press, pp 185–297
- 30. Gueron M (1975) J Magn Reson 19:58-66
- 31. Vega AJ, Fiat D (1976) Mol Phys 31:347-355
- 32. Unger SW, Jue T, La Mar GN (1985) J Magn Reson 61:448– 456
- 33. Solomon I (1955) Phys Rev 99:559-565
- 34. Bloembergen (1957) J Chem Phys 27:572-573
- 35. Satterlee JD (1990) Concepts Magn Res 2:119-129
- 36. Banci L (1993) Nuclear relaxation in paramagnetic proteins. In: Berliner LJ, Reuben J (eds) Biological magnetic resonance. Plenum, New York, pp 79–112

- 37. Yamamoto Y (1994) J Magn Reson B103:72-76
- 38. La Mar GN, de Rop JS (1993) NMR methodology for paramagnetic proteins. In: Berliner LJ, Reuben J (eds) Biological magnetic resonance. Plenum, New York, pp 1–78
- 39. Sankar SS, LaMar GN, Smith KM, Fujinari EM (1987) Biochim Biophys Acta 912:220–229
- 40. Satterlee JD, Alam S, Yi Q, Erman JE, Constantinidis I, Russell DJ, Moench SJ (1993) Proton NMR studies of selected paramagnetic heme proteins. In: Berliner LJ, Reuben J (eds) Biological magnetic resonance. Plenum, New York, pp 275–297
- 41. Walker FA, Simonis U (1993) Proton NMR spectroscopy of model hemes. In: Berliner LJ, Reuben J (eds) Biological magnetic resonance, vol 12. Plenum, New York, pp 133–274
- Banci L, Piccioli M, Scozzafava A (1992) Coord Chem Rev 120:1–28
- 43. Bertini I, Luchinat C (1999) Curr Opinion Chem Biol 3:145– 151
- 44. Bertini I, Luchinat C, Tarchi D (1993) Chem Phys Lett 203: 445–449
- Bertini, I Luchinat C, Piccioli M, Tarchi D (1994) Concepts Magn Reson 6:307–335
- 46. Behere DV, Gonzalez-Vergara E, Goff HM (1985) Biochim Biophys Acta 131:607–613
- 47. Moon RB, Dill K, Richards JH (1977) Biochemistry 16:221– 228
- 48. Nelson MJ, Huestis WH (1980) Biochim Biophys Acta 623: 467–470
- 49. Santos H, Turner DL (1985) FEBS Lett 184:240-244
- 50. Yamamoto Y (1987) FEBS Lett 222:115-119
- 51. Summers MF, Marzilli LG, Bax A (1986) J Am Chem Soc 108:4285–4294
- 52. Timkovich R (1991) Inorg Chem 30:37-42
- 53. Sukits SF, Satterlee JD (1996) Biophys J 71:2848–2856
- 54. Wei X, Ming L-J, Cannons AC, Solomonson LP (1998) Biochim Biophys Acta 1382:129–136
- 55. Santos H, Turner DL (1986) FEBS Lett 194:73-77
- 56. Costa HS, Santos H, Turner DL (1996) Eur Biophys J 25:19-24
- 57. Louro RO, Waal EC, Ubbink M, Turner DL (2002) FEBS Lett 510:185–188
- Hernandez G, Wilks A, Paolesse R, Smith KM, Ortiz de Montellano PR, La Mar GN (1994) Biochemistry 33:6631–6641
- 59. Rivera M, Walker FA (1995) Anal Biochem 230:295-302
- 60. Warren MJ, Scott AI (1990) TIBS 15:426
- 61. Scott AI (1993) Angewandte Chemie 32:1223-1376
- 62. Biel SW, Biel AJ (1990) J Bacteriol 172:1321-1326
- 63. Harris WF III, Burkhalter RS, Lin W, Timkovich R (1993) Bioorg Chem 21:209–220
- 64. Rivera M, Barillas-Mury C, Christensen KA, Little JW, Wells MA, Walker FA (1992) Biochemistry 31:12233–12240
- 65. Studier FW, Moffatt BA (1986) J Mol Biol 189:113-130
- 66. Silchenko S, Sippel ML, Kuchment O, Benson DR, Mauk AG, Altuve A, Rivera M (2000) Biochem Biophys Res Commun 273:467–472
- 67. Altuve A, Silchenko S, Lee KH, Kuczera K, Terzyan S, Zhang X, Benson DR, Rivera M (2001) Biochemistry 40: 9469–9483
- Cowley AB, Altuve A, Kuchment O, Terzyan S, Zhang X, Rivera M, Benson DR (2002) Biochemistry 41:11566–11581
- 69. Caignan GA, Deshmukh R, Wilks A, Zeng Y, Huang H, Moënne-Loccoz P, Bunce RA, Eastman MA, Rivera M (2002) J Am Chem Soc 124:14879–14892
- 70. Caignan GA, Deshmukh R, Zeng Y, Wilks A, Bunce RA, Rivera M (2003) J Am Chem Soc 125:000–000
- 71. Rodriguez-Maranon MJ, Feng Q, Stark RE, White SP, Zhang X, Foundling SI, Rodriguez V, Schilling CL III, Bunce RA, Rivera M (1996) Biochemistry 35:16378–16390
- 72. Rivera M, Qiu F, Bunce RA, Stark RE (1999) JBIC 4:87–98
- 73. Rivera M, Seetharaman R, Ghirdhar D, Wirtz M, Zhang X, Wang X, White S (1998) Biochemistry 37:1485–1494
- 74. Rodriguez JC, Rivera M (1998) Biochemistry 37:13082-13090

- 75. Bunce RA, Shilling CL III, Rivera M (1997) J Labelled Compd Radiopharm 39:669–675
- 76. Kurumaya K, Okazaki T, Seido N, Akasaka Y, Kawajiri Y, Kajiwara M, Kondo M (1989) J Labelled Compd Radiopharm 27:217
- Behr J, Hellwig P, Mäntele W, Michel H (1998) Biochemistry 37:7400–7406
- 78. Page DM, Ferguson SJ (1994) J Bacteriol 176:5919-5928
- 79. Pervushin K, Riek R, Wider G, Wüthrich K (1997) Proc Natl Acad Sci USA 94:12366–12371
- 80. Bax A, Freeman R, Frenkiel TA (1981) J Am Chem Soc 103:2102–2104
- 81. Qiu F, Rivera M, Stark RE (1998) J Magn Reson 130:76-81
- 82. Morris GA, Freeman R (1979) J Am Chem Soc 101:760-762
- 83. Mispelter J, Momenteau M, Lhoste JM (1979) Chem Comm 808–810
- Ikeue T, Ohgo Y, Takashi S, Nakamura M, Fujii H, Yokoyama M (2000) J Am Chem Soc 122:4068–4076
- Ikeue T, Ohgo Y, Yamaguchi M, Takahashi M, Takeda M, Nakamura M (2001) Angew Chem Int Ed 40:2617–2620
- 86. Ikeue T, Ohgo Y, Saitoh T, Yamaguchi T, Nakamura M (2001) Inorg Chem 40:3423–3434
- 87. Ikezaki A, Nakamura M (2002) Inorg Chem 41:6225–6236
- 88. Mao J, Zhang Y, Oldfield E (2002) J Am Chem Soc 124: 13911–13920
- 89. Walker FA (1999) Coord Chem Rev 185-186:471-534
- 90. Walker FA, Nasri H, Torowska-Tyrk I, Mohanrao K, Watson CT, Shkhirev NV, Debrunner PG, Scheidt WR (1996) J Am Chem Soc 118:12109–12118
- 91. Safo MK, Walker FA, Raitsimring AM, Walters WP, Dolata DP, Debrunner PG, Scheidt WR (1994) J Am Chem Soc 116: 7760–7770
- 92. Goff HM, Shimomura ET, Phillippi MA (1983) J Am Chem Soc 22:66–71
- 93. Phillippi MA, Goff HM (1980) J Chem Soc Chem Commun 455–456
- Shokhireva TK, Shokhirev NV, Walker FA (2003) Biochemistry 42:679–693
- 95. Yamamoto Y, Osawa A, Inoue Y, Chûjô R, Suzuki T (1990) Eur J Biochem 192:225–229
- 96. Pande U, La Mar GN, Lecomte JTJ, Ascoli F, Bruonori M, Smith KM, Pandey RK, Parish DW, Thanabal V (1986) Biochemistry 25:5638–5646
- 97. Nakamura M, Hoshino A, Ikezaki A, Ikeue T (2003) Chem Comm 1862–1863
- Ikeue T, Saitoh T, Yamaguchi T, Ohgo Y, Nakamura M, Takahashi M, Takeda M (2000) Chem Comm 1989–1990
- 99. Simonato JP, Pécaut J, Le Pape L, Oddou JL, Jeandey C, Shang M, Scheidt R, Wojaczynski J, Wolowiec S, Latos-Grazynky L, Marchon JC (2000) Inorg Chem 39:3978–3987
- 100. Maltempo MM (1976) Quart Rev Biophys 9:181-215
- 101. Cheng R-J, Chen P-Y, Gau P-R, Chen C-C, Peng S-M (1997) J Am Chem Soc 119:2563–2569
- 102. Rivera M, Caignan GA, Astashkin AV, Raitsimring AM, Shokhireva TK, Walker FA (2002) J Am Chem Soc 124: 6077–6089
- 103. Ortiz de Montellano PR (1998) Acc Chem Res 31:543-549
- 104. Simonneaux G, Schünemann V, Morice C, Carel L, Toupet L, Winkler H, Trautwein AX, Walker FA (2000) J Am Chem Soc 122:4366–4377

- 105. Mathews FS, Bethge PH, Czerwinski W (1979) J Biol Chem 254:1699–1706
- 106. Durley RCE, Mathews FS (1996) Acta Cryst D52:65-76
- 107. Turner DL, Costa HS, Coutinho IB, LeGall J, Xavier AV (1997) Eur J Biochem 243:474–481
- 108. Volkman BF, Alam SL, Satterlee JD, Markley JL (1998) Biochemistry 37:10906–10919
- 109. Weichsel A, Andersen JF, Champagne DE, Walker FA, Montfort WR (1998) Nat Struct Biol 5:304–309
- 110. Shulman RG, Glarum SH (1971) J Mol Biol 57:93-115
- 111. Walker FA (1980) J Am Chem Soc 102:3254-3256
- 112. Goff H (1980) J Am Chem Soc 102:3252-3254
- 113. Walker FA, Buehler J, West JT, Hinds JL (1983) J Am Chem Soc 105:6923–6929
- 114. Turner DL, Salgueiro CA, Schenkels P, LeGall J, Xavier AV (1995) Biochim Biophys Acta 1246:24–28
- 115. Banci L, Pierattelli R, Turner DL (1995) Eur J Biochem 232: 522–527
- 116. Pierattelli R, Turner DL (1996) Eur Biophys J 24:342-347
- 117. Louro RO, Correia IJ, Brennan L, Coutinho IB, Xavier AV, Turner DL (1998) J Am Chem Soc 120:13240–13247
- 118. Yamamoto Y, Nanai N, Chûjô R, Suzuki T (1990) FEBS Lett 264:113–116
- 119. Shokhirev NV, Walker FA (1998) J Biol Inorg Chem 581– 594
- 120. Shokhirev NV, Walker FA (1998) J Am Chem Soc 120:981– 990
- 121. Santos H, Turner DL (1992) Eur J Biochem 206:721-728
- 122. Longuet-Higgins HC, Rector CW, Platt JR (1950) J Chem Phys 18:1174–1181
- 123. Pierattelli R, Banci L, Turner DL (1996) J Biol Inorg Chem 1:320–329
- 124. Lee K-B, La Mar GN, Mansfield KE, Smith KM, Pochaspsky TC, Sligar SG (1993) Biochim Biophys Acta 1202:189–199
- 125. Lee K-B, McLachlan SJ, La Mar GN (1994) Biochim Biophys Acta 1208:22–30
- 126. Lee K-B, Kweon J, Park H (1995) FEBS Lett 367:77-80
- 127. Bertini I, Luchinat C, Parigi G, Walker FA (1999) J Biol Inorg Chem 4:515–519
- 128. Turner DL (2000) J Biol Inorg Chem 5:328-332
- 129. Gorst CM, Wilks A, Yeh DČ, Ortiz de Montellano PR, La Mar GN (1998) J Am Chem Soc 120:8875–8884
- 130. Ratliff M, Zhu W, Deshmukh R, Wilks A, Stojilkovic I (2001) J Bacteriol 183:6394–6403
- 131. Hu B, Hauksson B, Tran A-TT, Kolczak U, Pandey RK, Rezzano IN, Smith KM, La Mar GN (2001) J Am Chem Soc 123:10063–10070
- 132. Kalodimos CG, Gerothanassis IP, Pierattelli R, Ancian B (1999) Inorg Chem 38:4283–4293
- 133. Kalodimos CG, Gerothanassis IP, Pierattelli R, Troganis A (2000) J Inorg Biochem 79:371–380
- 134. Goff HM (1977) J Am Chem Soc 99:7723-7725
- 135. Fujii H (2002) J Am Chem Soc 124:5936–5937
- 136. Morishima I, Inubushi T, Neya S, Ogawa S, Yonezawa T (1977) Biochem Biophys Res Commun 78:739–746
- 137. Morishima I, Inubushi T (1978) J Am Chem Soc 100:3568– 3564
- 138. Turner DL, Brennan L, Chamberlin SG, Louro RO, Xavier AV (1998) Eur Biophys J 27:367–375
- 139. Yamamoto Y, Chûjô R (1992) Chem Comm 87-89