/* ghn_ca_co.c 3D HN(CA)CO gradient sensitivity enhanced version. Correlates CO(i) with N(i), NH(i) via 11Hz N-Ca coupling, and with N(i-1), NH(i-1) via -7Hz N-Ca coupling. Uses constant time evolution for the 15N shifts. Standard features include square pulses on Ca with first null at 13CO; one lobe sinc pulses on 13CO with first null at Ca; shaka6 composite 180 pulse to simultaneously refocus CO and invert Ca; one lobe sinc pulse to put H2O back along z (the sinc one-lobe is significantly more selective than gaussian, square, or seduce 90 pulses); optional 2H decoupling when Ca magnetization is transverse for 4 channel spectrometers. Magic-angle option for coherence transfer gradients. TROSY option for N15/H1 evolution/detection. pulse sequence: Yamazaki, Lee, Arrowsmith, Muhandiram, Kay, JACS, 116, 11655 (1994) SLP pulses: J Magn. Reson. 96, 94-102 (1992) shaka6 composite: Chem. Phys. Lett. 120, 201 (1985) TROSY: Weigelt, JACS, 120, 10778 (1998) Written in standard format by MRB, BKJ and GG for the ProteinPack, December 1998, based on the existing ghn_co_ca sequence (Version Dec 1998). CHOICE OF DECOUPLING AND 2D MODES Set dm = 'nnn', dmm = 'ccc' Set dm2 = 'nny', dmm2 = 'ccg' (or 'ccw', or 'ccp') for 15N decoupling. Set dm3 = 'nnn' for no 2H decoupling, or 'nyn' and dmm3 = 'cwc' for 2H decoupling. Must set phase = 1,2 and phase2 = 1,2 for States-TPPI acquisition in t1 [13C] and t2 [15N]. The flag f1180/f2180 should be set to 'y' if t1/t2 is to be started at halfdwell time. This will give -90, 180 phasing in f1/f2. If it is set to 'n' the phasing should be 0,0 and will still give a perfect baseline. Thus, set f1180='n' for (0,0) in 13C and f2180='n' for (0,0) in 15N. f1180='y' is ignored if ni=0, and f2180='y' is ignored if ni2=0. DETAILED INSTRUCTIONS FOR USE OF ghn_ca_co 1. Obtain a printout of the Philosopy behind the ProteinPack development, and General Instructions using the macro: "printon man('ProteinPack') printoff". These Detailed Instructions for ghn_ca_co may be printed using: "printon man('ghn_ca_co') printoff". 2. Apply the setup macro "ghn_ca_co". This loads the relevant parameter set and also sets ni=ni2=0 and phase=phase2=1 ready for a 1D spectral check. At the middle of the t1 period, the 180 degree pulses on Ca and 15N are swapped to a 180 degree pulse on CO, for the first increment of t1, to refocus CO chemical-shift evolution ensuring a zero first-order phase correction in F1. This is also the case for the 1D spectral check, or for 2D/15N spectra, when ni=0. 3. Centre H1 frequency on H2O (4.7ppm), C13 frequency on 56ppm, and N15 frequency on the amide region (120 ppm). The C13 frequency is shifted to the CO region during the sequence, but phase coherence is not required after each shift. 4. The normal 13C 180 degree pulse on Ca at the middle of t1 induces a phase shift, which should be field-invariant, and so this phase shift has been calibrated and compensated in the pulse sequence. This phase shift can be checked by setting ni=1 whereby a special 1D method is invoked in which both the 13C Ca 180 degree pulse and the simultaneous 15N 180 degree pulse are applied just as for all t1 times other than t1=0. First eliminate the Ca pulse by setting pwC3=0 and obtain a 1D spectrum. This spectrum will have reduced intensity compared to ni=0 because of 13CO chemical-shift evolution during the time of the 180 pulses. If the phase shift is adequately compensated, a second very similar 1D spectrum will be obtained with pwC3=pwC3a. As described in more detail for ghn_co, a more sensitive comparison of the two spectra with pwC3=0,pwC3a can be obtained with phase=2. If not adequately compensated, the first increment will be out of phase with all succeeding increments and a zero-order phase-shift will be necessary in F1, which is easily done after the 2D/3D transform. Alternatively, change the calibration by changing the phshift3 parameter in the INITIALIZE VARIABLES section of the code. The pulse pwC3 is automatically reset to its calibrated value (=pwC2) within the pulse sequence code for 3D work and 2D/t1 studies. DO NOT CHANGE pwC2 from its calibrated value. dof can also be calibrated using ni=1;pwC3=pwC3a as described for ghn_co, and S/N can also be maximized using a compC array when ni=1;pwC3=pwC3a. 5. H2O preservation is achieved according to Kay et al, except that a sinc one-lobe selective pulse is used to put H2O back along z. This is much more selective than a hard, Seduce1, or gaussian pulse. WALTZ 1H decoupling is only on during the timeTN periods. 6. Another difference from the work of Kay et al is that the phases of the first and last CO 90 degree pulses are alternated to eliminate artifacts from the Ca 180 degree pulse. 7. tauC (3.7 ms) and timeTN (13.5 ms) were determined for alphalytic protease and are listed in dg2 for possible readjustment by the user. 8. TROSY: Set TROSY='y' and dm2='nnn' for a TROSY spectrum of the bottom right peak of the 2D coupled NH quartet (high-field H1, low-field N15). The TROSY spectrum gives 50% S/N compared to the decoupled spectrum for a small peptide. To select any of the other three peaks of the 2D coupled quartet, in a clockwise direction from bottom right, change t4/t10 from x/y to x/-y to -x/-y to -x/y. NOTE, the phases of the SE train are almost the same as those determined for the gNhsqc sequence. The major difference is that kappa is eliminated compared to normal ghn_co_ca so the N15 magnetization has not evolved with respect to the attached H's. I.e. the N15 state would be Ix rather than IySz if there was no coherence gradient - this imparts a 90 degree shift so t8 is changed to y (from x in the normal spectrum). Also gzlvl1 is after the 180 N15 pulse rather than before as in gNhsqc, so the sign of icosel and the t4/t10 phase2 increments are also swapped compared to gNhsqc. For ghn_c... type sequences, H1 decoupling during the first timeTN is replaced by a pi pulse at kappa/2 to reduce S/N loss for large molecules during the first TN period. For these sequences H2O flipback is achieved with two sinc one-lobe pulses, one just before the SE train, similar to gNhsqc. */ #include static int /* T is for TROSY='y', phx etc also enable TROSY phase changes */ phx[1]={0}, phy[1]={1}, phi3[2] = {2,0}, phi5[4] = {0,0,2,2}, phi9[8] = {0,0,0,0,2,2,2,2}, rec[4] = {0,2,2,0}, recT[4] = {3,1,1,3}; static double d2_init=0.0, d3_init=0.0; pulsesequence() { /* DECLARE AND LOAD VARIABLES */ char f1180[MAXSTR], /* Flag to start t1 @ halfdwell */ f2180[MAXSTR], /* Flag to start t2 @ halfdwell */ mag_flg[MAXSTR], /* magic-angle coherence transfer gradients */ TROSY[MAXSTR]; /* do TROSY on N15 and H1 */ int icosel, /* used to get n and p type */ t1_counter, /* used for states tppi in t1 */ t2_counter, /* used for states tppi in t2 */ ni2 = getval("ni2"); double tau1, /* t1 delay */ tau2, /* t2 delay */ tauC = getval("tauC"), /* delay for CO to Ca evolution */ timeTN = getval("timeTN"), /* constant time for 15N evolution */ kappa = 5.4e-3, lambda = 2.4e-3, pwClvl = getval("pwClvl"), /* coarse power for C13 pulse */ pwC = getval("pwC"), /* C13 90 degree pulse length at pwClvl */ rf0, /* maximum fine power when using pwC pulses */ /* 90 degree pulse at Ca (56ppm), first off-resonance null at CO (174ppm) */ pwC1, /* 90 degree pulse length on C13 at rf1 */ rf1, /* fine power for 4.7 kHz rf for 600MHz magnet */ /* 180 degree pulse at Ca (56ppm), first off-resonance null at CO(174ppm) */ pwC2, /* 180 degree pulse length at rf2 */ rf2, /* fine power for 10.5 kHz rf for 600MHz magnet */ /* the following pulse lengths for SLP pulses are automatically calculated */ /* by the macro "proteincal". SLP pulse shapes, "offC6" etc are called */ /* directly from your shapelib. */ pwC3 = getval("pwC3"), /*180 degree pulse at Ca(56ppm) null at CO(174ppm) */ pwC6 = getval("pwC6"), /* 90 degree selective sinc pulse on CO(174ppm) */ pwC8 = getval("pwC8"), /* 180 degree selective sinc pulse on CO(174ppm) */ pwC9 = getval("pwC9"), /* 180 degree selective sinc pulse on CO(174ppm) */ phshift3, /* phase shift induced on CO by pwC3 ("offC3") pulse */ pwZ, /* the largest of pwC3 and 2.0*pwN */ pwZ1, /* the larger of pwC3a and 2.0*pwN for 1D experiments */ rf3, /* fine power for the pwC3 ("offC3") pulse */ rf6, /* fine power for the pwC6 ("offC6") pulse */ rf8, /* fine power for the pwC8 ("offC8") pulse */ rf9, /* fine power for the pwC9 ("offC9") pulse */ dofCO, /* channel 2 offset for most CO pulses */ compH = getval("compH"), /* adjustment for C13 amplifier compression */ compC = getval("compC"), /* adjustment for C13 amplifier compression */ pwHs = getval("pwHs"), /* H1 90 degree pulse length at tpwrs */ tpwrs, /* power for the pwHs ("H2Osinc") pulse */ pwHd, /* H1 90 degree pulse length at tpwrd */ tpwrd, /* 7.5 kHz rf for WALTZ decoupling */ pwNlvl = getval("pwNlvl"), /* power for N15 pulses */ pwN = getval("pwN"), /* N15 90 degree pulse length at pwNlvl */ sw1 = getval("sw1"), sw2 = getval("sw2"), gt1 = getval("gt1"), /* coherence pathway gradients */ gzcal = getval("gzcal"), /* g/cm to DAC conversion factor */ gzlvl1 = getval("gzlvl1"), gzlvl2 = getval("gzlvl2"), gt0 = getval("gt0"), /* other gradients */ gt3 = getval("gt3"), gt4 = getval("gt4"), gt5 = getval("gt5"), gt7 = getval("gt7"), gt9 = getval("gt9"), gt10 = getval("gt10"), gstab = getval("gstab"), gzlvl0 = getval("gzlvl0"), gzlvl3 = getval("gzlvl3"), gzlvl4 = getval("gzlvl4"), gzlvl5 = getval("gzlvl5"), gzlvl6 = getval("gzlvl6"), gzlvl7 = getval("gzlvl7"), gzlvl8 = getval("gzlvl8"), gzlvl9 = getval("gzlvl9"), gzlvl10 = getval("gzlvl10"); getstr("f1180",f1180); getstr("f2180",f2180); getstr("mag_flg",mag_flg); getstr("TROSY",TROSY); /* LOAD PHASE TABLE */ settable(t3,2,phi3); settable(t4,1,phx); settable(t5,4,phi5); if (TROSY[A]=='y') {settable(t8,1,phy); settable(t9,1,phx); settable(t10,1,phy); settable(t11,1,phx); settable(t12,4,recT);} else {settable(t8,1,phx); settable(t9,8,phi9); settable(t10,1,phx); settable(t11,1,phy); settable(t12,4,rec);} /* INITIALIZE VARIABLES */ if( dpwrf < 4095 ) { printf("reset dpwrf=4095 and recalibrate C13 90 degree pulse"); abort(1); } /* offset during CO pulses, except for t1 evolution period */ dofCO = dof + 118.0*dfrq; /* maximum fine power for pwC pulses */ rf0 = 4095.0; /* 90 degree pulse on Ca, null at CO 118ppm away */ pwC1 = sqrt(15.0)/(4.0*118.0*dfrq); rf1 = 4095.0*(compC*pwC/pwC1); rf1 = (int) (rf1 + 0.5); /* 180 degree pulse on Ca, null at CO 118ppm away */ pwC2 = sqrt(3.0)/(2.0*118.0*dfrq); rf2 = (compC*4095.0*pwC*2.0)/pwC2; rf2 = (int) (rf2 + 0.5); if( rf2 > 4095.0 ) { printf("increase pwClvl and recalibrate so that C13 90 is less than 24us*600/sfrq"); abort(1); } /* 180 degree pulse on Ca, null at CO 118ppm away */ rf3 = rf2; rf3 = (int) (rf3 + 0.5); /* the pwC3 pulse at the middle of t1 */ if ((ni2 > 0.0) && (ni == 1.0)) ni = 0.0; if (pwC2 > 2.0*pwN) pwZ = pwC2; else pwZ = 2.0*pwN; if ((pwC3==0.0) && (pwC2>2.0*pwN)) pwZ1=pwC2-2.0*pwN; else pwZ1=0.0; if ( ni > 1 ) pwC3 = pwC2; if ( pwC3 > 0 ) phshift3 = 235.0; else phshift3 = 0.0; /* 90 degree one-lobe sinc pulse on CO, null at Ca 118ppm away */ rf6 = (compC*4095.0*pwC*1.69)/pwC6; /* needs 1.69 times more */ rf6 = (int) (rf6 + 0.5); /* power than a square pulse */ /* 180 degree one-lobe sinc pulse on CO, null at Ca 118ppm away */ rf8 = (compC*4095.0*pwC*2.0*1.65)/pwC8; /* needs 1.65 times more */ rf8 = (int) (rf8 + 0.5); /* power than a square pulse */ /* 180 degree one-lobe sinc pulse on CO, null at Ca 118ppm away */ rf9 = (compC*4095.0*pwC*2.0*1.65)/pwC9; /* needs 1.65 times more */ rf9 = (int) (rf9 + 0.5); /* power than a square pulse */ /* selective H20 one-lobe sinc pulse */ tpwrs = tpwr - 20.0*log10(pwHs/(compH*pw*1.69)); /* needs 1.69 times more */ tpwrs = (int) (tpwrs); /* power than a square pulse */ /* power level and pulse time for WALTZ 1H decoupling */ pwHd = 1/(4.0 * 7500) ; /* 7.5 kHz rf */ tpwrd = tpwr - 20.0*log10(pwHd/(compH*pw)); tpwrd = (int) (tpwrd + 0.5); /* CHECK VALIDITY OF PARAMETER RANGES */ if ( tauC < (gt7+1.0e-4+0.5*10.933*pwC)) gt7=(tauC-1.0e-4-0.5*10.933*pwC); if ( 0.5*ni2*1/(sw2) > timeTN - WFG3_START_DELAY) { printf(" ni2 is too big. Make ni2 equal to %d or less.\n", ((int)((timeTN - WFG3_START_DELAY)*2.0*sw2))); abort(1);} if ( dm[A] == 'y' || dm[B] == 'y' || dm[C] == 'y' ) { printf("incorrect dec1 decoupler flags! Should be 'nnn' "); abort(1);} if ( dm2[A] == 'y' || dm2[B] == 'y' ) { printf("incorrect dec2 decoupler flags! Should be 'nny' "); abort(1);} if ( dm3[A] == 'y' || dm3[C] == 'y' ) { printf("incorrect dec3 decoupler flags! Should be 'nyn' or 'nnn' "); abort(1);} if ( dpwr2 > 46 ) { printf("dpwr2 too large! recheck value "); abort(1);} if ( pw > 20.0e-6 ) { printf(" pw too long ! recheck value "); abort(1);} if ( pwN > 100.0e-6 ) { printf(" pwN too long! recheck value "); abort(1);} if ( TROSY[A]=='y' && dm2[C] == 'y') { text_error("Choose either TROSY='n' or dm2='n' ! "); abort(1);} /* PHASES AND INCREMENTED TIMES */ /* Phase incrementation for hypercomplex 2D data, States-Haberkorn element */ if (phase1 == 2) tsadd(t3,1,4); if (TROSY[A]=='y') { if (phase2 == 2) icosel = +1; else {tsadd(t4,2,4); tsadd(t10,2,4); icosel = -1;} } else { if (phase2 == 2) {tsadd(t10,2,4); icosel = +1;} else icosel = -1; } /* Set up f1180 */ tau1 = d2; if((f1180[A] == 'y') && (ni > 1.0)) { tau1 += ( 1.0 / (2.0*sw1) ); if(tau1 < 0.2e-6) tau1 = 0.0; } tau1 = tau1/2.0; /* Set up f2180 */ tau2 = d3; if((f2180[A] == 'y') && (ni2 > 1.0)) { tau2 += ( 1.0 / (2.0*sw2) ); if(tau2 < 0.2e-6) tau2 = 0.0; } tau2 = tau2/2.0; /* Calculate modifications to phases for States-TPPI acquisition */ if( ix == 1) d2_init = d2; t1_counter = (int) ( (d2-d2_init)*sw1 + 0.5 ); if(t1_counter % 2) { tsadd(t3,2,4); tsadd(t12,2,4); } if( ix == 1) d3_init = d3; t2_counter = (int) ( (d3-d3_init)*sw2 + 0.5 ); if(t2_counter % 2) { tsadd(t8,2,4); tsadd(t12,2,4); } /* BEGIN PULSE SEQUENCE */ status(A); delay(d1); if ( dm3[B] == 'y' ) { lk_hold(); lk_sampling_off();} /*freezes z0 correction, stops lock pulsing*/ rcvroff(); obspower(tpwr); decpower(pwClvl); dec2power(pwNlvl); decpwrf(rf0); obsoffset(tof); decoffset(dof); txphase(zero); delay(1.0e-5); if (TROSY[A] == 'n') dec2rgpulse(pwN, zero, 0.0, 0.0); /*destroy N15 and C13 magnetization*/ decrgpulse(pwC, zero, 0.0, 0.0); zgradpulse(-gzlvl0, 0.5e-3); delay(1.0e-4); if (TROSY[A] == 'n') dec2rgpulse(pwN, one, 0.0, 0.0); decrgpulse(pwC, zero, 0.0, 0.0); zgradpulse(-0.7*gzlvl0, 0.5e-3); delay(5.0e-4); rgpulse(pw, zero, 0.0, 0.0); /* 1H pulse excitation */ dec2phase(zero); zgradpulse(gzlvl0, gt0); delay(lambda - gt0); sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0); txphase(one); zgradpulse(gzlvl0, gt0); delay(lambda - gt0); rgpulse(pw, one, 0.0, 0.0); obspower(tpwrs); if (TROSY[A]=='y') {txphase(two); shaped_pulse("H2Osinc", pwHs, two, 5.0e-4, 0.0); obspower(tpwr); zgradpulse(gzlvl3, gt3); delay(2.0e-4); dec2rgpulse(pwN, zero, 0.0, 0.0); delay(0.5*kappa - 2.0*pw); rgpulse(2.0*pw, two, 0.0, 0.0); decphase(zero); dec2phase(zero); decpwrf(rf2); delay(timeTN - 0.5*kappa); } else {txphase(zero); shaped_pulse("H2Osinc", pwHs, zero, 5.0e-4, 0.0); obspower(tpwrd); zgradpulse(gzlvl3, gt3); delay(2.0e-4); dec2rgpulse(pwN, zero, 0.0, 0.0); txphase(one); delay(kappa - pwHd - 2.0e-6 - PRG_START_DELAY); rgpulse(pwHd,one,0.0,0.0); txphase(zero); delay(2.0e-6); obsprgon("waltz16", pwHd, 90.0); /* PRG_START_DELAY */ xmtron(); decphase(zero); dec2phase(zero); decpwrf(rf2); delay(timeTN - kappa); } sim3pulse(0.0, pwC2, 2.0*pwN, zero, zero, zero, 0.0, 0.0); decphase(zero); decpwrf(rf1); delay(timeTN); dec2rgpulse(pwN, zero, 0.0, 0.0); if (TROSY[A]=='n') {xmtroff(); obsprgoff(); rgpulse(pwHd,three,2.0e-6,0.0);} zgradpulse(-gzlvl3, gt3); delay(2.0e-4); if ( dm3[B] == 'y' ) /* begins optional 2H decoupling */ { gt7=0.0; gt9=0.0; gt10=0.0; /* no gradients during 2H decoupling */ dec3rgpulse(1/dmf3,one,10.0e-6,2.0e-6); dec3unblank(); dec3phase(zero); delay(2.0e-6); setstatus(DEC3ch, TRUE, 'w', FALSE, dmf3); } decrgpulse(pwC1, zero, 0.0, 0.0); zgradpulse(-gzlvl7, gt7); decpwrf(rf0); decphase(zero); delay(tauC - gt7 - 0.5*10.933*pwC); decrgpulse(pwC*158.0/90.0, zero, 0.0, 0.0); decrgpulse(pwC*171.2/90.0, two, 0.0, 0.0); decrgpulse(pwC*342.8/90.0, zero, 0.0, 0.0); /* Shaka 6 composite */ decrgpulse(pwC*145.5/90.0, two, 0.0, 0.0); decrgpulse(pwC*81.2/90.0, zero, 0.0, 0.0); decrgpulse(pwC*85.3/90.0, two, 0.0, 0.0); zgradpulse(-gzlvl7, gt7); decpwrf(rf1); decphase(one); delay(tauC - gt7 - 0.5*10.933*pwC); decrgpulse(pwC1, one, 0.0, 0.0); decoffset(dofCO); zgradpulse(-gzlvl9, gt9); decpwrf(rf6); decphase(t3); delay(2.0e-4); /* xxxxxxxxxxxxxxxxxxxxxx 13CO EVOLUTION xxxxxxxxxxxxxxxxxx */ decshaped_pulse("offC6", pwC6, t3, 0.0, 0.0); decphase(zero); if ((ni>1.0) && (tau1>0.0)) /* total 13C evolution equals d2 exactly */ { /* 13C evolution during pwC6 is at 60% rate */ decpwrf(rf3); if(tau1 - 0.6*pwC6 - WFG3_START_DELAY - 0.5*pwZ > 0.0) { delay(tau1 - 0.6*pwC6 - WFG3_START_DELAY - 0.5*pwZ); /* WFG3_START_DELAY */ sim3shaped_pulse("", "offC3", "", 0.0, pwC2, 2.0*pwN, zero, zero, zero, 0.0, 0.0); initval(phshift3, v3); decstepsize(1.0); dcplrphase(v3); /* SAPS_DELAY */ delay(tau1 - 0.6*pwC6 - SAPS_DELAY - 0.5*pwZ- WFG_START_DELAY - 2.0e-6); } else { initval(180.0, v3); decstepsize(1.0); dcplrphase(v3); /* SAPS_DELAY */ delay(2.0*tau1 - 2.0*0.6*pwC6 - SAPS_DELAY - WFG_START_DELAY - 2.0e-6); } } else if (ni==1.0) /* special 1D check of pwC3 phase enabled when ni=1 */ { decpwrf(rf3); delay(10.0e-6 + SAPS_DELAY + 0.5*pwZ1 + WFG_START_DELAY); /* WFG3_START_DELAY */ sim3shaped_pulse("", "offC3", "", 0.0, pwC3, 2.0*pwN, zero, zero, zero, 2.0e-6 , 0.0); initval(phshift3, v3); decstepsize(1.0); dcplrphase(v3); /* SAPS_DELAY */ delay(10.0e-6 + WFG3_START_DELAY + 0.5*pwZ1); } else /* 13CO evolution refocused for 1st increment, or when ni=0 */ { decpwrf(rf8); delay(12.0e-6); /* WFG_START_DELAY */ decshaped_pulse("offC8", pwC8, zero, 0.0, 0.0); delay(10.0e-6); } decphase(t5); decpwrf(rf6); delay(2.0e-6); /* WFG_START_DELAY */ decshaped_pulse("offC6", pwC6, t5, 0.0, 0.0); /* xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx */ decoffset(dof); decpwrf(rf1); decphase(one); zgradpulse(gzlvl10, gt10); delay(2.0e-4); decrgpulse(pwC1, one, 0.0, 0.0); zgradpulse(gzlvl8, gt7); decpwrf(rf0); decphase(zero); delay(tauC - gt7 - 0.5*10.933*pwC); decrgpulse(pwC*158.0/90.0, zero, 0.0, 0.0); decrgpulse(pwC*171.2/90.0, two, 0.0, 0.0); decrgpulse(pwC*342.8/90.0, zero, 0.0, 0.0); /* Shaka 6 composite */ decrgpulse(pwC*145.5/90.0, two, 0.0, 0.0); decrgpulse(pwC*81.2/90.0, zero, 0.0, 0.0); decrgpulse(pwC*85.3/90.0, two, 0.0, 0.0); zgradpulse(gzlvl8, gt7); decpwrf(rf1); decphase(zero); delay(tauC - gt7 - 0.5*10.933*pwC); decrgpulse(pwC1, zero, 0.0, 0.0); /* xxxxxxxxxxxxxxxxxx OPTIONS FOR N15 EVOLUTION xxxxxxxxxxxxxxxxxxxxx */ dec2phase(t8); txphase(one); dcplrphase(zero); if ( dm3[B] == 'y' ) /* turns off 2H decoupling */ { setstatus(DEC3ch, FALSE, 'c', FALSE, dmf3); dec3rgpulse(1/dmf3,three,2.0e-6,2.0e-6); dec3blank(); lk_autotrig(); /* resumes lock pulsing */ } zgradpulse(gzlvl4, gt4); delay(2.0e-4); if (TROSY[A]=='n') {rgpulse(pwHd,one,0.0,0.0); txphase(zero); delay(2.0e-6); obsprgon("waltz16", pwHd, 90.0); xmtron();} dec2rgpulse(pwN, t8, 0.0, 0.0); decphase(zero); dec2phase(t9); decpwrf(rf2); delay(timeTN - tau2); sim3pulse(0.0, pwC2, 2.0*pwN, zero, zero, t9, 0.0, 0.0); dec2phase(t10); decpwrf(rf9); if (TROSY[A]=='y') { if (tau2 > gt1 + 2.0*GRADIENT_DELAY + 1.5e-4 + pwHs) { txphase(three); delay(timeTN - pwC9 - WFG_START_DELAY); /* WFG_START_DELAY */ decshaped_pulse("offC9", pwC9, zero, 0.0, 0.0); delay(tau2 - gt1 - 2.0*GRADIENT_DELAY - 1.5e-4 - pwHs); if (mag_flg[A]=='y') magradpulse(icosel*gzcal*gzlvl1, gt1); else zgradpulse(icosel*gzlvl1, gt1); /* 2.0*GRADIENT_DELAY */ obspower(tpwrs); /* POWER_DELAY */ delay(1.0e-4 - POWER_DELAY); shaped_pulse("H2Osinc", pwHs, three, 0.0, 0.0); txphase(t4); obspower(tpwr); /* POWER_DELAY */ delay(0.5e-4 - POWER_DELAY); } else if (tau2 > pwHs + 0.5e-4) { txphase(three); delay(timeTN-pwC9-WFG_START_DELAY-gt1-2.0*GRADIENT_DELAY-1.0e-4); if (mag_flg[A]=='y') magradpulse(icosel*gzcal*gzlvl1, gt1); else zgradpulse(icosel*gzlvl1, gt1); /* 2.0*GRADIENT_DELAY */ obspower(tpwrs); /* POWER_DELAY */ delay(1.0e-4 - POWER_DELAY); /* WFG_START_DELAY */ decshaped_pulse("offC9", pwC9, zero, 0.0, 0.0); delay(tau2 - pwHs - 0.5e-4); shaped_pulse("H2Osinc", pwHs, three, 0.0, 0.0); txphase(t4); obspower(tpwr); /* POWER_DELAY */ delay(0.5e-4 - POWER_DELAY); } else { txphase(three); delay(timeTN - pwC9 - WFG_START_DELAY - gt1 - 2.0*GRADIENT_DELAY - 1.5e-4 - pwHs); if (mag_flg[A]=='y') magradpulse(icosel*gzcal*gzlvl1, gt1); else zgradpulse(icosel*gzlvl1, gt1); /* 2.0*GRADIENT_DELAY */ obspower(tpwrs); /* POWER_DELAY */ delay(1.0e-4 - POWER_DELAY); /* WFG_START_DELAY */ shaped_pulse("H2Osinc", pwHs, three, 0.0, 0.0); txphase(t4); obspower(tpwr); /* POWER_DELAY */ delay(0.5e-4 - POWER_DELAY); decshaped_pulse("offC9", pwC9, zero, 0.0, 0.0); delay(tau2); } } else { if (tau2 > kappa) { delay(timeTN - pwC9 - WFG_START_DELAY); /* WFG_START_DELAY */ decshaped_pulse("offC9", pwC9, zero, 0.0, 0.0); delay(tau2 - kappa - PRG_STOP_DELAY - pwHd - 2.0e-6); xmtroff(); obsprgoff(); /* PRG_STOP_DELAY */ rgpulse(pwHd,three,2.0e-6,0.0); txphase(t4); delay(kappa - gt1 - 2.0*GRADIENT_DELAY - 1.0e-4); if (mag_flg[A]=='y') magradpulse(icosel*gzcal*gzlvl1, gt1); else zgradpulse(icosel*gzlvl1, gt1); /* 2.0*GRADIENT_DELAY */ obspower(tpwr); /* POWER_DELAY */ delay(1.0e-4 - POWER_DELAY); } else if (tau2 > (kappa - pwC9 - WFG_START_DELAY)) { delay(timeTN + tau2 - kappa - PRG_STOP_DELAY - pwHd - 2.0e-6); xmtroff(); obsprgoff(); /* PRG_STOP_DELAY */ rgpulse(pwHd,three,2.0e-6,0.0); txphase(t4); /* WFG_START_DELAY */ decshaped_pulse("offC9", pwC9, zero, 0.0, 0.0); delay(kappa -pwC9 -WFG_START_DELAY -gt1 -2.0*GRADIENT_DELAY -1.0e-4); if (mag_flg[A]=='y') magradpulse(icosel*gzcal*gzlvl1, gt1); else zgradpulse(icosel*gzlvl1, gt1); /* 2.0*GRADIENT_DELAY */ obspower(tpwr); /* POWER_DELAY */ delay(1.0e-4 - POWER_DELAY); } else if (tau2 > gt1 + 2.0*GRADIENT_DELAY + 1.0e-4) { delay(timeTN + tau2 - kappa - PRG_STOP_DELAY - pwHd - 2.0e-6); xmtroff(); obsprgoff(); /* PRG_STOP_DELAY */ rgpulse(pwHd,three,2.0e-6,0.0); txphase(t4); delay(kappa - tau2 - pwC9 - WFG_START_DELAY); /* WFG_START_DELAY */ decshaped_pulse("offC9", pwC9, zero, 0.0, 0.0); delay(tau2 - gt1 - 2.0*GRADIENT_DELAY - 1.0e-4); if (mag_flg[A]=='y') magradpulse(icosel*gzcal*gzlvl1, gt1); else zgradpulse(icosel*gzlvl1, gt1); /* 2.0*GRADIENT_DELAY */ obspower(tpwr); /* POWER_DELAY */ delay(1.0e-4 - POWER_DELAY); } else { delay(timeTN + tau2 - kappa - PRG_STOP_DELAY - pwHd - 2.0e-6); xmtroff(); obsprgoff(); /* PRG_STOP_DELAY */ rgpulse(pwHd,three,2.0e-6,0.0); txphase(t4); delay(kappa-tau2-pwC9-WFG_START_DELAY-gt1-2.0*GRADIENT_DELAY-1.0e-4); if (mag_flg[A]=='y') magradpulse(icosel*gzcal*gzlvl1, gt1); else zgradpulse(icosel*gzlvl1, gt1); /* 2.0*GRADIENT_DELAY */ obspower(tpwr); /* POWER_DELAY */ delay(1.0e-4 - POWER_DELAY); /* WFG_START_DELAY */ decshaped_pulse("offC9", pwC9, zero, 0.0, 0.0); delay(tau2); } } /* xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx */ if (TROSY[A]=='y') rgpulse(pw, t4, 0.0, 0.0); else sim3pulse(pw, 0.0, pwN, t4, zero, t10, 0.0, 0.0); txphase(zero); dec2phase(zero); zgradpulse(gzlvl5, gt5); if (TROSY[A]=='y') delay(lambda - 0.65*(pw + pwN) - gt5); else delay(lambda - 1.3*pwN - gt5); sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0); zgradpulse(gzlvl5, gt5); txphase(one); dec2phase(t11); delay(lambda - 1.3*pwN - gt5); sim3pulse(pw, 0.0, pwN, one, zero, t11, 0.0, 0.0); txphase(zero); dec2phase(zero); zgradpulse(gzlvl6, gt5); delay(lambda - 1.3*pwN - gt5); sim3pulse(2.0*pw, 0.0, 2.0*pwN, zero, zero, zero, 0.0, 0.0); dec2phase(t10); zgradpulse(gzlvl6, gt5); if (TROSY[A]=='y') delay(lambda - 1.6*pwN - gt5); else delay(lambda - 0.65*pwN - gt5); if (TROSY[A]=='y') dec2rgpulse(pwN, t10, 0.0, 0.0); else rgpulse(pw, zero, 0.0, 0.0); delay((gt1/10.0) + 1.0e-4 + gstab - 0.5*pw + 2.0*GRADIENT_DELAY + POWER_DELAY); rgpulse(2.0*pw, zero, 0.0, rof1); dec2power(dpwr2); /* POWER_DELAY */ if (mag_flg[A] == 'y') magradpulse(gzcal*gzlvl2, gt1/10.0); else zgradpulse(gzlvl2, gt1/10.0); /* 2.0*GRADIENT_DELAY */ delay(gstab); rcvron(); statusdelay(C,1.0e-4 - rof1); if (dm3[B]=='y') lk_sample(); setreceiver(t12); }